Yulin Zhang
email: zhang@irit.fr

Lei Zhang

Christelle Urtado
email: christelle.urtado@mines-ales.fr

Sylvain Vauttier
email: sylvain.vauttier@mines-ales.fr

Marianne Huchard
email: huchard@lirmm.fr

A Three-level Component Model in Component Based Software Development

Keywords: Component-based development, Software architecture, Architecture description language

Component-based development promotes a software development process that focuses on component reuse. How to describe a desired component before searching in the repository? How to find an existing component that fulfills the required functionalities? How to capture the system personalization based on its constitutive components' customization? To answer these questions, this paper claims that components should be described using three different forms at three development stages: architecture specification, configuration and assembly. However, no architecture description language proposes such a detailed description for components that supports such a three step component-based development. This paper proposes a three-level Adl, named Dedal, that enables the explicit and separate definitions of component roles, component classes, and component instances.

INTRODUCTION

Component-based software development (Cbsd) consists in two activities: the development of software components for reuse and the development of software applications by component reuse. The first activity can be managed by classical software development processes, with an analysis, a design and then a coding phase. The produced software modules, encapsulated as component classes, are then stored and indexed in repositories to be reused later on. The second activity corresponds to a more specific and still scarcely studied development process. We propose an architecturecentric development process that aims at defining the structure of an application as a set of reused components and a set of connections between them, using a dedicated Architecture Description Language (Adl). This process is structured in three steps, in which architecture definitions are gradually refined, from abstract to concrete representations.

1. After a classical analysis step, architecture specification first captures design decisions as ideal architectures imagined by architects to meet the requirements. Specifications do not describe complete component types but only component roles (usages). These roles are used to search for matching component classes in repositories. Specifications and roles are thus key concepts to effectively integrate component reuse in the development process.

2. Architecture configurations are then described to capture implementation decisions, as the architects select specific component classes from the repository to implement component roles.

3. Finally, architecture assemblies define how component instances are created and initialized to customize the deployment of architectures in different execution contexts.

Our process is supported by a three-level dedicated Adl, entitled Dedal, which enables the explicit and separate definitions of architecture specifications, configurations and assemblies. This way, a single abstract architecture definition can be refined into many concrete architecture definitions, to foster not only the reuse of components but also of architectures. The refinement relationships between these separate architecture representations -i.e., the relationships between the component roles, classes and instances they are composed of -are proposed to control and verify the global coherence of these multi-level architecture definitions.

The remaining of this paper is organized as follows. Section 2 introduces our proposed architecture-centric, reusebased development process. Section 3 presents the different component description levels supported in Dedal, our proposed Adl to support this development process. Section 4 presents the different architecture description levels which can be expressed in Dedal, along with the refinement relations between them. Section 5 introduces the tool suite of Dedal. Section 6 discusses the related works. It studies how existing Adls are suitable component based software development. Section 7 concludes with future work directions.

SOFTWARE ARCHITECTURES IN CBSD 2.1 A Development Process for Component Reuse

Cbsd is characterized by its implementation of the "reuse in the large" principle. Reusing existing (off-the-shelf) software components [START_REF] Crnkovic | A classification framework for software component models[END_REF] therefore becomes the central concern during development. Traditional software development processes cannot be used as is and must be adapted to component reuse [START_REF] Crnkovic | Component-based development process and component lifecycle[END_REF][START_REF] Chaudron | Software Engineering; Principles and Practice, chapter Component-based Software Engineering[END_REF]. Figure 1 illustrates our vision of such a development process which is classically divided in two:

• the component development process (sometimes referred to as software component development for reuse), which is not detailed here. This development process is the producer of components that are stored in repositories for later consumption by the component reuse process.

• the Cbsd process (referred to as software development by component reuse) that describes how previously developed software components can be used for software development (and how this reuse process impacts the way software is built). The Cbsd process, cannot be realized in one phase. Different concerns are managed sequentially at different design level, from the more abstract to more concrete one. Indeed, architects and programmers cannot put all the information of a component in one description without separated these information. During the development process, these information of components is refined and enriched at each different development stage. In this paper, we proposed a Cbsd process, which deliberately focuses on the produced artifacts: architecture models of the software for each development step for each development step 1 .

Component-based software design by reuse

Lifecycle step

Lifecycle step

Component development and documentation

Component code storage and indexation

Component code & models

Component repository

System requirement analysis

Architecture specification design

Architecture configuration design

Software assembly instantiation

Production

In this Cbsd process, software is considered to be produced by the reuse of components that have previously been stored and indexed in a component repository. It decomposes in three steps each of which produces a description that models the view of the architecture at this development step [START_REF] Zhang | Architecture-centric component-based development needs a three-level ADL[END_REF]:

1. Architecture specification design. After a classical requirement analysis step, architects establish the abstract architecture specification (architecture requirement model). They define which functionalities should be supplied by components, which interfaces should be exported by components, and how interfaces should connect to build a software system that meets the requirements. All the constituents of this architectural models are abstract (as-wished) and partial. The claim of this paper is that an architectural description should correspond to each of the three steps of the Cbsd process. In other words, components in architectures should be described from all abstract component, concrete component and component instance point of views. These descriptions should reflect the architect's design decisions at each step of the development cycle and be expressed using an adequate Adl.

Example of a Bicycle Rental System

Figure 2 shows the example used throughout the paper: the architecture specification of a bicycle rental system (Brs). A BikerGUI component manages the user interface. It cooperates with a Session component which handles user commands. The Session component cooperates with the Account and Bike&Course components to identify the user, check the balance of its account, assign him an available bike and then calculate the price of the trip when the rented bike is returned. In the following sections, we will use a part of this system in the dotted area to illustrate our concepts and Adl syntax.

COMPONENT REPRESENTATIONS IN THE THREE LEVELS OF DEDAL

Dedal models architectures at three separate abstraction levels, each of which contains different forms of components and connectors. For now, Dedal mainly focuses on modeling components. At the specification level, components no existing component perfectly matches specifications, developed from scratch if no component is found that matches or closely matches specification, tested and integrated, and physically deployed.

Components in Abstract Architecture Specifications

Component roles model abstract component types in that they describe the roles components should play in the system. A component role lists the minimum list of interfaces (both required and provided) the component should expose and the component behavior protocol that describes the behavior of the component in the architecture (dynamics of the architecture). As they define the requirements of the architect (its ideal view) to guide the search for corresponding concrete components, component roles are abstract and partial component representations (e.g. Session component role on Fig. 3). The syntax can be found in Fig. 4. • Role behavior. A role behavior is the protocol that describes the expected behavior of a component in an architecture (the behavior protocol is often referred to as the dynamics of the architectures). Dedal uses the protocol syntax of Sofa [START_REF] Plasil | Behavior protocols for software components[END_REF] to describe component role behavior as regular expressions2 . Other formalisms could have been used instead; the notation chosen is interesting as it is compact and is implemented as an extension of the Fractal component model we use for our experimentations, with companion verification tools.

Component protocols capture the behavior of components describing all valid sequences of emitted function calls (emitted by the component and addressed to neighbor components) and received function calls (received by the component from neighbor components).

• Cardinality. The precise cardinality of component instances are described in component role descriptions using minInstances and maxInstances. They define the minimum and maximum numbers of component instances that are to be instantiated from the component class which implements this component role. For example, the BikeGUI component role has a maximum number of component instances of 15, as shown in Fig. 6.

Dedal chooses to describe component roles outside abstract architecture specifications, so as they can be reused from a specification to another (this would not be possible if they were embedded). Figure 6 shows the descriptions of the BikeCourse and BikeCourseDB component roles. They contain the Sofa-like descriptions of their behavior.

Components in

Component types

Component types represent the full types of at least one (maybe several) existing component implementations. They are defined by describing the interface set and the behavior of these component classes. Component types are reusable as they can be implemented by multiple component classes which possess the same interfaces and component behavior. The BasketType component type description of Fig. 8 is an example of component type description.

Component classes

Component classes represent concrete component implementations. Each component class points to the component type it implements. Component classes can either be primitive or composite.

Primitive component classes (e.g. Basket as described in Fig. 10) define the reused components by describing their interfaces, behavior, version and implementing class. Existing models usually do not include links to the implementing class as they assume there is a single implementation. Composite component classes differ from primitive components in that their implementation is not defined by a single class but by an embedded architecture configuration, i.e., a set of connected inner components. The composite component class definition further defines how the interfaces of the composite component are mapped to corresponding unconnected interfaces of its inner components thanks to delegation connections. As for simple provided interfaces and required interfaces in composite components, delegated interfaces are implementations of the corresponding provided and required interfaces in the corresponding component role. Explicit delegation declarations can be found in almost all the hierarchical Adl models, such as Darwin [START_REF] Shaw | Abstractions for software architecture and tools to support them[END_REF], Unicon [START_REF] Magee | Dynamic structure in software architectures[END_REF], and Sofa2.0 [START_REF] Bures | Sofa 2.0: Balancing advanced features in a hierarchical component model[END_REF]. Dedal's syntax for these can be seen in Fig 11. Attributes are not mandatory but can be declared as observable / visible properties for component classes so as to be able to set assembly constraints on attribute values in the instantiated component assembly level.

Components in Instantiated Component Assemblies

Component instances document the real artifacts that are connected together in an assembly at runtime. They are instantiated from the corresponding component classes. They might define constraints on components' attributes that reflect design decisions impacting component states (attribute values) over time. They also set the initial component state by initializing attributes values. By default, component classes can be instantiated into multiple component instances. When more precise cardinality information is needed, it is expressed in component role descriptions using minInstances and maxInstances that define the minimum and maximum numbers of component instances that are permitted to instantiate from the component class which implements this component role. By this means, component classes do not include this configurationdependent information and remain reusable. In the assembly level, assembly constraints that restrain the valid number of instances will be checked against the cardinality information defined in the component role (in the specification level). There is no rule to constrain the name of component instances of a given component class.

In conclusion, the components in architectures can be found in Figure 16.

THREE LEVELS OF ARCHITECTURE DESCRIPTION IN DEDAL

In this section, we briefly present the three architecture descriptions in Dedal based on the above component descriptions.

Abstract Architecture Specifications

Abstract architecture specifications (Aass) are the first level of software architecture descriptions. They provide a generic definition of the global structure and behavior of software systems according to previously identified functional requirements. They model the requirements expressed by the architect to serve as a basis to search for concrete component to create concrete architecture configurations. These architecture specifications are abstract and partial: they do not identify concrete component types that are going to be instantiated in the software system. They only describe the "ideal" component types from the application point of view. In Dedal, an Aas is composed of a set of component roles, a set of connections and its architecture behavior.

Instantiated Component Assemblies

Instantiated software component assemblies (Iscas) are the third level of software architecture descriptions. They result from the instantiation of the component classes from a configuration. They provide a description of runtime software systems and gather information on their internal states. Indeed, this description level enables the record of statedependent design decisions [START_REF] Shaw | Software architecture: perspectives on an emerging discipline[END_REF]. Iscas list the component and connector instances that compose a runtime software system, the attributes of this software system, and the assembly constraints the component instances are constrained by. Assembly Constraints Assembly constraints define conditions that must be verified by attributes of some component instances of the assembly, to enforce its consistency. Such assembly constraints are not mandatory. Dedal permits to define two types of constraints that must all be enforced and that either are.

• Logical constraints. Logical constraints are regular expressions that are written using one or more logical operators among and (&&), or () and not (!) in our Dedal definition. To be verified, logical constraints must be evaluated at true.

• Relational constraint. Relational constraints can be used in two situations: [START_REF] Allen | A formal basis for architectural connection[END_REF] to declare the relation between an attribute and a given constant value, or [START_REF] Allen | Specifying dynamism in software architectures[END_REF] to specify the relation between the values of two distinct attributes. The relation operators are admissible are less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), equals (==) and different from (! =).

• Instance constraints. The number of component instance for a component role can be refined in the assembly constraint to meet the different requirements of different runtime systems. They are expressed using MinInstanceNbr, MaxInstanceNbr and Instan-ceNbr, that represent the minimum, maximum and exact number of component instances.

Such simple assembly constraints are illustrated on the example of Fig. 17 where the value of the currency attribute of component BikeTripC1 is fixed to Euro and where the value of the attribute company of the BikeCourseClassDBC1 component must be maintained identical to the value of attribute company of component BikeTripC1. Another example that involves cardinalities would be expressed as the assembly constraint InstanceNbr(BikeGUI)==10 that means that exactly ten component instances of the BikeGUI component role should be instantiated in this system. The cardinality information of the BikeCourse component role is stored in its specification (see Fig. 6). However, in our work, assembly constraints are only listed without conflict detection among them, such as the logical conflict or the relational conflict.

IMPLEMENTATION OF DEDAL

The Dedal Adl presented in this paper has been implemented in the Arch3D tool suite. The language has been implemented twice: as an XML-based A dl and as a Javabased Adl4 . The tools also propose a component model which enables to instantiate and manipulate corresponding assemblies at runtime which is coded as an extension of Julia, the open-source java implementation of the Fractal component platform 5 .

Figure 19: GUI view of BRS example

RELATED WORKS

We surveyed representative Adls to compare their support of components descriptions at different abstraction levels.

Specification level

Abstract component type (Component role). Abstract component type is abstract component type which just describes the required interfaces of this component in this software system. However, all of these Adls include concrete component type descriptions, which are suitable for traditional development. The component classes are usually exactly designed and programmed according to concrete component types. C2 [START_REF] Medvidovic | Formal modeling of software architectures at multiple levels of abstraction[END_REF][START_REF] Medvidovic | A language and environment for architecture-based software development and evolution[END_REF] is an exception as it provides a subtyping component type theory, which can almost be considered as a quai-abstract component type and facilitate reuse of component specification by instantiating it into different components.

Configuration

Component types. All existing Adls have their concrete component type definition, which specifies the interfaces of components. Some of them further supply the component behavior information, like C2, Wright [START_REF] Allen | A formal basis for architectural connection[END_REF][START_REF] Allen | Specifying dynamism in software architectures[END_REF][START_REF] Allen | A formal approach to software architecture[END_REF] and SOFA 2.0 [START_REF] Plasil | Behavior protocols for software components[END_REF][START_REF] Bures | Sofa 2.0: Balancing advanced features in a hierarchical component model[END_REF][START_REF] Hnetynka | SOFA 2.0 metamodel[END_REF].

Connector type. Existing Adls support three connector types: (1) implicit, such as Darwin and SOFA2.0, (2) explicit and predefined, such as C2 and Unicon [START_REF] Shaw | Abstractions and implementations for architectural connections[END_REF][START_REF] Shaw | Abstractions for software architecture and tools to support them[END_REF], and (3) explicit and customized, such xAdl2.0 [START_REF] Dashofy | A highly-extensible, xml-based architecture description language[END_REF][START_REF] Dashofy | An infrastructure for the rapid development of xml-based architecture description languages[END_REF][START_REF] Dashofy | A comprehensive approach for the development of modular software architecture description languages[END_REF] and Wright.

Component classes. In existing Adls, component classes are often described with their component types, which often specify the interfaces and the behavior of component classes. Most works state that all components should have a reference component type. Darwin [START_REF] Magee | Dynamic structure in software architectures[END_REF][START_REF] Magee | Specifying distributed software architectures[END_REF] and Unicon are different as they treat composite component description both as component type and class.

Composite component classes. Hierarchical composition support in existing Adl can be of three types.

• Explicitly hierarchical composition: The entire system is treated as a composite component. The hierarchy is explicitly described in component classes. Darwin, Unicon and SOFA2.0 are the representative works.

• Implicitly hierarchical composition: Composition is described in the component type. Wright is such an Adl. However, in Wright, component types often preferably described in configurations 6 .

• Explicit non-hierarchical composition: The C2 is a unique Adl for describing composition. In C2, the communications of components are completely cut by connectors, thus it supposes that if some components are totally cut by a top connector and a bottom connector, and then this configuration can be seen as a composite component. The interfaces of this composite component are the interfaces of both connectors.

• Complex composition model : xADL2.0 permits necessary component composition at two levels: configuration and assembly. In the configuration level, the composition is described in the component type. In the assembly level, the composition is directly described in component instance. In both two levels, the composition is embedded in a specific container called subArchitecture.

Implementation. The implementation information is seldom included in Adls, as they intend to be independent from implementation. However, for real architecture design, the implementation information is really important to discriminant between different component classes. FractalAdl and Unicon enable to add implementation data to component classes. Unicon is more advanced, as it can support variable implementation, which can be specified during instantiation according to different requirements.

Attributes. All these works do not have their own attribute definition in their component description. However, as FractalAdl and xAdl 2.0 [START_REF] Dashofy | A highly-extensible, xml-based architecture description language[END_REF] are extensive Adls, architects can easily customize these information by adding controllers in FractalAdl [START_REF] Bruneton | The fractal component model and its support in java: Experiences with auto-adaptive and reconfigurable systems[END_REF][START_REF] Leclercq | Supporting heterogeneous architecture descriptions in an extensible toolset[END_REF] implementation or xADL 2.0 [START_REF] Dashofy | A highly-extensible, xml-based architecture description language[END_REF] DTD definition.

Assembly level

The assembly (runtime) description of software architectures becomes more and more important as dynamic evolution requirements grow. In order to make the connection between configurations (component classes) and assemblies (component instances), there are two methods: mapping configurations to assemblies, or modeling assemblies.

Most dynamic Adls i.e., C2, SOFA 2.0 and FractalAdl use the first choice. This often implies that other tools are necessary to support the mapping. The link is very fragile to preserve and update. Once the link between them is broken or expired, the architecture erosion and drift can occur.

Furthermore, mappings cannot represent all the facets of runtime systems, such as the parametrized attributes when 6 In Wright, component types can be defined in styles

CONCLUSION

This paper proposes a three step component-based development process to ease the reuse of components and architectures. To support component-reuse centric development, a three level component model is proposed by explicitly separating different level information on components into component roles, component classes and component instances. Based on the proposed component model, component design decisions can thus be precisely captured and traced throughout the development process. A three-level architecture is also proposed based on the component model. The three-level syntax of Dedal supports the expression of requirements by the means of abstract and partial component roles that are used as the main conceptual support for the search of reusable components to be included in configurations. The model of the runtime system (the instantiated component assembly) is rich enough to serve as the basis of a full evolution process [START_REF] Zhang | Architecture-centric development and evolution processes for component-based software[END_REF].

We plan to develop this work in two directions. The first perspective for this work is to enrich and experiment the use of Dedal to manage component-based software product lines. We want to enrich the Dedal language to support fine grained product line information such as variability and optionality etc. The second perspective is to develop a quality extension of Dedal to make it support embedded and critical system development.

Figure 1 :

 1 Figure 1: Component development and component-based software development processesThe Cbsd process, cannot be realized in one phase. Different concerns are managed sequentially at different design level, from the more abstract to more concrete one. Indeed, architects and programmers cannot put all the information of a component in one description without separated these information. During the development process, these information of components is refined and enriched at each different development stage. In this paper, we proposed a Cbsd process, which deliberately focuses on the produced artifacts: architecture models of the software for each development step for each development step 1 .

Figure 3 :

 3 Figure 3: The Session component role, some possible concrete realizations and some of their instantiations

Figure 4 :Figure 5 :

 45 Figure 4: Syntax of component role

Figure 6 :Figure 7 :

 67 Figure 6: Component role descriptions of BikeCourse, Bike-CourseDB, and BikeGUI ; Interface description of BikeQS

Figure 9 :

 9 Figure 9: Syntax of primitive component class Component class versions are documented by their revision numbers, their previous versions' revision numbers and by the motivations of the changes that entail their derivation from their previous versions. Motivations can either be corrective if the evolution aims at fixing some bug or perfective if the evolution aims at increasing the performance of the component 3 . component_class Basket implements BasketType content fr.ema.locaBike.Basket versionID 1.0 attributes string company; string currency

Figure 10 :

 10 Figure 10: The Basket (primitive) component class description

Figure 11 :

 11 Figure 11: Syntax of the composite component class Both primitive and composite component classes can export an attribute list (as exemplified on Fig. 10 and 13).Attributes are not mandatory but can be declared as observable / visible properties for component classes so as to be able to set assembly constraints on attribute values in the instantiated component assembly level.

Figure 14 :Figure 15 :

 1415 Figure 14: Syntax of component instance

Figure 16 :

 16 Figure 16: The metamodel of components in Dedal

Figure 12 :Figure 13 :

 1213 Figure 12: Graphic view of the BikeCourseDBClass composite component class and inner configuration

Figure 17 :

 17 Figure 17: Component assembly description of the Brs

 == | != | > | < | >= | <=) (instance_attribute | attribute_value)) instance_constraint::= ((MinInstanceNbr | MaxInstanceNbr | InstanceNbr)

Figure 18 :

 18 Figure 18: Syntax for assembly constraints

 definition (set of interfaces). Can be reused to model other components (as a class of component)

 Concrete Architecture Configurations

	component_role BikeCourse
	required_interfaces BikeQS; CourseQS
	provided_interfaces BikeOprs; CourseOprs
	component_behavior
	(!BikeCourse.BikeOprs.selectBike,
	?BikeCourse.BikeQS.findBike;)
	+
	(!BikeCourse.CourseOprs.startC,
	?BikeCourse.CourseQS.findCourse;)
	MaxInstanceNbr 3
	component_role BikeCourseDB
	provided_interfaces BikeQS; CourseQS
	component_behavior
	!BikeCourseDB.BikeQS.findBike;
	+
	!BikeCourseDB.BikeOprs.findCourse;
	component_role BikeGUI
	required_interfaces Account; Bike
	component_behavior
	?BikeGUI.Account.login;
	...
	MaxInstanceNbr 15
	interface BikeQS
	implementation fr.ema.locaBike.BikeQS
	At configuration level, components are modeled in two
	ways with component types and component classes. Fig-
	ure 7 provides a close-up view of the relationships between
	a component role (that model an abstract and partial view

Table 1 :

 1 Comparison of components in different Adls

	ADL	Primitive	Implementation Attributes Composite component	Delegation
		component				
	C2	instance	-	-	Explicit, non-hierarchical composition	Derive from two wrapped connectors.
	Wright	Instance	-	-	Implicit, hierarchical composition: Composite configuration	Bindings
					embedding in computation of component type.	
	Darwin	instance	-	-	Explicit, hierarchical composition	bind
	Unicon	instance	Implementation	-	Explicit, hierarchical composition	Bind
			constraining.			
	SOFA 2.0	instance	-	-	architecture: Explicit, hierarchical composition.	Delegate and Subsume
	Fractal ADL component	java class	extended	Explicit, hierarchical composition.	binding
	xADL 2.0	component	-	-	subArchitecture: Implicit, hierarchical composition.	signatureInterfaceMapping: in component
					Embedded in component types for configuration level;	type level; interfaceInstanceMapping:
					Embedded in component instance in assembly.	assembly level.

Table 2 :

 2 The comparison of primitive and composite component in Adls instantiating components or runtime state of component. Thus an Adl that embraces the implementation architecture (component instances) is really needed. From this side, xAdl 2.0 and AAdl[START_REF] Feiler | The architecture analysis & design language (AADL): An introduction[END_REF] are more complete, as they have their own assembly runtime architecture description.

For simplicity's sake, it is also exclusively " reuse-centered" and does not describe how components should be: adapted if

!i.m (resp. ?i.m) denotes an outgoing (resp. incoming) call of method m on interface i. A+B is for A or B (exclusive or) and A;B for B after A (sequencing).

Motivations are used for gradual component version substitution as described in[START_REF] Zhang | Connector-driven process for the gradual evolution of component-based software[END_REF].

Detailed information can be found in http://www.irit.fr/∼ Yulin.Zhang/Dedal.html

http://fractal.ow2.org/

Acknowledgements

This work has been partially financed by the French ANR-10-BLAN-0219 CUTTER project.