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Abstract

This paper deals with global existence and uniqueness results for
a transient nonlinear radiative-conductive system in two dimensional
case. This system describes the heat transfer for a grey, semi-transparent
and non-scattering medium with general boundary conditions. We re-
formulate the full transient state system as a fixed-point problem. The
existence and uniqueness proof is based on Schauder fixed point The-
orem.

1 Introduction

The aim of this work is to prove the global existence and uniqueness of the
solution for a transient combined radiative-conductive system in two dimen-
sional case with general boundary conditions when the initial condition is
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assumed to be nonnegative. The medium is assumed grey, semi-transparent
and non-scattering.

Let us consider a bounded, open, connected and convex set Ω ⊂ R2, with
C2 boundary. D is the unit disk. Let β ∈ D, x ∈ Ω, t ∈ (0, τ ) for τ > 0,
X = Ω×D, Qτ = (0, τ )× Ω and Στ = (0, τ )× ∂Ω. Let n be the outward
unit normal to the boundary ∂Ω. We denote

∂Ω− = {(x,β) ∈ ∂Ω×D such that β.n < 0}.

The full system of a combined nonlinear radiation-conduction heat transfer
is written in dimensionless form,

I(t,x,β) + β.∇xI(t,x,β) = T 4(t,x) (t,x,β) ∈ (0, τ )×X (1)

∂tT (t,x)−∆T (t,x) + 2πθT 4(t,x) = θG(t,x) (t,x) ∈ Qτ (2)
a∂nT (t,x) + bT (t,x) = g(t,x) (t,x) ∈ Στ (3)
I(t,x,β) = h(t,x,β) (t,x,β) ∈ (0, τ )× ∂Ω− (4)
T (0,x) = T0(x) x ∈ Ω (5)

where θ is a positive dimensionless constant, a and b are nonnegative real
numbers, T0, h and g are smooth and nonnegative initial data. The incident
radiation intensity G is given by

G(t,x) =

∫
D
I(t,x,β)

2√
1− |β|2

dβ (t,x) ∈ Qτ . (6)

In this paper we assume that the mean radiation intensity of the blackbody
verifies the Stefan-Bolzmann law which is proportional to T 4. The radiative
transfer equation (RTE) (1) and the conductive equation (CE) (2) are cou-
pled via the source term θ{G − 2πT 4}. We use nonhomogeneous Dirichlet
boundary conditions for radiation equation and different cases of boundary
conditions for CE. For a fuller treatment of the dimensionless form of radia-
tive conductive heat transfer system, we refer the reader to [26].

Radiative-conductive heat transfer problems are the subject of various
fields of engineering and science. In the literature, this problem is studied
using two different types of model. In the first type, the problem is described
using an unique parabolic partial differential equation. In the second type
of model, the modeling of the radiation and the conduction is given by a
coupled system of partial differential equations where each phenomenon is
described by an equation.

There is a huge mathematical theory in the first case, see [5, 6, 7, 8, 31,
45, 3, 4, 9, 34, 35, 36, 37]. For example, the paper [5] is devoted to the
study of a nonstationary nonlinear nonlocal initial boundary value problem
governing radiative conductive heat transfer in opaque bodies with surfaces
whose properties depend on the radiation frequency. This paper is a natural
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extension of the work done in [7], where the corresponding stationary prob-
lem was treated. In [30], the authors considered the conductive radiative
heat transfer in a scattering and absorbing medium bounded by two reflect-
ing and radiating plane surfaces. The existence and uniqueness of a solution
of this problem is established using an iterative procedure.

In [36], M. Laitinen and T. Tiihonen studied the well-posedness of a
class of models describing heat transfer by conduction and radiation in the
stationary case. The employed theory covers different types of grey materials,
that is, both semitransparent and opaque bodies as well as isotropic or non-
isotropic scattering/reflection provided that the material properties do not
depend on the wavelength of the radiation.

In this paper, we consider the second type of model where the phe-
nomenon is expressed as a coupled system of nonlinear partial differential
equations in two-dimensional case. In previous works we can find theoret-
ical results of existence and uniqueness in one-dimensional case. Indeed,
in the Kelley’s paper [28], the authors considered a steady-state combined
radiative-conductive heat transfer. In Asllanaj et al.[12] the authors gen-
eralized the Kelley’s study and they proved the existence and uniqueness
of the 1-D system of coupled radiative conductive in the steady state asso-
ciated to the nonhomogeneous Dirichlet boundary with the black surfaces.
The medium is assumed to be a non-grey anisotropic absorbing, emitting,
scattering, with axial symmetry and non homogeneous. They considered a
nonlinear conduction equation due to the temperature dependence of the
thermal conductivity. However, the approach developed by Asllanaj et al.
[12] is just adaptable to 1D dimensional geometry. In addition, M. M. Porzio
and Ó. López Pouso proved in [44] an existence and uniqueness theorem for
the non-grey coupled convection-conduction-radiation system associeted to
the mixed nonhomogenous Dirichlet and homogenous Neumann boundary
conditions by means of accretive operators theory. Leaving aside the grey
or non-grey character, the main difference between our problem and the one
studied in [44] is that we do not include the transient term in the RTE.
This is an interesting point because this term is really negligible in a wide
range of applications, and also because the techniques used in [44] do not
allow disregarding it. Moreover, in our study we discuss different types of
boundary conditions.

In this paper we prove the global existence and uniqueness of solutions for
the nonlinear radiative conductive system in 2-dimensional case associated
to the nonhomogeneous Dirichlet boundary conditions for radiation equation
and for different type of conductive boundary conditions. The Schauder fixed
point theorem is the principal tool used to solve this problem.

Recently, some attention has been accorded to numerical methods to
study the radiative transfer and the nonlinear radiative-conductive heat
transfer problem including optimal control problems, for more details see
[10, 11, 12, 13, 14, 18, 21, 22, 23, 24, 26, 40, 41, 42, 43, 39, 29, 27, 25].
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Asllanaj et al. [13] simulated transient heat transfer by radiation and con-
duction in two-dimensional complex shaped domains with structured and
unstructured triangular meshes working with an absorbing, emitting and
non-scattering grey medium.

The plan of this paper is as follows: Section 2, contains the statement of
the main result (Theorem 2.1). Section 3 is devoted to its proof based on
Schauder fixed point theorem.

Acknowledgements
The authors would like to thank Professor Michel PIERRE (École

Normale Supérieure de Rennes, IRMAR) for many helpful discussions and
comments.

2 Main results

In order to state the main result, we introduce the following notations

Lp(Qτ ) = Lp(0, τ ;Lp(Ω)) for all p ∈ [1,∞)

W 2,1
2 (Qτ ) := {φ s.t φ, φt, φxi , φxi,xj ∈ L2(Qτ )}.

According to the method introduced in [19] to solve the neutron equations,
we consider the following space

W2 = {v ∈ L2(X );β.∇xv ∈ L2(X )}

and the following subset of ∂Ω×D

∂Ω+ = {(x,β) ∈ ∂Ω×D and β.n > 0}.

We denote by

L2 = L2(X ), L2
− = L2(∂Ω−; |β.n|dxdβ)

and
L2

+ = L2(∂Ω+; |β.n|dxdβ),

the spaces of square integrable functions in X , ∂Ω− and ∂Ω+, respectively.
Let us denote by W the following subset of W2:

W = {T ∈W2; T|∂Ω−
∈ L2

−}.

The space W is a Hilbert space when is equipped with the scalar product

(u, v)W =

∫
X
uvdxdβ +

∫
X

(β.∇xu)(β.∇xv)dxdβ +

∫
∂Ω+

(β.n)uvdxdβ

and the norm
‖u‖2W = ‖u‖2L2 + ‖β.∇xu‖2L2 + ‖u‖2L2

+
.
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Our result will be obtained under the following assumptions about the initial
data

T0 is nonnegative, belongs to H1(Ω),

h ∈ L2(0,∞;L2
−) is nonnegative,

g ∈W 2,1
∞ ((0,∞)× Ω) ∩ C2,1((0,∞)× Ω) is nonnegative.

(7)

The main result of this paper is the following Theorem.

Theorem 2.1. Assume that the data verifies (7). For all τ > 0, the system
of equation (1)-(5) has a unique nonnegative solution (T, I) such that T ∈
W 2,1

2 (Qτ ) and I ∈ L2(0, τ ;W). Moreover, there exist C = C(Ω, τ , θ) > 0
such that ∥∥∥I∥∥∥

L2(0,τ ;W)
6
√

2π
∥∥∥T∥∥∥4

L8(Qτ )
+
∥∥∥h∥∥∥

L2(0,τ ;L2
−)
, (8)

and

‖T‖
W 2,1

2 (Qτ )
6 C

(∥∥∥G∥∥∥
L2(Qτ )

+
∥∥∥T0

∥∥∥
H1(Ω)

+
∥∥∥g∥∥∥

L2(0,τ ;H
3
2 (Ω))

)
. (9)

Remark 2.2. The Theorem 2.1 shows the existence and uniqueness of the
solution for all τ > 0 which implies a global existence and uniqueness of the
solution for radiative conductive heat transfer system.

The next section is devoted to the construction of a completely continuous
mappingH on a suitable set, composed by three continuous maps. Moreover,
the Schauder fixed point Theorem is employed to prove the global existence
and uniqueness of solution of the nonlinear coupled radiative conductive heat
transfer system (1)-(5).

3 Global existence and uniqueness of solution for
the coupled system

In this section, we show that the existence of a solution T , and implicitly the
existence of a solution I, of the coupled system of equations (1)-(5) is related
to the existence of a solution of a fixed point problem. We will apply the
Schauder fixed point theorem to a well-chosen map H. To do so, we must
show that this map H is well defined and completely continuous.

At first, we fixe τ > 0, let Mτ a positive constant only depending on T0,
g, h and τ , satisfying the following hypotheses

?
∥∥∥T0

∥∥∥5

L5(Ω)
6 πθM8

τ ,

?
∥∥∥h∥∥∥

L2(0,τ ;L2
−)

6
√

2πM4
τ ,

? C∗g 6
M8
τ

4
.

(10)
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where

C∗g =
4

50πθa2b
τ
∣∣∣∂Ω

∣∣∣∥∥∥g∥∥∥
L∞((0,τ )×Ω)

for Robin Boundary

conditions (a > 0, b > 0),

C∗g = τ

 12

75π2θ2

∣∣∣Ω∣∣∣+

∣∣∣∂Ω
∣∣∣

4a2πθ
C(Ω)

∥∥∥g∥∥∥5

L∞((0,τ )×Ω)

 , for

Neumann Boundary conditions (a > 0, b = 0),

C∗g =
2

b8
τ
∣∣∣Ω∣∣∣∥∥∥g∥∥∥8

L∞(Qτ )
+

7

192π2θ2b8
τ
∣∣∣Ω∣∣∣∥∥∥ (∂t + ∆) g4

∥∥∥8/7

L∞(Qτ )

+
8

25πθb8

∣∣∣Ω∣∣∣∥∥∥g∥∥∥5

L∞(Qτ )
+

τ

b5πθ

∣∣∣∂Ω
∣∣∣∥∥∥g∂ng4

∥∥∥
L∞((0,τ )×Ω)

,

for Dirichlet Boundary conditions (a = 0, b > 0),

and C(Ω) is a positive constant depending only on Ω.
Note that it always possible to choose a large enough constant Mτ sat-

isfying the assumptions (10) for any given value of τ > 0.
We introduce the following sets

Eτ1 = {T ∈ L8(Qτ );
∥∥∥T∥∥∥

L8(Qτ )
6Mτ},

Eτ2 = {I ∈ L2(0, τ ;L2(X ));
∥∥∥I∥∥∥2

L2(0,τ ;L2(X ))
6 2πM8

τ},

Eτ3 = {G ∈ L2(Qτ );
∥∥∥G∥∥∥2

L2(Qτ )
6 4π2M8

τ}.

The map H : Eτ1 −→ Eτ1 is a composition of three maps

H = H3 ◦ H2 ◦ H1.

The map H1 : Eτ1 −→ Eτ2 is defined as follows, for T ∈ Eτ1 , H1(T ) ∈ Eτ2
is the solution of the radiative transfer equation(1)-(5). On the other hand,
the map H2 : Eτ2 −→ Eτ3 is defined in the following way, for I ∈ Eτ2 ,
H2(I) = G ∈ Eτ3 where G is given by (6). Finally, the map H3 : Eτ3 −→ Eτ1
is defined as follows, for G ∈ Eτ3 , H3(G) ∈ Eτ1 is the solution of CE (1)-(5).

To study H, we will be studying in great detail the maps H1, H2 and
H3.

3.1 The maps H1 and H2

Now, we focus on the maps H1 and H2, we give some properties of the
solution of the RTE (1) using nonhomegeneous radiative Dirichlet boundary
conditions.
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We start by recalling the Green’s formula, see [16]:∫
X

(β.∇xu)vdxdβ +

∫
X

(β.∇xv)udxdβ =

∫
∂Ω×D

(β.n)uvdxdβ, (11)

for all (u, v) ∈W ×W .

Theorem 3.1. Let us consider T ∈ Eτ1 . Under the assumptions (7), (10),
the problem (1), (4) has a unique nonnegative solution H1(T ) ∈ L2(0, τ ;W).
Moreover, H1 is a well-posed and continuous map from Eτ1 to Eτ2 .

Proof. Let T ∈ Eτ1 , t ∈ [0, τ ], we have T 4(t) ∈ L2(Ω). Using a result
about the existence and uniqueness of the solution of the transport equation,
see[19], the boundary value problem (1), (4) has a unique solution I(t) ∈
L2(X ).

In addition, using the linearity of (1), the solution I of the problem (1)-
(5) is given by I = I0 + w where I0 is a solution of (1), (4) for h ≡ 0 and w
is a solution of (1), (4) without the second member T 4.

We start by the homogeneous problem

β.∇xI0(t,x,β) + I0(t,x,β) = T 4(t,x) ∀(t,x,β) ∈ (0, τ )×X (12)
I0(t,x,β) = 0 ∀(t,x,β) ∈ ∂Ω−. (13)

If we multiply the equation (12) by I0 and we integrate in space, we obtain∫
X
I2

0 (t)dxdβ +

∫
X

(β.∇xI0)(t)I0(t)dxdβ =

∫
X
T 4(t)I0(t)dxdβ. (14)

Using the Cauchy-Schwarz inequality, we obtain the following bound of the
second member of (14). Thus∣∣∣∣∫

X
T 4(t)I0(t)dxdβ

∣∣∣∣ 6 ‖T 4(t)‖L2‖I0(t)‖L2 ,

since T is independent of the direction β and mes(D) = 2π, we deduce:∣∣∣∣∫
X
T 4(t)I0(t)dxdβ

∣∣∣∣ 6 √2π‖T 4(t)‖L2(Ω)‖I0(t)‖L2 .

In order to involve the boundary value, we use Green’s formula (11) and (13)
to get

2

∫
X
I0(t)(β.∇xI0)(t)dxdβ =

∫
∂Ω×D

(β.n)I2
0 (t)dΓdβ

=

∫
∂Ω+

(β.n)I2
0 (t)dΓdβ.

(15)

Using the definition of ∂Ω+, we can conclude that the right hand side term
is nonnegative. Finally, we have the following inequality

‖I0(t)‖2L2 +
1

2
‖I0(t)‖L2

+
6
√

2π‖T 4(t)‖L2(Ω)‖I0(t)‖L2 .
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Thus
‖I0(t)‖L2 6

√
2π‖T 4(t)‖L2(Ω). (16)

If we multiply (12) by I0 + β.∇xI0 and we integrate in space, we get∫
X

(I0 + β.∇xI0)(t)I0(t)dxdβ+

∫
X

(β.∇xI0)(t)(I0 + β.∇xI0)(t)dxdβ

=

∫
X
T 4(t)(I0 + β.∇xI0)(t)dxdβ.

(17)

Using the Cauchy-Schwarz inequality, we verify that the second member of
(17) is bounded,∣∣∣∣∫

X
T 4(t)β.∇xI0(t)dxdβ

∣∣∣∣ 6 ‖T 4(t)‖L2‖β.∇xI0(t)‖L2 .

We have also∫
X
I2

0 (t)dxdβ + 2

∫
X

(β.∇xI0)(t)I0(t)dxdβ +

∫
X

(β.∇xI0)2(t)dxdβ

= ‖I0(t)‖2L2 + ‖β.∇xI0(t)‖2L2 + 2

∫
X

(β.∇xI0)(t)I0(t)dxdβ.

Using (15), it follows that

‖I0(t)‖2L2 + ‖β.∇xI0(t)‖2L2 + ‖I0(t)‖2L2
+
6‖T 4(t)‖L2‖β.∇xI0(t)‖L2

+ ‖T 4(t)‖L2‖I0(t)‖L2 ,

consequently

‖I0(t)‖2W = ‖I0(t)‖2L2 + ‖β.∇xI0(t)‖2L2 + ‖I0(t)‖2L2
+
6 ‖T 4(t)‖L2‖I0(t)‖W .

In this way
‖I0(t)‖W 6

√
2π‖T 4(t)‖L2(Ω). (18)

Now, we study the nonhomogeneous boundary value problem:

β.∇xw(t,x,β) + w(t,x,β) = 0 ∀(t,x,β) ∈ (0, τ )×X (19)
w(t,x,β) = h(t,x,β) ∀(t,x,β) ∈ (0, τ )× ∂Ω−. (20)

Multiplying by w and integrating in X , we find that∫
X
w2(t)dxdβ +

∫
X

(β.∇xw(t))w(t)dxdβ = 0.

Using Green’s formula (11), we thus get

‖w(t)‖2L2 +
1

2
‖w(t)‖2L2

+
− 1

2
‖h(t)‖2L2

−
= 0
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and then
‖w(t)‖L2 6

1√
2
‖h(t)‖L2

−
. (21)

If we multiply (19) by β.∇xw and we integrate in X , we obtain∫
X
w(β.∇xw(t))dxdβ +

∫
X

(β.∇xw(t))2dxdβ = 0

then
‖β.∇xw(t)‖2L2 +

1

2
‖w(t)‖2L2

+
=

1

2
‖h(t)‖2L2

−
.

From the above it follows that

‖w(t)‖2L2 6
1

2
‖h(t)‖2L2

−

then
‖w(t)‖2L2 + ‖β.∇xw(t)‖2L2 +

1

2
‖w(t)‖2L2

+
6 ‖h(t)‖2L2

−
.

Hence
‖w(t)‖W 6 ‖h(t)‖L2

−
. (22)

Since I = I0 + w, the estimates (16) and (21) imply

‖I(t)‖L2 6
√

2π‖T 4(t)‖L2(Ω) +
1√
2
‖h(t)‖L2

−
,

Finally, in a similar way, according to (18) and (22), we obtain

‖I(t)‖W 6
√

2π‖T 4(t)‖L2(Ω) + ‖h(t)‖L2
−
.

If we integrate in time between 0 and τ , we obtain

‖I‖L2(0,τ ;L2) 6
√

2π‖T‖4L8(Qτ ) +
1√
2
‖h‖L2(0,τ ;L2

−)

‖I‖L2(0,τ ;W) 6
√

2π‖T‖4L8(Qτ ) + ‖h‖L2(0,τ ;L2
−),

thus
‖I‖L2(0,τ ;L2) 6

√
2π‖T‖4L8(Qτ ) +

1√
2
‖h‖L2(0,∞;L2

−) (23)

Then, from (7),(10) we deduce

‖I‖L2(Qτ ) 6 2
√

2πM4
τ .

Consequently, I ∈ Eτ2 and then H1 is a well-posed map.
Using the positivity of h and the maximum principle [1], this implies that

the solution I of (1), (4) is nonnegative.
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Now, we show the continuity of the map H1. We consider I1, I2 two
solutions of (1) associated to T1, T2, respectively . Let t ∈ [0, τ ], we have

‖I1(t)− I2(t)‖L2(X ) 6
√

2π‖T 4
1 (t)− T 4

2 (t)‖L2(Ω). (24)

Using the generalized Hölder’s inequality, we have the following inequality

‖T 4
1 − T 4

2 ‖2L2(Qτ ) 6 ‖T1 − T2‖2L8(Qτ )‖T1 + T2‖2L8(Qτ )‖T
2
1 + T 2

2 ‖2L4(Qτ ). (25)

Hence

‖T 2
1 + T 2

2 ‖4L4(Qτ ) 6 ‖T1‖8L8(Qτ ) + 4‖T1‖6L8(Qτ )‖T2‖2L8(Qτ ) + +‖T2‖8L8(Qτ )

+ 6‖T1‖4L8(Qτ )‖T2‖4L8(Qτ ) + 4‖T1‖2L8(Qτ )‖T2‖6L8(Qτ ).

Since T1, T2 ∈ Eτ1 , then we deduce that

‖T 2
1 + T 2

2 ‖L4(Qτ ) 6 2M2
τ . (26)

On the other hand, we have

‖T1 + T2‖L8(Qτ ) 6 2Mτ , (27)

it follows that

‖T 4
1 − T 4

2 ‖L2(Qτ ) 6 4M3
τ‖T1 − T2‖L8(Qτ ),

From (24), we deduce that

‖I1 − I2‖L2(0,τ ;L2(X )) 6 4
√

2πM3
τ‖T1 − T2‖L8(Qτ ). (28)

The last inequality shows the continuity of H1.

Now, we give some properties of the map H2.

Proposition 3.2. Under the hypotheses (7), (10), H2 is a well posed and
continuous map from Eτ2 to Eτ3 . Moreover, for all I solution of the problem
(1), (4), G = H2(I) is a nonnegative.

Proof. Let us consider I ∈ Eτ2 and G = H2(I), then we have

‖G‖L2(Qτ ) 6
√

2π‖I‖L2(0,τ ;L2(X )). (29)

Hence , for all I ∈ Eτ2 , G = H2(I) belongs to Eτ3 . Since I is nonnegative
then G is nonnegative. Therefore H2 is a well posed map. Since H2 is a
linear function, from the inequality (29), H2 is a continuous map.
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3.2 The map H3

In this subsection we introduce some properties of the map H3.

Proposition 3.3. Let τ > 0, G ∈ Eτ3 . Under the assumptions (7), (10),
the problem (2),(3),(5) has a nonnegative solution T ∈W 2,1

2 (Qτ ).

Proof. Let τ > 0. For T0 ∈ H1(Ω), G ∈ L2(Ω) the proof of the existence
and uniqueness of the solution of the problem (2),(3),(5), see [2, 32].

Now, in order to prove the the non-negativity of the solution of (2),(3),(5),
let us consider F defined in (0, τ )× Ω× R by

F (t,x, y) = θ
(
G(t,x)− 2πy4

)
.

The equation (2) can be rewritten
∂tT (t,x)−∆T (t,x) = F (t,x, T (t,x)) for (t,x) ∈]0, τ ]× Ω

a∂nT (t,x) + bT (t,x) = g(t,x) for (t,x) ∈]0, τ ]× ∂Ω

T (0,x) = T0(x) for x ∈ Ω.

(30)

Now, we define F̄ in (0, τ )× Ω× R by

F̄ (t,x, y) =

{
θ
(
G(t,x)− 2πy4

)
if y ≥ 0

θG(t,x) if y < 0.

Let us consider T̄ the solution of the following system
∂tT̄ (t,x)−∆T̄ (t,x) = F̄ (t,x, T̄ (t,x)) for (t,x) ∈]0, τ ]× Ω

a∂nT̄ (t,x) + bT̄ (t,x) = g(t,x) for (t,x) ∈]0, τ ]× ∂Ω

T̄ (0,x) = T0(x) for x ∈ Ω

(31)

Our goal is to prove that the solution T̄ of this equation remains nonnegative
over the time. Indeed, in this case F̄ and F coincide, therefore we have by
the uniqueness of the solution T = T̄ which is nonnegative.
We set T̄+ = max(T, 0) and T̄− = max(−T, 0), such that T̄ = T̄+ − T̄−.

Multiplying the equation (31) by (−T̄−) and integrating over Ω, we ob-
tain

−
∫

Ω
∂tT̄ (t,x)T̄−(t,x)dx+

∫
Ω

∆T̄ (t,x)T̄−(t,x)dx = −
∫

Ω
F̄ (t,x, T̄ )T̄−(t,x)dx.

Now, we have

−
∫

Ω
∂tT̄ (t,x)T̄−(t,x)dx =

1

2
∂t

∫
Ω

(T̄−(t,x))2dx, (32)

−
∫

Ω
F̄ (t,x, T̄ )T̄−(t,x)dx = −

∫
{T̄<0}

F̄ (t,x, T̄ )T̄−(t,x)dx

= −θ
∫
{T̄<0}

G(t,x)T̄−(t,x)dx ≤ 0,

(33)

11



and∫
Ω

∆T̄ (t,x)T̄−(t,x)dx =

∫
Ω

(∇T̄−(t,x))2dx+

∫
∂Ω
∂nT̄ (t,x)T̄−(t,x)dΓ.

If a > 0 (Robin or Neumann boundary conditions), then∫
∂Ω
∂nT̄ (t,x)T̄−(t,x)dΓ =− b

a

∫
∂Ω
T̄ (t,x)T̄−(t,x)dΓ

+
1

a

∫
∂Ω
g(t,x)T̄−(t,x)dΓ

=
b

a

∫
∂Ω

(
T̄−(t,x)

)2
dΓ

+
1

a

∫
∂Ω
g(t,x)T̄−(t,x)dΓ > 0.

(34)

Now, if we have a = 0 (thus b > 0), since T̄− = 0 on ∂Ω then∫
∂Ω
∂nT̄ (t,x)T̄−(t,x)dΓ = 0. (35)

In the both cases, we have∫
Ω

∆T̄ (t,x)T̄−(t,x)dx > 0. (36)

Consequently, (32), (33) and (36) imply

1

2
∂t

∫
Ω

(T̄−(t,x))2dx ≤ 0. (37)

As T0 is nonnegative, we deduce from (37) that T̄− ≡ 0. It follows that T̄
and consequently T are nonnegative in (0, τ )× Ω.

In the following, we prove that T ∈W 2,1
2 (Qτ ). For it, let us introduce z

the solution of the parabolic problem
∂tz(t,x)−∆z(t,x) = θG(t,x) for (t,x) ∈]0, τ ]× Ω

a∂nz(t,x) + bz(t,x) = g(t,x) for (t,x) ∈]0, τ ]× ∂Ω

z(t,x) = T0 for x ∈ Ω

(38)

Since G ∈ L2(Qτ ), T0 ∈ H1(Ω) and thanks to a result on parabolic regu-
larity, see[32], then z ∈ W 2,1

2 (Qτ ) and there exists a constant C̃ > 0 such
that

‖z‖
W 2,1

2 (Qτ )
6 C̃

(
‖G‖L2(Qτ ) + ‖T0‖H1(Ω) + ‖g‖

L2(0,τ ;H
3
2 (Ω))

)
. (39)

For more details, we refer the reader to [20, p.197]. Then, using the Sobolev
embedding we deduce that T is a subsolution of (30), then using the max-
imum principle, we have that T ≤ z. Consequently, T belongs to L8(Qτ ).
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Now, by the bootstrap argument we obtain T belongs to W 2,1
2 (Qτ ). In-

deed, since G and T 4 belong to L2(Qτ ), we have θ G − 4πθT 4 belongs to
L2(Qτ ). Consequently, using the same result on parabolic regularity we
obtain T ∈W 2,1

2 (Qτ ).

Theorem 3.4. Under the hypotheses of Proposition 3.3, H3(Eτ3 ) ⊆ Eτ1 .

Proof. Let G ∈ Eτ3 . We have already proved that T belongs to L8(Qτ ).
However, to prove that T = H3(G) ∈ Eτ1 , we need a more precise control of
‖T‖L8(Qτ ).

As T ∈ W 2,1
2 (Qτ ) then T 4 belongs to L2(0, τ ;H1(Ω)). Thus, we can

multiply the equation (2) by T 4 and we integrate over Ω, we obtain for all
t ∈ (0, τ )

1

5

d

dt
‖T (t)‖5L5(Ω)+4

∫
Ω

(∇T (t,x))2T 3(t,x)dx−
∫
∂Ω
∂nT (t,x)T 4(t,x)dΓ

+ 2πθ

∫
Ω
T 8(t,x)dx = θ

∫
Ω
G(t,x)T 4(t,x)dx.

(40)
Using the Young’s inequality, we get

1

5

d

dt
‖T (t)‖5L5(Ω)+

16

25

∫
Ω

(∇T
5
2 (t,x))2dx+ 2πθ

∫
Ω
T 8(t,x)dx

6
θ

8π

∫
Ω
G2(t,x)dx+

∫
∂Ω
∂nT (t,x)T 4(t,x)dΓ.

(41)

For each type of boundary conditions, the treatment of the boundary
terms will be different. For this way we start by the simplest case Robin
boundary conditions (a > 0, b > 0).

Using Young’s inequality, choosing ε1 =
5b

4
, we have∫

∂Ω
∂nT (t)T 4(t,x)dΓ =− b

a

∫
∂Ω
T 5(t,x)dΓ +

1

a

∫
∂Ω
gT 4(t,x)dΓ

6− b

a

∫
∂Ω
T 5(t,x)dΓ +

4ε1
5a

∫
∂Ω
T 5(t,x)dΓ

+
1

5aε1

∫
∂Ω
g5(t,x)dΓ

6
4

25ab

∫
∂Ω
g5(t,x)dΓ.

Thus from (41), it follows that

1

5

d

dt
‖T (t)‖5L5(Ω) + 2πθ

∫
Ω
T 8(t,x)dx 6

θ

8π

∫
Ω
G2(t,x)dx

+
4

25ab

∫
∂Ω
g5(t,x)dΓ.

13



We integrate in time between 0 and τ , we obtain

‖T‖8L8(Qτ ) 6
1

16π2
‖G‖2L2(Qτ ) +

4

50πθa2b
τ
∣∣∣∂Ω

∣∣∣∥∥∥g∥∥∥
L∞((0,τ )×Ω)

+
1

2πθ
‖T0‖5L5(Ω).

Since G ∈ Eτ3 , g and T0 satisfy (10), it follows that

‖T‖8L8(Qτ ) 6M8
τ . (42)

Hence, we have T ∈ E1. Then the map H3 is well-posed.
Now, we consider the Neumann boundary conditions (a > 0, b = 0). Let

consider the boundary term of (41)∫
∂Ω
∂nT (t,x)T 4(t,x)dΓ =

1

a

∫
∂Ω
g(t,x)T 4(t,x)dΓ

6
1

5aε

∫
∂Ω
g5(t,x)dΓ +

4ε

5a

∫
∂Ω
T 5(t,x)dΓ

6
1

5aε

∫
∂Ω
g5(t,x)dΓ +

4ε

5a

∫
∂Ω

(
T

5
2 (t,x)

)2
dΓ.

Then there exists C(Ω) > 0, see[15], such that∫
∂Ω
∂nT (t,x)T 4(t,x)dΓ 6

1

5aε

∫
∂Ω
g5(t,x)dΓ +

4ε

5a
C(Ω)

∥∥∥T 5
2 (t)

∥∥∥2

H1(Ω)
.

(43)

Choosing ε =
4a

5C(Ω)
, substituting (43) into (41), for all t ∈ (0, τ )

d

dt

∥∥∥T (t)
∥∥∥5

L5(Ω)
+10πθ

∫
Ω
T 8(t,x)dx 6

5θ

8π

∫
Ω
G2(t,x)dx

+
16

5

∥∥∥T (t)
∥∥∥5

L5(Ω)
+

5C(Ω)

4a2

∫
∂Ω
g5(t,x)dΓ,

(44)

Using the Young inequality we obtain∥∥∥T (t)
∥∥∥5

L5(Ω)
6

5ε

8

∥∥∥T (t)
∥∥∥8

L8(Ω)
+

3

8ε

∣∣∣Ω∣∣∣. (45)

Integrating (44) in time between 0 and τ and using (45) we obtain∥∥∥T (τ )
∥∥∥5

L5(Ω)
+10πθ

∥∥∥T∥∥∥8

L8(Qτ )
6

5θ

8π

∥∥∥G∥∥∥2

L2(Qτ )
+ 2ε

∥∥∥T∥∥∥8

L8(Qτ )

+ τ
6

5ε

∣∣∣Ω∣∣∣+
5C(Ω)

4a2

∫
Στ

g5(s,x)dΓds

+
∥∥∥T0

∥∥∥5

L5(Ω)
.
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Taking ε =
5πθ

2
, we obtain∥∥∥T∥∥∥8

L8(Qτ )
6

1

8π2

∥∥∥G∥∥∥2

L2(Qτ )
+ τ

12

75π2θ2

∣∣∣Ω∣∣∣+
C(Ω)

4a2πθ

∫
Στ

g5(s,x)dΓds

+
1

5πθ

∥∥∥T0

∥∥∥5

L5(Ω)
,

then∥∥∥T∥∥∥8

L8(Qτ )
6

1

8π2

∥∥∥G∥∥∥2

L2(Qτ )
+ τ

 12

75π2θ2

∣∣∣Ω∣∣∣+

∣∣∣∂Ω
∣∣∣

4a2πθ
C(Ω)

∥∥∥g∥∥∥5

L∞((0,τ )×Ω)


+

1

5πθ

∥∥∥T0

∥∥∥5

L5(Ω)
.

Since G ∈ Eτ3 , g and T0 satisfy (10), it follows that

‖T‖8L8(Qτ ) 6M8
τ . (46)

Hence, we have T ∈ E1. Then the map H3 is well-posed.
Finally, we consider the case of Dirichlet boundary conditions (a = 0, b > 0).

This type of boundary conditions request a different analytical tools.
To bound the last term on the right hand side of (41), we multiply the

equation (2) by g4 (given in (7)) and we integrate over Qτ , we get∫ τ

0

∫
Ω

[
∂tT (s,x)−∆T (s,x) + 2πθT 4(s,x)

]
g4(s,x)dxds

=

∫ τ

0

∫
Ω
G(s,x)g4(s,x)dxds

Therefore, we deduce from Green’s Formula that∫
Ω

[
T (τ ,x)g4(t,x)− T (0,x)g4(0,x)

]
dx−

∫
Ω

∫ τ

0
T (s,x)∂tg

4(s,x)dsdx

−
∫
Qτ

T (s,x)∆(g4)(s,x)dxds+
1

b

∫
Στ

g(s,x)∂ng
4(s,x)dxds

−
∫
Στ

∂nT (s,x)g4(s,x)dxds+ 2πθ

∫
Qτ

T 4(s,x)g4(s,x)dxds

=

∫
Qτ

G(s,x)g4(s,x)dxds.

(47)
Using the positivity of G and T0, (47) becomes∫
Στ

∂nT (s,x)g4(s)dxds 62πθ

∫
Qτ

T 4(s,x)g4(s,x)dxds+

∫
Ω
T (τ , x)g4(τ ,x)dx

−
∫
Qτ

T (s,x) (∂t + ∆) g4(s,x)dxds

+
1

b

∫
Στ

g(s,x)∂ng
4(s,x)dxds

15



Then, Young’s inequality implies that there exists ε1 > 0, ε2 > 0, ε3 > 0∫
Στ

∂nT (s,x)g4(s,x)dxds 6
2πθ

ε1

∥∥∥T∥∥∥8

L8(Qτ )
+ 2πθτ ε1

∣∣∣Ω∣∣∣∥∥∥g∥∥∥8

L∞(Qτ )
+

1

8ε2

∥∥∥T∥∥∥8

L8(Qτ )

+
7ε2
8
τ
∣∣∣Ω∣∣∣∥∥∥ (∂t + ∆) g4

∥∥∥8/7

L∞(Qτ )
+

1

5ε3

∥∥∥T (τ )
∥∥∥5

L5(Ω)

+
4

5
ε3

∣∣∣Ω∣∣∣∥∥∥g∥∥∥5

L∞(Qτ )
+
τ

b

∣∣∣∂Ω
∣∣∣∥∥∥g∂ng4

∥∥∥
L∞((0,τ )×Ω)

.

(48)
For the Dirichlet boundary conditions, the inequality (41) becomes

1

5

d

dt
‖T (t)‖5L5(Ω)+

16

25

∫
Ω

(∇T
5
2 (t,x))2dx+ 2πθ

∫
Ω
T 8(t,x)dx

6
θ

8π

∫
Ω
G2(t,x)dx+

1

b4

∫
∂Ω
∂nT (t,x)g4(t,x)dΓ.

(49)

Integrating (49) in time between 0 and τ and using (48) we obtain∥∥∥T (τ )
∥∥∥5

L5(Ω)
+ 10πθ

∥∥∥T∥∥∥8

L8(Qτ )
6

5θ

8π

∥∥∥G∥∥∥2

L2(Qτ )
+

10πθ

b4ε1

∥∥∥T∥∥∥8

L8(Qτ )

+
10

b4
πθτ ε1

∣∣∣Ω∣∣∣∥∥∥g∥∥∥8

L∞(Qτ )
+

5

8b4ε2

∥∥∥T∥∥∥8

L8(Qτ )

+
35ε2
8b4

τ
∣∣∣Ω∣∣∣∥∥∥ (∂t + ∆) g4

∥∥∥8/7

L∞(Qτ )

+
1

b4ε3

∥∥∥T (τ )
∥∥∥5

L5(Ω)
+

4

b4
ε3

∣∣∣Ω∣∣∣∥∥∥g∥∥∥5

L∞(Qτ )

+
5τ

b5

∣∣∣∂Ω
∣∣∣∥∥∥g∂ng4

∥∥∥
L∞((0,τ )×Ω)

+
∥∥∥T0

∥∥∥5

L5(Ω)
.

Choosing ε1 =
5

b4
, ε2 =

5

24πθb4
and ε3 =

2

b4
, then

5πθ
∥∥∥T∥∥∥8

L8(Qτ )
6

5θ

8π

∥∥∥G∥∥∥2

L2(Qτ )
+

10

b8
πθτ

∣∣∣Ω∣∣∣∥∥∥g∥∥∥8

L∞(Qτ )

+
35

192πθb8
τ
∣∣∣Ω∣∣∣∥∥∥ (∂t + ∆) g4

∥∥∥8/7

L∞(Qτ )

+
8

5b8

∣∣∣Ω∣∣∣∥∥∥g∥∥∥5

L∞(Qτ )
+

5τ

b5

∣∣∣∂Ω
∣∣∣∥∥∥g∂ng4

∥∥∥
L∞((0,τ )×Ω)

+
∥∥∥T0

∥∥∥5

L5(Ω)
.
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Thus∥∥∥T∥∥∥8

L8(Qτ )
6

1

8π2

∥∥∥G∥∥∥2

L2(Qτ )
+

2

b8
τ
∣∣∣Ω∣∣∣∥∥∥g∥∥∥8

L∞(Qτ )

+
7

192π2θ2b8
τ
∣∣∣Ω∣∣∣∥∥∥ (∂t + ∆) g4

∥∥∥8/7

L∞(Qτ )

+
8

25πθb8

∣∣∣Ω∣∣∣∥∥∥g∥∥∥5

L∞(Qτ )
+

τ

b5πθ

∣∣∣∂Ω
∣∣∣∥∥∥g∂ng4

∥∥∥
L∞((0,τ )×Ω)

+
1

5πθ

∥∥∥T0

∥∥∥5

L5(Ω)
.

Since G ∈ Eτ3 , g and T0 satisfy (10), it follows that

‖T‖8L8(Qτ ) 6M8
τ . (50)

Hence, we have T ∈ E1. Then the map H3 is well-posed.
Finally, for any type of boundary conditions, we conclude that there

exists Mτ > 0 such that T ∈ E1. Then the map H3 is well-posed.

Remark 3.5. In immediate consequence of Theorem 3.4 is that we can re-
duce the regularity of g and always in 2-dimensional case, it suffices to take
g ∈ H1/4(0, τ ;L2(∂Ω)) ∩ L∞(Στ ) ∩ L2(0, τ ;H1/2(Ω)) for Robin and Neu-
mann boundary conditions case and take g ∈ H3/4(0, τ ;L2(∂Ω)) ∩ L∞(Στ )
∩ L2(0, τ ;H3/2(Ω)) for Dirichlet boundary conditions. For more informa-
tions on the regularity of the trace operator we refer the reader to [20].

Proposition 3.6. Under the assumptions of Theorem 3.4, H3 is a continu-
ous map from Eτ3 to Eτ1 .

Proof. Let G1, G2 ∈ Eτ3 , T1 = H3(G1) and T2 = H3(G2). Let us set w =
T1 − T2, then w is solution of the following equation

∂tw(t,x)−∆w(t,x) = −2πθ(T 4
1 − T 4

2 )(t,x) + θ(G1 −G2)(t,x) in Qτ ,
w(0,x) = 0 in Ω.

supplemented to homogenous boundary conditions (homogeneous Dirichlet,
Neumann, Robin). So we have, [16]

w(t) = −2πθ

∫ t

0
T(t− s)(T 4

1 − T 4
2 )(s)ds+ θ

∫ t

0
T(t− s)(G1 −G2)(s)ds

where T(t) is a semigroup of contraction in L2(Ω) generated by the operator
A defined by

D(A) = {T ∈ H2(Ω), and a∂nT + bT = 0 , on ∂Ω},

for all a, b ∈ R+.
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Now, using the regularizing effects of the heat equation, see [16, propo-
sition 3.5.7, p.44 ] with p = 8 and q = 2, we deduce the following inequality∥∥∥w(t)

∥∥∥
L8(Ω)

62πθ

∫ t

0

1

(4π(t− s))
1
2
− 1

8

∥∥∥T 4
1 (s)− T 4

2 (s)
∥∥∥
L2(Ω)

ds

+ θ

∫ t

0

1

(4π(t− s))
1
2
− 1

8

∥∥∥G1(s)−G2(s)
∥∥∥
L2(Ω)

ds.

(51)

In view of the Hölder’s inequality, the Cauchy-Schwarz inequality and (25),
then (51) becomes

‖w(t)‖L8(Ω) 62πθ

∫ t

0

1

(4π(t− s)) 1
2−

1
8

∥∥∥w(s)‖L8(Ω)

× ‖T1(s) + T2(s)
∥∥∥
L8(Ω)

∥∥∥(T 2
1 + T 2

2 )(s)
∥∥∥
L4(Ω)

ds

+θ

(∫ t

0

ds

(4π(t− s)) 3
4

) 1
2 ∥∥∥G1 −G2‖L2(Qτ ).

(52)

We have (∫ t

0

ds

(4π(t− s))
3
4

) 1
2

=

(
4 4
√
t

(2π)
3
4

) 1
2

=
2 8
√
t

(2π)
3
8

. (53)

Thanks to the generalized Hölder’s inequality, we get∫ t

0

1

(4π(t− s))
1
2
− 1

8

‖w(s)‖L8(Ω)‖(T1 + T2)(s)‖L8(Ω)‖(T 2
1 + T 2

2 )(s)‖L4(Ω)ds

6
2 8
√
t

(2π)
3
8

(∫ t

0
‖w(s)‖8L8(Ω)

) 1
8 ‖T1 + T2‖L8(Qτ )‖T 2

1 + T 2
2 ‖L4(Qτ ).

(54)

We substitute (53) and (54) into (52), we obtain

‖w(t)‖L8(Ω) 62πθ
2 8
√
t

(2π)
3
8

(∫ t

0
‖w(s)‖8L8(Ω)ds

) 1
8 ‖T1 + T2‖L8(Qτ )‖T 2

1 + T 2
2 ‖L4(Qτ )

+ θ
2 8
√
t

(2π)
3
8

‖G1 −G2‖L2(Qτ ).
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The estimations (26) and (27) give

‖w(t)‖L8(Ω) 62πθ
2 8
√
t

(2π)
3
8

4M3
(∫ t

0
‖w(s)‖8L8(Ω)ds

) 1
8

+ θ
2 8
√
t

(2π)
3
8

‖G1 −G2‖L2(Qτ )

62πθ
2 8
√
τ

(2π)
3
8

4M3
(∫ t

0
‖w(s)‖8L8(Ω)ds

) 1
8

+ θ
2 8
√
τ

(2π)
3
8

‖G1 −G2‖L2(Qτ ).

Since (c+ d)8 6 128(c8 + d8) for all (c, d) ∈ R2
+, it follows that

‖w(t)‖8L8(Ω) 6
θ8

π3
225M24τ

∫ t

0
‖w(s)‖8L8(Ω)ds+

θ8

π3
29τ‖G1 −G2‖2L2(Qτ ).

Applying the Gronwall’s inequality, we deduce

‖H3(G1)−H3(G2)‖8L8(Qτ ) 6
θ8

π3
29τ 2e

θ8

π3 225M24τ2

‖G1 −G2‖2L2(Qτ ). (55)

3.3 Existence and uniqueness of the solution

Now, we may give a very direct proof of Theorem 2.1 using Schauder’s the-
orem.

Proof of Theorem 2.1. H = H3 ◦ H2 ◦ H1 is a well-posed continuous map
because it is composed by a three well-posed continuous maps.

Moreover, H(Eτ1 ) is a relatively compact. Indeed, H(Eτ1 ) ⊂ W 2,1
2 (Qτ ),

see (39). The embedding W 2,1
2 (Qτ ) in Lp(Qτ ) is compact, for all p ∈ [2,∞[

in two dimensional case, for more details see [32, Lemma 3.3].
Consequently, W 2,1

2 (Qτ ) is compactly embedded in L8(Qτ ).
All conditions of Schauder fixed Theorem are checked. Then, H admits

a fixed point T such that H(T ) = T .
Now, we prove the uniqueness of the solution for the coupled system

(1)-(5).
Let us consider (T1, T2) ∈ Eτ1 2, (I1, I2) ∈ Eτ2 2 and (G1, G2) ∈ Eτ3 2 such

that 
I1 = H1(T1), I2 = H1(T2)

G1 = H2(I1), G2 = H2(I2)

T1 = H3(G1), T2 = H3(G2)

T1 = H(T1), T2 = H(T2).
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H1,H2 and H3 are a continuous maps , then from (28), ( 29) and ( 55) it
follows that

‖I1 − I2‖L2(0,τ ;L2(X )) 6 4
√

2πM3
τ‖T1 − T2‖L8(Qτ ),

‖G1 −G2‖L2(Qτ ) 6
√

2π‖I1 − I2‖L2(0,τ ;L2(X )),

‖T1 − T2‖8L8(Qτ ) 6
θ8

π3
29τ 2e

θ8

π3 225M24
τ τ

2

‖G1 −G2‖8L2(Qτ ).

Hence, under the assumptions (7),(10), there exists Mτ > 0 such that H is
a contraction map in Eτ1 . Then, we deduce the uniqueness of the solution.

Finally, H admits a unique fixed point point T such that H(T ) = T .
Then, the system (1)-(5) has a unique solution (T, I) ∈ Eτ1 ×Eτ2 . Therefore,
by Teorem 3.1 and Proposition 3.3, it follows that I ∈ L2(0, τ ;W) and
T ∈W 2,1

2 (Qτ ).

Remark 3.7. We find it important to remark here that the existence and
uniqueness of the solution for radiative conductive heat transfer system is
established for all τ > 0. Then, the existence and uniqueness result is global.
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