Combination of Probabilistic and Possibilistic Language Models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

Combination of Probabilistic and Possibilistic Language Models

Stanislas Oger
  • Fonction : Auteur
  • PersonId : 770872
  • IdRef : 176527176
Georges Linarès

Résumé

In a previous paper we proposed Web-based language models relying on the possibility theory. These models explicitly represent the possibility of word sequences. In this paper we propose to find the best way of combining this kind of model with classical probabilistic models, in the context of automatic speech recognition. We propose several combination approaches, depending on the nature of the combined models. With respect to the baseline, the best combination provides an absolute word error rate reduction of about 1% on broadcast news transcription , and of 3.5% on domain-specific multimedia document transcription. Index Terms: language models, world wide web, possibility measure, automatic speech recognition
Fichier non déposé

Dates et versions

hal-01319860 , version 1 (23-05-2016)

Identifiants

  • HAL Id : hal-01319860 , version 1

Citer

Stanislas Oger, Vladimir Popescu, Georges Linarès. Combination of Probabilistic and Possibilistic Language Models. INTERSPEECH, Sep 2010, Makuhari, Japan. ⟨hal-01319860⟩

Collections

UNIV-AVIGNON LIA
46 Consultations
0 Téléchargements

Partager

More