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Abstract The CROHME competitions have helped or-

ganizing the field of handwritten mathematical expres-

sion recognition. This paper presents the evolution of

the competition over its first four years, and its con-

tributions to handwritten math recognition, and more

generally structural pattern recognition research. The

competition protocol, evaluation metrics and datasets

are presented in detail. Participating systems are ana-

lysed and compared in terms of the central mathemat-

ical expression recognition tasks: 1) symbol segmenta-

tion, 2) classification of individual symbols and 3) sym-

bol relationships, and 4) structural analysis (parsing).

The competition led to the development of label graphs,

which allow recognition results with conflicting segment-

ations to be directly compared and quantified using

Hamming distances. We introduce structure confusion

histograms that provide frequencies for incorrect sub-

graphs corresponding to ground-truth label sub-graphs

of a given size, and present structure confusion histo-

grams for symbol bigrams (two symbols with a rela-

tionship) for CROHME 2014 systems. We provide a

novel analysis combining results from competing sys-

tems at the level of individual strokes and stroke pairs;
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this virtual merging of system outputs allows us to more

closely examine limitations for current state-of-the-art

systems. Datasets along with evaluation and visualiz-

ation tools produced for the competition are publicly

available.

Keywords Handwriting recognition · Mathematical

expression recognition · Competitions · Performance

evaluation

1 Introduction

Research in automatic recognition of on-line handwrit-

ten mathematical expressions dates back to the 1960’s.

In on-line recognition, Anderson [1] developed an at-

tributed context free grammar for recognizing hand-

printed math expressions written on an input device

similar to a tablet. After this initial attempt, several re-

searchers have studied this problem at different paces.

Significant research effort has been reported in the last

fifteen to twenty years, in part due to on-line input

devices becoming more popular. Recognition of math

expressions became a requirement for preparing sci-

entific documents on-line. Despite this increase in re-

search activity, estimating progress became quite diffi-

cult mainly because of the lack of available benchmark-

ing datasets and variety of evaluation metrics in use.

Systems were evaluated primarily using private author-

generated datasets which were not publicly available.

Being unable to reproduce the results of others, re-

searchers could not clearly judge their progress. This

motivated the organization of a competition, which came

to be named CROHME: the Competition on Recogni-

tion of On-line Handwritten Mathematical Expressions

[2–5].
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Since CROHME’s inception, researchers have been

gradually attracted towards the event. The number of

participating systems increased from five to eight in

four years. Industrial research groups showed interest

in and participated in CROHME. Participating sys-

tems have used several methodologies, and CROHME

has provided a nice platform for comparing these meth-

ods and bringing out the relative merits of individual

approaches. Each CROHME developed an original test

dataset which is separated from a training dataset. Eval-

uation was done by the organizers and subsequently

checked by participating teams for consistency and to

correct minor errors (e.g. in output file formats). In this

way, CROHME has documented progress in the area,

and the concerned research community is now aware

of advances in terms of shareable resources, capabil-

ities of different methods, and evaluation results. So

far, CROHME has influenced a particular community

which had been conducting their research in a sporadic

manner to work using a more consistent and scientific

approach.

In this paper we present the evolution of CROH-

ME over the last four years, along with its contribu-

tions to handwritten math recognition research and re-

lated areas. These include the datasets, different tasks,

evaluation metrics, tools, participating systems, and fi-

nally, analysis of results using both standard and novel

methods. Preparation of CROHME data involves sev-

eral issues including the number of allowable symbols,

two-dimensional structures, and coding of data. The

CROHME datasets started with a relatively simple set

of samples in CROHME-2011, gradually adding more

complicated expressions over the next three years. Fig-

ure 1 shows some real samples from the last CROHME

training set which show the difficulty of the recognition

tasks: symbol segmentation, symbol recognition, spatial

relation recognition and expression parsing.

While the complexity of expressions to recognize in-

creased with each competition, the recognition of com-

plete expressions is very difficult. As a result, the com-

petition tasks were modified to consider sub-tasks. This

gave research groups options to participate in the event

as per their convenience. For example, recognition of

matrices (being a difficult task) was introduced as a

new task in the fourth year, along with a separate com-

petition for isolated symbol recognition.

Expression recognition results can be evaluated in

various ways, and evaluation metrics have undergone a

number of changes in the past 10-15 years. Initially,

simple measures like number of correctly recognized

symbols or structures were used [6]. Researchers found

these measures insufficient for characterizing local re-

cognition errors, and subsequently, tree-matching based

methods [7], and later label graph-based evaluation de-

veloped for CROHME [8] were introduced. Along with

the competition tasks, the CROHME evaluation met-

rics evolved over time.

In addition to a detailed discussion of the main fea-

tures of CROHME competitions, we will address the

following questions. 1) Why is mathematical expression

recognition a difficult problem? 2) Is it possible to spe-

cify which expressions are more complex than others?

3) How does one build a representative corpus of expres-

sions? 4) How do we detect the weakness and specific

errors made by a recognition system? 5) Can we merge

results from different recognition systems? 6) As math-

ematical expressions are a two dimensional language,

can we detect which symbols configurations are more

susceptible to being recognized incorrectly?

The structure of this paper is as follows. Section

2 describes the CROHME competition (tasks, corpus,

datasets and protocol). Section 3 discusses evaluation

metrics used and developed for the competitions. Sec-

tion 4 presents the participating systems and the major

methodologies systems use. New evaluation results and

critical analysis of the results are presented in Section

5. Section 6 outlines the impact of the competition and

issues to be addressed in future.

2 The CROHME Competition

In this Section, we present how the CROHME compet-

itions have been organized. After defining the different

tasks in the first subsection, section 2.2 explains how

we chose and collect the math expressions. Then sec-

tion 2.3 analyses the datasets considering its complex-

ity. The last subsection explains the submission and

testing protocol of the competition.

2.1 CROHME Task Definition

Mathematical Notation. It is difficult to define math-

ematical notation precisely [9–11]. 1

The precise semantics of a formula depends on its

domain of use, and the way in which an author chooses

to define, and possibly re-define parts of their notation.

In this way, mathematical notation is highly dialectical,

and is in essence a form of natural visual language [12].

For the CROHME competitions, samples of formu-

lae from algebra and calculus have been used, which

is traditional in math recognition research. We assume

all input strokes belong to exactly one symbol - this re-

moves symbols connected by a ligature (e.g. ‘2x’ written

1 A well-written history of mathematical notation is avail-
able [11]
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Figure 1 Handwritten formulae from the CROHME training dataset.

4

Structure in Math Expressions

Primitives: 4 pen strokes (2,→,↓,2)

Symbols: 3 (2, +, 2) 
3

3. STRUCTURE MATRICES AND EVALUATION METRICS

We now define label graphs along with metrics for evaluating structure recognition at the primitive level. Es-
sentially, label graphs are directed graphs over primitives, which we represent using adjacency matrices. In a
label graph, nodes represent primitives, while edges define primitive segmentation (i.e. ‘merge’ relationships)
and object relationships. Figure 1(a) shows a directed graph representing symbols (objects) for a handwritten
“2+2”. Two strokes belong to the symbol “+”, and one stroke for each of the “2” symbols, giving three objects
for four input primitives. In our representation relationships are defined at the level of objects, implying that all
primitives in a symbol have the same incoming and outgoing edges.

Figures 1(b) and (c) show di↵erent representations for a handwritten “2+2” based on symbol layout and
operator syntax. Figure 1(a) represents symbol layout, showing that left-to-right we have “2” followed by a “+”
and then another “2”. Figure 1(c) represents the mathematical syntax of the expression, with “+” as a binary
operator with two arguments. Figure 1(d) shows 1(b) as a symbol layout tree and (c) as an operator tree, where
nodes represent symbols. Layout trees are roughly equivalent to LATEX and Presentation MathML, and operator
trees to Content MathML and abstract expression syntax used in programming language compilers. Both have
been used for math recognition and retrieval, and layout trees may be mapped to operator trees.7

(a) Symbols (b) Layout (c) Syntax
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(d) Layout and Operator
Trees

Figure 1: “2+2” Written Using Four Strokes. (a)-(c) are primitive label graphs, and (d) shows trees over objects
(symbols) whose structure are equivalent to (b) and (c). Strokes are named in writing order as s1, s2, s3 and s4
with the vertical and horizontal strokes for the ’+’ indicated by (ver.) and (hor.). Dashed edges indicate strokes
merged into a symbol. Nodes are labeled with the class of the symbol associated with a stroke. Remaining edges
represent relationships: R for adjacent-at-right, and Arg1 and Arg2 for operator arguments

In Figure 1(b), the relationship between the rightmost “2” and the leftmost “2” is due to the “R” (adjacent-
at-right) and other spatial relationships being hierarchical in our representation. For example, for the LATEX ex-
pression 2^{x-1}, “x”, “-”, and “1” are in the superscript region of “2”, not just the “x”, and both the “-”
and “1” are adjacent to the “x”. If a system returns “2_{x}^{-1}” for this expression, the subscript with x is
incorrect, and there is a missing adjacency between “x” and “-”; but the detected superscript containing “-1” is
correct, and we capture this using this representation.8

For evaluation, we represent our labeled directed graphs over primitives using label graphs. Figure 2(a)
visualizes these as adjacency matrices of labels: the diagonal provides primitive labels and other cells provide
primitive pair (edge) labels. Figures 2(b) to 2(d) are label graphs for the graphs in Figure 1, with the label graph
format shown first. To ease comparison, we use “1” and “2” to represent “Arg1” and “Arg2” in the syntax graph.
The underscore (’ ’) identifies unlabeled primitives and relationships (e.g. ’no relationship’), and an asterisk (’*’)
represents two primitives in the same symbol.

Relative to Figure 1(a), some relationships in Figures 1(b) and (c) di↵er. The matrices di↵er where new
relationships add edges to the graph. For n primitives (e.g. strokes), there are n2 labels in a primitive structure
graph (16 labels for Figures 1(a)-(c)). For C object classes (i.e. possible primitive labels), and L relationship
types, the number of possible primitive structure graphs is CnLn(n�1). For C = 100 symbol classes and L=10
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Figure 2 A simple handwritten expression (a) and its interpretation as represented by a symbol layout tree (b) and stroke
label graph (c). The expression contains four strokes, labeled s1− s4 in time order. The symbol layout tree represents spatial
relationships between symbols, here with handwritten strokes associated with each node shown by dotted edges. The stroke
label graph represents the same information, using strokes rather than symbols as nodes, and using both relationship (e.g.
Right) and stroke merge (*) labels on edges.

with one stroke). Function names are treated as indi-

vidual symbols (e.g. cos, sin, tan, lim). Figure 2a shows

a handwritten expression, along with a symbol layout

tree representing the spatial relationships between sym-

bols in Figure 2b. The correspondences of handwritten

strokes to symbols in the layout tree are shown using

dotted edges. Symbol layout trees have the leftmost

symbol on the main writing at the root of the tree, with

symbols (nodes) connected by spatial relationships. For

CROHME, spatial relationships include Right, Above,

Below, Superscript, Subscript and Inside (for square

roots). LATEX and Presentation MathML2 encode sym-

bol layout trees without the correspondence of strokes

to symbols. We call these symbolic encodings. Allow-

able expressions for different tasks are defined using

LATEX string grammars as described below.

Input and Output. Stroke data is provided to

participants in CROHME InkML (XML) files. Each

stroke has a unique identifier and sequence of (x,y) loc-

ations. Participants must parse CROHME InkML files

with stroke data, and then return one of two output

formats, depending upon the competition instance. For

CROHME 2011-2013, a CROHME InkML file was gen-

erated that contained the symbol layout tree in Present-

ation MathML, along with annotations for the corres-

pondence of symbols to stroke groups. In CROHME

2013 - 2014, Comma Separated Variable (.csv) files for

2 http://www.w3.org/Math/

label graphs (described below) could be returned in-

stead.

CROHME Competition Tasks. Math notation

is domain specific, and the difficulties of recognizing ex-

pressions depend upon which symbols and symbol rela-

tionships are used. For the competition we define sev-

eral difficulty levels, from simple expressions on a single

writing line (e.g. ‘x + 1’) to matrix expressions. Each

level is called a task defined by a context free grammar
defining a set of legal LATEX expressions for the task.

These grammatical definitions mean that the expression

sets are infinite, which is one difficulty of ME recogni-

tion. To parse LATEX strings we use the PEP3 parser

which is a free implementation of the Earley algorithm.

Table 1 shows the increasing difficulty of the five tasks.

As can be observed, the symbol set has gradually in-

creased in size and now includes 101 symbols. This en-

ables a good coverage of different scientific domains,

while at the same time increasing recognition difficulty

due to more easily confused classes, such as for digits

‘0’ and ‘1’ with letters ‘O’ and ‘l’. Furthermore the al-

lowable symbol layouts have increased over time. Only

six atomic spatial relationships between two symbols

are used (Above, Below, Superscript, Subscript, Inside

(for square roots), Adjacent at Right), but allowing ad-

ditional structures increases the difficulty of the task

3 http://www.ling.ohio-state.edu/~scott/

#projects-pep
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by increasing the number of legal expressions. For ex-

ample, in task 1 nested fractions and superscripts on

function names are not allowed, but in the task 2 these

constraints are removed. Table 1 shows the number of

production rules used to define the LATEX grammar.

The increasing number of rules reflects more a higher

specificity in the modeling of the language than an

increase of the complexity of the language. Neverthe-

less, allowing more spatial relationships and symbols

makes expressions more diverse and complex. The task

grammars are provided in a package available with the

CROHME dataset from the TC11 website.

2.2 Corpus Construction

Before CROHME existed, researchers used to experi-

ment with their own private datasets. Hence fair com-

parisons between systems were hardly possible. So, one

outcome of the CROHME project was to deliver high

quality datasets. The main issues to build a dataset are

related to relevance, completeness, and correctness of

the data. Specifically for the domain of mathematical

expressions many parameters are involved: set of sym-

bols (size, identity) and their distribution; corpus com-

position, extracted from a realm of discourse (algebra,

thermodynamic, mechanic ...); number of writers, num-

ber of expressions written per writer and number of

times a given expression is written.

CROHME organizers used existing resources from

different labs already working on ME recognition. In

2011 and 2012 the organizers merged several existing

datasets from different laboratories: CIEL [13] and HAMEX

[14] (University of Nantes), MfrDB [15] (Czech Tech-

nical University), ExpressMatch [16] (University of Sao

Paulo), datasets from KAIST and CVPR/ISI and in

2013 MathBrush [17] (University of Waterloo). The ex-

pressions (stroke data and ground-truth) coming from

these datasets have been used directly by doing file

format conversion and adding missing ground-truth.

As explained in the introduction these existing data-

sets suffer from a lack of representative situations. For

example in the MathBrush dataset [17] the expressions

are generated randomly from a grammar. In [16] a small

corpus of 56 expressions has been written by 25 writers.

In [13] only 36 different expressions are selected to cover

different scientific domains, then each expression is writ-

ten by different writers. In each such case, the final cor-

pus is not representative of real usage.

Since CROHME 2013, we have designed a corpus

better reflecting the current use of mathematical ex-

pressions. Scientific books or courses are interesting sour-

ces with lots of ME, but mostly, it is very domain spe-

cific, using only a subset of symbols and relations. In-

stead, we used the wikipedia French pages and the wiki-

books English pages as a source of effective MEs. In

wikipedia pages, the math expressions are delimited by

“math” tags. We have extracted more than 164 000 ME

which are our pool of expressions. In addition, some

filtering was introduced to control the content of the

corpus:

– removing duplicate expressions: popular expressions

such as sin2x+cos2x = 1, will be present on several

pages.

– controlling LATEX string length: all expressions will

have between 3 and 50 LATEX symbols. For example,

the two following strings “xˆ2” and “x i”, have a

length of 3, but with only two printable symbols.

– defining a valid LATEX symbol set: a list of acceptable

LATEX symbols and commands is defined.

– validating with a grammar parsing tool: a LATEX

grammar is defined and only successfully parsed ex-

pressions are accepted in the corpus.

– controlling the symbol frequency: the symbol fre-

quency in the test set should be the same as in the

corresponding training set.

In a real context, the symbol frequency is domain

dependant. In CROHME, the symbol frequency in the

test sets is made similar to the training sets to be rep-

resentative. In the first years of the competition (2011

and 2012) the expressions were selected in the avail-

able datasets considering only the presence of selected

symbols. It was sufficient because the number of the

different symbols was low and they corresponded to

the most frequent ones; so the sub-sets (training and

test) were already balanced. However, when the num-

ber of symbols increases, we are getting closer to the
tail of the distribution and when expressions are chosen

among a huge set (like wikipedia or wikibook corpus)

the choice cannot be completely randomized. As a res-

ult, in the test set of task 3 in 2012, most expressions

have been randomly chosen from the wikipedia FR cor-

pus but some expressions have been added manually to

balance the symbol frequency.

In a more systematic way, since CROHME 2013,

an algorithm has been used to build a corpus with the

same frequency of symbols as in a reference corpus. We

used an iterative algorithm which compares the current

frequency of each term in the corpus under construction

with regards to the targeted frequency of the same term

in the reference corpus. At each iteration, the algorithm

sorts with decreasing costs the candidate expressions

from a pool of expressions. The cost Cc,r(e) of a can-

didate expression (e), eq. 1, has been defined as the sum

of its term costs. A term cost costc,r(ti), eq. 2, being

defined as the negative log ratio of frequency terms ti
in the current dataset c with regards to the reference
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Table 1 CROHME Expression Grammars (Tasks). Year : competitions where grammar/task was introduced, generally the
tasks are used during two consecutive years; Grammar : grammar/task identifier used in the competitions; Symbols: number
and list of used symbols in the corpus; #P : number of production rules; Additions: expressions added to the corpus with
expression samples.

Year Grammar Symbols #P Additions (with examples)
2011 1 / I 36 symbols : 38 No nested exprs. in fractions or sub/superscript

abcdeiknxyz0123456789φπθ
+−± sin cos 6=≤>= ()

√ x2 + y2 > 1
√
b2 − 4ac

2 / II 56 symbols, 20 added: 60 No recursion limits; complex structures included

ABCFjαβγ∞
÷×

∑
log tan . . . ≥→ lim

∫
!

√
1 +

1
√

2
+

√
1−

1
√

2
lim

x→ π

2
+0

tanx = −∞

2012 3 / III 75 symbols, 19 added: 95 Set operators and brackets

{}[]XY < tfgmrp/, .
∃∀ ∈ ∀x ∈ X

[
2

3
x

3

2

]1
0

2013 4 / IV 101 symbols, 26 added: 155 nth-root

EGHILMNPRSTV
hloqsuvw|′σ∆λµ

4
√

648 + 648 + 8

2014 matrix 101 symbols 168 Matrices within and containing expressions

/ IV-matrix A =

(
3 1
4 0

) (
cos θ − sin θ
sin θ cos θ

)

dataset r. fd(ti) is the term frequency of a symbol ti in

d, which can be an expression or a full corpus.

Cc,r(e) =
∑
ti∈e

costc,r(ti) (1)

costc,r(ti) = log(fr(ti))− log(fc(ti)) (2)

Thus a candidate expression which contains many

symbols that are under-represented in the current cor-

pus will be ranked before a candidate expression which

contains many symbols that are over-represented. A

first version of this protocol has been defined in 2013

and the presented version has been used in 2014. Note

that this approach can be extended to use the frequen-

cies of other criteria such as the equation length or

the spatial relation types. In 2014 the selection takes

also into account the size of expressions: the size value

is processed as other symbols, its frequency is used to

compute the cost Cc,r(e) of an expression.

Once the expressions are selected using the previous

criteria, they are written once by writers from the dif-

ferent organising labs (University of Nantes, RIT, ISI).

The next section presents several statistics to illus-

trate the diversity of the dataset and the coverage of

the test set with regards to the training set.

2.3 Dataset Properties

A detailed analysis of the corpus used in the main task

(task 4) of the competition is provided in this section.

It compares the frequencies of each symbol, of each spa-

tial relations and the complexity of the expressions us-

ing different indicators across the training subsets and

the test sets (2013, 2014). Note that the training part

has been the same in 2013 and 2014 competition, only

the test sets have been renewed. Thus we compare the

statistics from the training part to test parts 2013 and

2014.

Table 2 shows the frequencies of some symbols in

the test sets in 2013 and 2014 compared to the training

set. We can see that some symbols are very frequent

(like ‘−’, ‘1’ and ‘+’) and other are very rare (like ‘∈’,

‘∀’ and ‘∃’) in all sets. Even if the term frequencies are

quite well respected in both test sets, 2014 test better

respects the proportions of the different symbols with

regards to the training set.

The symbol frequencies do not allow to evaluate the

complexity of the different ME sets. Mainly the com-

plexity of an expression is based on the complexity of its

MathML tree, that is why we present in Figure 3 some

statistics extracted from the MathML trees of the three

sets:

– the maximum depth of the trees ignoring the <mrow

>4 elements, defined as degree of nestedness DoN

in [18]: it represents how nested are the expressions

(superscript in a superscript or fraction of subscrip-

ted symbols...), a depth of 0 is a one line expression;

– the sum of baselines: it counts the number of times

a sub-expression is not on the same baseline as its

mother expression, for example x2 +y2 and xy
2

and
x
y have 3 baselines;

4 The MathML <mrow> element is used to group sub-
expressions, which usually contain one or more operators with
their respective operands. This element renders as a hori-
zontal row containing its arguments.
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Table 2 Symbol frequencies for training and test sets of Task
4 in CROHME 2013 and 2014. Symbols are sorted by decreas-
ing frequency in the training set. Only most and least frequent
symbols are shown.

Train Test Test
2013/2014 2013 2014

- 7940 (9.254%) 440 (7.233%) 910 (9.083 %)
1 6219 (7.248%) 314 (5.162 %) 721 (7.196 %)
2 6195 (7.220%) 338 (5.556% ) 715 (7.136 %)

+ 5409 (6.304%) 267 (4.389 %) 622 (6.208 %)
x 5042 (5.876%) 261 (4.291 %) 587 (5.859 %)
( 3945 (4.598%) 295 (4.850 %) 458 (4.571 %)
) 3939 (4.591%) 294 (4.833 %) 458 (4.571 %)

= 3611 (4.209%) 319 (5.244%) 434 (4.332 %)
a 2475 (2.885%) 137 (2.252 %) 279 (2.785 %)
3 2458 (2.865%) 117 (1.923 %) 289 (2.885 %)
n 2239 (2.610%) 140 (2.301 %) 267 (2.665 %)
0 1795 (2.092%) 128 (2.104 %) 214 (2.136 %)√

1793 (2.090%) 86 (1.414 %) 213 (2.126 %)

y 1765 (2.057%) 82 (1.348 %) 225 (2.246 %)
4 1635 (1.906%) 77 (1.266 %) 183 (1.827 %)
b 1599 (1.864%) 81 (1.332 %) 185 (1.846 %)
z 1074 (1.252%) 49 (0.806 %) 120 (1.198 %)
d 1063 (1.239%) 89 (1.463 %) 119 (1.188 %)
5 1003 (1.169%) 49 (0.806 %) 122 (1.218 %)

...
{ 69 (0.080%) 6 (0.099 %) 7 (0.070 %)
} 69 (0.080%) 6 (0.099 %) 7 (0.070 %)
> 56 (0.065%) 9 (0.148 %) 7 (0.070 %)
σ 52 (0.061%) 14 (0.230 %) 13 (0.130 %)
µ 46 (0.054%) 17 (0.279 %) 7 (0.070 %)
∆ 35 (0.041%) 21 (0.345 %) 5 (0.050 %)
λ 27 (0.031%) 4 (0.066 %) 7 (0.070 %)
∈ 14 (0.016%) 9 (0.148 %) 3 (0.030 %)
∀ 8 (0.009%) 3 (0.049 %) 2 (0.020 %)
∃ 4 (0.005%) 2 (0.033 %) 4 (0.040 %)

– the number of distinct baselines, defined as geomet-

ric complexity GC in [18]: in the previous metric

some baseline can have the same level, this metric

counts the number of different levels which are used

in the full expression, e.g. x2 + y2 uses 2 distinct

baselines but xy
2

and x
y use 3 distinct baselines;

– the spatial relation frequency: the previous metrics

are quite independent of the nature of the spatial

relations, this last metric counts the number of time

each spatial relation is used.

For each of these 4 statistics, the frequency is showed

(using a log scale) by normalizing the counter by the

number of expressions in the corresponding dataset.

We can see that about one third of the datasets are

simple one line expressions (max depth of 0 and num-

ber of baseline or distinct baseline equal to 1 for 33%

of expressions in the training set, 25% in test set 2013

and 30% in test set 2014). Then half of expressions are

not nested expressions (max depth of 1 for 45%, 58%

and 53% of expressions). Probably these expressions are

covered by the expressions with 2, 3 or 4 baselines (from

42% to 57% of the expressions) and 2 or 3 distinct
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Figure 3 Complexity statistics for training (Red) and test
sets for Task 4 in CROHME 2013 (Blue) and 2014 (Green).
In a-c, maximum symbol layout tree depths, total number of
baselines (‘sum of baselines’) and distinct baseline histograms
are presented in order of increasing complexity (i.e. tree depth
and number of baselines). Spatial relationship frequencies are
presented in terms of the average number of occurences per
expression. Log-scale are used for the y-axes.

baselines (from 43% to 56% of expressions). Further-

more, the tails of the histograms have been cut, thus

some expressions which are not shown here are very

complex (about 2% to 5%) with a max depth of more

than 4, more than 9 baselines and more than 8 distinct

baselines. Finally the spatial relation frequencies show

that the most frequent relation is Right with 6 relations

per expression in average, then Superscript (about 0.5

superscript per expression) followed by the Subscript

relation (also about 0.5 per expressions) and Above and

Below (0.4 per expressions). The relation Inside used

only in square roots is rarer with 0.2 per expression.
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2.4 Competition Protocol

Each year there was something new in the competition

(a new task, a new evaluation tool or a new file format)

thus we tried to give enough time to participants to sub-

mit a system taking into account these updates. Having

enough time was a key point because the training and

testing data have to be created for the competition and

this is a time consuming process.

After the call for participation, we provide the re-

gistered participants with the evaluation tools, the file

formats, the task definitions (i.e. the grammars and

symbol lists) and an initial training set. During the

next months we eventually update the training set de-

pending on our tests and the participant feed-backs.

Then the participants have to submit a first draft sys-

tem about four months after the call. This first submis-

sion allows to test the systems in real conditions and to

fix some technical issues (mostly OS configurations or

file format problems). Detailed results on the training

set were sent back to participants to detect the prob-

lems. The final deadline is about 5 months after the call

for participation. Then the participants have to submit

their final systems, one per task. During the next 2

weeks the organizers run each participating system on

each test dataset. After the competition, the test data

is available on demand and submitted on TC11 website.

This protocol requires a huge effort from the organ-

ization committee but it has several advantages. Firstly

it allows good collaboration and discussion between par-

ticipants and organizers as several exchanges are ne-

cessary. Furthermore, this protocol is quite fair as no

participant see the test set before the final submission

(except for the organization teams). This protocol al-

lows also organizers to correct some minor issues in the

test data or evaluation tools after the final submissions,

e.g. correct ground-truth errors in the test set or add

new metrics and features in the evaluation tools.

3 Evaluation Metric and System Rankings

Evaluation of structural pattern recognition systems is

often difficult because of the interaction between detec-

ted objects and their relationships. For example, when

a relationship between one correct and one incorrectly

segmented symbol is detected, how this should be eval-

uated? Obviously the relationship is incorrect because

one of the symbols is incorrect, but can we quantify

partially correct structure somehow? To address this

question, a number of new metrics and a new struc-

ture representation were developed for CROHME. In

particular, new stroke-based metrics allow partially cor-

rect recognition results to be located and measured pre-

cisely [8, 19]. We discuss these metrics below.

3.1 LATEX, MathML, CROHME InkML and

Symbol-Level Evaluation

Expression and Structure Recognition Rates.

Prior to CROHME, it was common to evaluate math re-

cognizer performance using expression recognition rates,

e.g. the percentage of LATEX formula strings matching

ground truth. The metric is simple to understand and

provides a useful global performance metric. Expression

rate has been used to rank participating systems in all

of the CROHME competitions, first using canonicalized

Presentation MathML (insuring that identical expres-

sions with different MathML representations match),

and later label graphs, taking symbol segmentation into

account (see the next Section). However, an absolute

expression rate does not characterize partially correct

recognition.

Previous attempts to quantify partially correct re-

cognition in symbolic encodings have been made. The

EMERS [7] metric is a tree edit distance using an Euler

string representation for MathML trees. Symbol errors

are weighted based on their distance from the main

writing line (baseline) of the expression. The IMEGE

metric [20] is an image-based comparison of LATEX, us-

ing the number of matching pixels in a rendered LATEX

string with the associated ground truth LATEX render-

ing. To prevent missing valid subexpressions that have

been ‘shifted’ in the rendered image, small image dis-

tortions are permitted.

For CROHME a simpler and faster-to-compute met-

ric was used to count partially correct expressions. For

each system we produced a list giving the percentage

of expressions with matching MathML tree but with at

most n incorrect symbol and relationship labels. The

rate for n = 0 is the percentage of test expressions

correctly recognized, followed by expression rates for

increasing numbers of labeling errors. For expressions

where the node and edge structure of the layout trees

do not match, no number of relabelings can correct the

expression. For example, ‘2x+1’ has two label disagree-

ments with ‘2x + 7’ (the subscript for ‘+’, and ‘1’ not

matching ‘7’), but these differences can be corrected

with two relabeling operations. Conversely, the expres-

sion ‘2x + 1’ cannot match ‘2x+ 7’ because the ‘2’ has

a different number of child nodes. Expression rates for

n ≤ 3 symbol and relationship label errors are reported

in each CROHME competition.

For CROHME 2012 we also proposed a new formula

structure (STRUCT ) expression rate, which matches

layout tree structure, ignoring symbol labels and stroke
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segmentation. For example, if the expression ‘x2− 1’ is

recognized as ‘2a+b,’ it will be considered as correct. As

another example, recognizing the expression in Figure

2 as ‘5 x 5’ will also be considered correct. In this way,

formula structure detection can be evaluated separately

from symbol segmentation and classification.

Symbol and Relationship Detection. The cor-

respondence between strokes and symbols provided in

CROHME InkML files allows us to compute the per-

centage of target symbols correctly segmented (SYM Seg

in CROHME 2011 to 2013), and the number of correctly

segmented and classified target symbols (SYM Rec in

CROHME 2011 to 2013). These are measures of symbol

recall. One can also measure the precision of recognized

symbols, which is the percentage of correctly detected

or detected and classified symbols. During CROHME

2014, we realized that symbol relationships can also

be evaluated using recall and precision, measured over

pairs of symbols with a relationship and their asso-

ciated strokes. Relationships are detected correctly if

both symbols in the relationship are correctly segmen-

ted and have a defined relationship in ground truth,

and correctly detected and classified if the relationship

labels also agree.

3.2 Label Graphs and Stroke-Based Metrics

Label Graphs. Beginning with CROHME 2013 a second

structural representation called stroke label graphs was

used [19], as illustrated in Figure 2c. A label graph

defines structure using a directed graph over handwrit-

ten strokes. Strokes (nodes) are labeled by their asso-

ciated symbol, and directed edges between stroke pairs

are labeled by either a spatial relationship between two

symbols (e.g. ‘Right’), no relationship (‘ ’) or a pair of

directed edges for strokes belonging to the same symbol

(‘*’). For legibility, ‘no relationship’ edges are omitted

in Figure 2c, but Figure 2c represents a complete graph

with every nodes and directed edge labeled. An adja-

cency matrix over strokes with labels may be used [8];

the number of labels in a label graph is given by n stroke

labels, plus 2
(
n
2

)
directed edge labels, giving n2 labels

in total. In Figure 2c, 42 = 16 labels are defined.

Every possible symbol layout tree for a set of in-

put strokes can be represented by a label graph, along

with partial and illegal interpretations (e.g. a forest of

symbol layout trees). Symbol-level evaluation metrics

may also be computed directly from label graphs [8].

Symbols are defined by cliques of ‘*’ (merge) labels or

labels that match labels for attached strokes - we use

‘*’ edges in Figure 2. Using these stroke cliques, we

can recover the symbol layout tree from a label graph

after recovering symbols. For efficiency, in our tools we

use connected component analysis over stroke labels to

identify the grouping of strokes into symbols.

Hierarchical structure can be represented using sets

of labels for nodes and edges, where labels for each level

of structure are disjoint [5,8]. One can then filter for la-

bels from a specific ‘level.’ This is how we obtained res-

ults at different levels for the matrix recognition task in

CROHME 2014. Label graphs may be easily combined

and/or filtered in various ways, as we do to identify

which expressions can be correctly recognized if all cor-

rect node and edge labels from participant systems are

joined in Section 5. Non-hierarchical structure can also

be represented with label graphs.

Label Hamming Distances. We can use label

graphs to compute exact disagreement for input strokes

between two interpretations. This resolves the problem

with symbolic encodings such as LATEX being unable

to put disagreeing segmentations at the symbol level

into correspondence. We define Hamming distances for

stroke labels (∆C), conflicts of segmentation at indi-

vidual edges (∆S, where only one of two graphs have a

‘merge strokes’ label) and edge relationship type con-

flicts (∆R). The absolute (total) Hamming distance

∆B is the sum of these component label errors (∆B =

∆C + ∆S + ∆R). We also defined a variation that

weights segmentation edges lower to compensate for

their frequency (∆E).

Stroke-Level Error Analysis. Label graphs per-

mit highly detailed error analyses: now, when a symbol

is mis-segmented by a system, we can determine pre-

cisely which strokes were grouped correctly or incor-

rectly for the target symbol. This additional informa-

tion allows us to make new analyses such as that presen-

ted in Section 5.3, where we enumerate small sub-graphs

in ground-truth (e.g. for pairs of related symbols) and

then count the number of times different errors are

made for each. We can now count and visualize incor-

rect label graphs representing any combination of clas-

sification, segmentation and relationship mis-labelings

for strokes in a given target sub-graph.

4 Participating Systems

In this Section, we provide a summary of techniques

that have been used in the CROHME competition [2–5].

Results from different systems for the CROHME 2014

competition are discussed in the next Section. For brev-

ity, the identifiers shown in Table 3 are used to identify

participants. Table 3 also provides references pertain-

ing to participant systems. Relatively current surveys

of techniques for recognizing typeset and handwritten

mathematical expressions are available [6, 9, 10, 21, 22]

along with a more general introduction [23].
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Table 3 CROHME Participants (2011-2014). Related work cited by groups are provided in the Refs. column. The rightmost
portion of the table shows which competitions each group participated in.

CROHME
Id Research Group Refs. 2011 2012 2013 2014
Ath Athena Research Center (Greece) [24] X X X
Czt Czech Technical University (Czech Republic) [25,26] X

Mys MyScript/Vision Objects (France) X X X
Nan University of Nantes, IRCCyN (France) [13,14,27,28] X X X X
Ria Rochester Institute of Technnology (USA) [29–35] X X X X
Rib Rochester Institute of Technology [31,35,36] X

Imgaging Science (USA)
Sab Sabanci University (Turkey) [24,37] X X X
Sap University of São Paulo (Brazil) [16,38] X X
Tok Tokyo University of Agriculture and Techn. [39–41] X X

(Japan)

Val Universitat de Politècnica de Valencia [42–44] X* X X* X*
Wat University of Waterloo (Canada) [45,46] X

X winning system X* winning system trained only on CROHME training data

4.1 Language Models

Here we briefly summarize the symbolic, spatial and/or

temporal constraints used by CROHME systems. These

are used to validate hypotheses and/or constrain search

in participant systems.

Symbols. For symbol classes, some participants rep-

resent all CROHME symbol classes separately, while

others (e.g. Wat) use a smaller set of classes along with

rules to tokenize (i.e. combine) symbols into larger sym-

bols, e.g. representing ≤ using routines to combine a

horizontal line below a < into ≤, or individual letters

into a function name (e.g. for ‘cos,’ which is a symbol

class in CROHME). Nan was the first to include a ‘re-

ject’ class to represent invalid segmentations. To make

computation feasible, nearly all systems make a restric-

tion upon the maximum number of strokes in a symbol

(most commonly 4 strokes).

Spatial Relationships between Symbols. Many

systems estimate the typographic class of symbols, rep-

resenting where a symbol sits on the writing line. Com-

monly these include ascenders (e.g. ‘d’), descenders (e.g.

‘y’) and symbols lying between the writing line and cen-

ter line or ‘x-line’ (e.g. ‘a’). These typographic classes

are then used to constrain the locations of symbols

in particular relationships (e.g. subscript, vs. adjacent-

at-right vs. superscript). Mathematical types are also

used to constrain relationships (e.g. rejecting subscrip-

ted digits (21), and superscripts or subscripts for ‘+’).

Another important element is how spatial regions are

defined. Many methods partition space around a sym-

bol using rectangular regions, and then test for relation-

ships of neighboring symbols or sub-expressions that lie

within these regions. Alternatively, neighboring sym-

bols or strokes are used, often with a maximum distance

for valid neighbor relationships.

Expression Grammars. Two generalizations of

context-free grammars have been used to define legal

expressions by participants.5 The first generalization is

two-dimensional context-free grammars that allow ho-

rizontal, vertical, and scripted concatenation in produc-

tion rules (Nan, Tok, Val, Wat). In all cases, the gram-

mars incorporate fuzzy (Wat) or probabilistic weights;

some incorporate these in the grammar production rules,

but more commonly the score for an interpretation is

defined using symbol and relationship classification scores

(e.g. in a linear combination) to avoid biasing scores to-

ward smaller trees. The second generalization is prob-

abilistic graph grammars, where production rules may

have graphs on the left and right-hand side production

rules to represent more complex patterns (Sab). These

systems enumerate a space of possible layout trees and

then return the highest-ranked interpretation as out-

put. To make this tractable, low-confidence symbol and

relationship types are pruned during parsing (e.g. con-

sidering only top-10 symbol classes).

Three systems (Ria, Rib, Sap) use simple ‘baseline’

grammars representing only the horizontal adjacency

of symbols on a writing line, and rectangular spatial

regions around baseline symbols [48]. Parsing with these

grammars involves a greedy top-down search, locating

the main baseline of the expression and then recursively

locating the main baseline in each sub-region. These

grammars do not consider mathematical types, and do

not insure that operators have all of their arguments.

5 The first example of such a grammar for math recognition
was presented by Chou in the late 1980’s [47].
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4.2 Preprocessing Stroke Data

The stroke data provided in CROHME comes from a

variety of countries, and from a number of devices in-

cluding electronic whiteboards, tablet computers, writ-

ing tablets, and Anoto pens that capture physical pen

strokes.6 Stroke sampling rates and coordinate systems

differ greatly between devices and capture platforms.

Stroke points are represented using integers or real-

values, and sometimes include negative coordinates. Par-

ticipants have used a variety of approaches to handle

this, including normalizing expression size (e.g. fixing

the expression height at 1.0 and then maintaining the

relative width of the original stroke data), and res-

ampling strokes to compensate for differences in stroke

resolution arising from sampling and writing speed (faster

movement yields fewer samples). Stroke resampling tech-

niques have included Line Density Projection Interpol-

ation (Tok), uniform distance stroke resampling (Ria,

Rib, Nan) and Cubic splines (Ria in 2013 and 2014).

4.3 Training

Participants have used a variety of approaches to set-

ting system parameters for pre-processing, language mod-

els and recognition. Systems using stochastic context-

free grammars have had their rule probabilities tuned

both manually and algorithmically (using the Inside-

Outside algorithm), and a fuzzy-based grammar sys-

tem had membership functions that also required tun-

ing (Wat). A number of systems trained their recog-

nition modules stage-wise (e.g. first symbol segment-

ation and/or classification, spatial relationship classi-

fication, and then parsing/search parameters). For ex-

ample, each module of the Val system is trained inde-

pendently [43]: the isolated symbol recognizer (HMM

or BLSTM in [44]) using extracted isolated symbols

and spatial relation classifier (SVM) from pairs extrac-

ted from the training expressions. A pair of research

groups (as Nan) utilized an explicit reject class in their

classifiers, and trained classifiers directly from expres-

sion data, dynamically generating instances for the ‘re-

ject’ class within a global training architecture. Some

participating systems were trained on additional data

alongside the provided CROHME training set (Czt, Tok

2013, Sap 2013), or on a completely different training

set (Mys).

6 http://www.anoto.com/

4.4 Recognition Operations

The recognition operations can be split into four primary

sub-tasks: 1) segmenting symbols, 2) classification of

symbols, 3) classification of spatial relationships, and

4) parsing expression symbols and structure (i.e. the

search strategy or processing pipeline). Even if some

systems try to perform two or more steps simultan-

eously in ‘holistic’ approaches, they all extract inform-

ation for these sub-tasks.

Symbol Segmentation. Segmentation involves

grouping strokes into symbols. To reduce the number

of segmentations considered, participants always use

some form of continuity constraints. Symbols drawn

with multiple strokes have a temporal and/or a spa-

tial continuity: the strokes are close in time or in space.

Once the space of segmentation hypotheses is defined,

systems can enumerate possible segmentations before

evaluating each one. Some participants design a ded-

icated recognizer for symbol segmentation. However,

most participants use symbol recognition results to guide

segmentation: if the segment corresponds to a symbol

with high confidence, then the hypothesis is kept. The

reject option is between these two ideas: modeling in-

valid segments using the reject class, and then allowing

this to be considered alongside concrete symbol classes

(i.e. not filtering segmentations detected as invalid from

the hypothesis space).

After using symbol recognition results to evaluate

segmentations, some participants select a segmentation

of strokes into symbols, but most delay this decision un-

til later processing. Depending upon the parsing method,

there are two ways to delay segmentation: first, in a lat-

tice which stores candidate segmentations, or secondly

allowing the parsing process to enumerate possible seg-

mentations. If parsing is bottom-up (e.g. CYK), these

two methods for considering candidate segmentations

are equivalent, as all valid segments needed to be com-

puted, evaluated and stored.

Symbol Classification. A wide variety of features

and classification algorithms were used for symbol clas-

sification. Even if decisions can be delayed (e.g. to the

parsing stage), all participants consider symbol recogni-

tion as an isolated task - i.e. the features, classification

algorithms and training are completed separately from

other recognition steps.

We can distinguish two families of feature types: on-

line features which use the sequence of points in strokes,

and off-line features which use the image of a symbol

candidate. The advantage of on-line features is that

they use information unavailable in an image such as

timing data, exact pen position, and paths in crossing

or overwriting strokes. However, this additional inform-
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ation leads to more variability for some classes due to

differing stroke orders, variations in writing speed, etc.

Using both on-line and off-line features can be useful,

and participants using this combination obtain the best

results in isolated symbol recognition results. This fu-

sion of on-line and off-line features can be done early

at the feature level (e.g. by concatenation of feature

vectors) or later using a classifier combination.

The classification algorithms employed are diverse.

We can distinguish classifiers that use features sensitive

to time (Nearest Neighbor with template matching or

DTW, Hidden Markov Models, Recurrent Neural Net-

work) and those considering symbol shape using off-line

features (MLP, SVM, Decision trees). Some classifiers

include a reject class, allowing invalid symbols to be

identified.

Spatial Relationship Classification. Spatial re-

lationships can be detected using different elements,

either through symbol to symbol relationships, or sub-

expression to sub-expression relationships. Early solu-

tions use intuitive features based on relative positions of

bounding boxes for symbols and/or sub-expressions, or

the position of a symbol relative to a symbol on a detec-

ted baseline. These raw features have the drawback of

not taking into account the shape of symbols. A single

bounding box arrangement can be shared by different

symbol relationships (e.g. consider the bounding boxes

for a handwritten A2 vs. pa). One way to mitigate this

problem is to use the typographic class of the symbols

within a relationship, e.g. descenders, ascenders, and

large operators (e.g.
∫

).

In the final year of the competition, layout features

have been defined using shape contexts (Val, Ria, Rib)

which provide visual information absent in the lower-

resolution bounding box-based features. From a given

layout feature, it is possible to recognize the spatial re-

lations with a classifier (e.g. SVM or set of thresholds)

or define weights/costs that can be used in evaluating

interpretations during parsing. Similar to simple classi-

fication hypotheses, geometric or probabilistic weights

can be used to generate a space of possible structural

interpretations, allowing multiple interpretations to be

considered during parsing. The Wat system is unique

in that the ‘Above’ relationship is not considered, re-

ducing spatial relationship classification from a 6-class

to a 5-class problem.

Parsing. Most participants define the formula re-

cognition problem as a global optimization, requiring

the minimization of a cost or maximization of a joint

probability for symbols and relationships. Formula rank

scores are defined by a combination of symbol, relation-

ship and production rule confidences (e.g. using a linear

combination or geometric mean). It is natural to com-

pute these scores and use them in the parsing process.

Participants using a Context Free Grammar-based

language model employ the Cocke-Yonger-Kasami (CYK)

parsing algorithm. We can split these participants into

two groups, based on how they initialize the CYK table.

Nan, MyS, Czt generate symbol hypotheses and use

them as the leafs (terminals) of the parsing table. The

second group (Tok, Val) use strokes as terminals, but

they have to fill multiple lines of the table during initial-

ization - the first line for one stroke symbol candidates,

the second line for two stroke symbol candidates, up

to the maximum number of strokes allowed in a sym-

bol. The resulting search space between these initial-

ization strategies can be similar, particularly when the

temporal stroke-order is preserved. The main difference

comes from how symbol hypotheses are generated (see

the discussion above). Probabilistic Graph Grammars

(Sab) have also been used, using a parsing algorithm

similar to CYK: initialized by symbol hypotheses, mer-

ging symbols into sub-expressions by applying grammar

rules, and stopping when all strokes are consumed. One

advantage of this approach is that grammar rules are

not restricted to Chomsky Normal form and defined

using graphs, making the grammars more intuitive to

define and read.

These approaches are bottom-up algorithms. Con-

versely, a successful top-down parsing strategy has been

proposed by Wat. He defines a Relational CFG parser

using Unger’s algorithm. Each production rule expli-

citly defines how subexpressions are arranged, whether

horizontally or vertically. In this approach, the ‘Above’

relationship is not directly detected. Indeed vertical struc-

tures are parsed from top to bottom with ‘Below’ re-

lations. The complexity of the stroke partitioning in

this algorithm (polynomial) is reduced by terminal re-

ordering before rule applications.

Remaining approaches use recursive baseline detec-

tion from a fixed symbol segmentation (Ath, Ria, Sap).

Once symbols on a baseline have been detected, sym-

bols located in vertical relationships with baseline sym-

bols are detected. We can distinguish systems using

Minimum Spanning Trees (MST) identifying vertical

structures before right, superscript or subscript rela-

tionships (Ria 2013-2014, Rib). While relatively fast,

these baseline-based approaches are less accurate than

the CFG-based approaches. They employ much less strict

language models that permit invalid interpretations,

and are greedy algorithms with limited backtracking.
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5 Results and New Challenges

As the detailed results using the official metrics de-

scribed in section 3.2 are available in the competition

papers, we choose to present the results following a dif-

ferent point of view in order to address the following

questions: (i) how difficult is the recognition task? (ii)

how do the participating systems behave towards this

complexity? (iii) is it difficult to do better than what

the participating systems produced? and (iv) what are

the issues still remained unsolved?

In this section, we focus on the last competition res-

ults for analyzing which type of expressions still need

attention. After this analysis we show how to use the

proposed tools and framework based on the label graph

as described in section 3.2 to merge results from differ-

ent systems and do a high level error analysis.

5.1 Expression Level Results with Regards to

Expression Complexity

Table 4(a) counts the number of correct expressions

from the last test set (Part 4 test set 2014) which are

well recognized by each system. For example, out of

986 expressions, the best performing system recognized

618 expressions (62.15%) and the system ranked last re-

cognized 148 (15.05%). While checking expression wise

performance of the systems, we note that 707 expres-

sions are recognized by at least one system and 279 ex-

pressions are never recognized. It indicates that there

are 89 expressions (707 - 618 = 89) which are not recog-

nized by the best system but are recognized by some of

the other systems. The second row shows the number

of expressions which are recognized only by the corres-

ponding system (and not by any of the other systems).

It shows that each system has a different behavior and

they all have their own strengths and weaknesses. Fur-

thermore, if an oracle is available to choose the right

system for each expression, theoretically it would be

possible to reach at a recognition rate of 707/986 =

71.7%. The merging of the decisions coming from dif-

ferent systems is discussed in the next section.

Let us now focus on the remaining 279 expressions

which are never recognized. Figure 4 shows the reparti-

tion of these expressions with regard to the complexity

criteria defined in section 2.3. The histograms show that

the CROHME data still have challenging expressions to

be recognized. If we consider the number of symbols per

expression as a complexity measure, more than 41% ex-

pressions having more than 11 symbols are never recog-

nized. The expressions with less number of symbols are

nicely recognized and only 13% of the expressions with

less than 5 symbols are never recognized. The recogni-

tion rate for expressions with 6 to 10 symbols is 22%.

If we consider more structural criteria, the proportion

of never recognized expressions always increases with

the complexity. It rises from 13% of expressions with

only one baseline to 19% with 2 baselines, 33% with

3 baselines and then between 32% and 57% for more

complex expressions. This is more evident if we take

into account only the number of distinct baselines: the

proportion of never recognized expressions triples from

13% to 39% when expressions have 3 baselines like a

subscript and a superscript in the same time or just a

simple fraction. The last histogram (maximum depth)

well sums up the situation: one third of the test set

(˜300 exp.) are simple and quite well recognized (only

13% are never recognized exp.); one half (˜500 exp.)

has a first level of difficulties and are still difficult to re-

cognized (31% are never recognized) and more complex

expressions are still challenging.

5.2 Merging System Outputs

In the previous section we showed that if it is possible,

thanks to an oracle, to choose the right recognition res-

ult among the answers from the 7 participants, we could

reach the recognition rate of 71.7% (see Table 4, 707

among the 986 expressions from the test set 2014). This

is the best we can do with late decision merging (ex-

pression level). The label graphs allow stroke level and

stroke pair level evaluation of the different systems (see

Section 3.2). We can use these label graphs to perform

an early merging of the system decision. Indeed as we

did at the expression level, we can merge all local de-
cisions using an oracle which knows the right answer.

To implement this theoretical merging we use the multi-

label version of the label-graph with a specific metric

to compare the resulting graph with the ground-truth.

Let us describe the main outline of this process. First a

multi-label graph is built for each expression by aggreg-

ating the output files from each participant. Then these

multi-label graphs are compared with the ground-truth:

for a solution (stroke and edge labels) if the correct la-

bel is present among all decisions, we keep only this

solution else we replace it by an error label. Finally,

these merged and corrected label graphs are compared

again by using the standard evaluation tool to extract

recognition rate and error counters.

The right part of Table 4 shows expression recog-

nition rate for the best possible early merging of each

local decision (strokes and relations) for 2 or more par-

ticipants. As the contribution of each participant is not

the same, we progressively add the systems sorted by

their global recognition rate: increasing (the two worst
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Table 4 CROHME 2014 Expression Rates (a) before and (b) after merging system results. In (a), the second row shows the
number of expressions recognized only by the corresponding system. In (b), the number of correctly recognized expressions
obtained after merging all stroke labeling decisions from 2 to 7 systems are shown, both in order of increasing and decreasing
expression recognition rate as shown at the left.

a. CROHME 2014 Test Set Expression Rates b. Expression Rates After Label Merging

Mys Nan Ria Rib Sap Tok Val Any Sys.
Correct 618 257 187 187 148 253 367 707
Unique 164 5 3 3 0 8 23 -

#Syst. Increasing Decreasing
2 307 ( 31.14% ) 716 ( 72.62% )
3 422 ( 42.80% ) 751 ( 76.17% )
4 563 ( 57.10% ) 774 ( 78.50% )
5 668 ( 67.75% ) 786 ( 79.72% )
6 727 ( 73.73% ) 800 ( 81.14% )
7 810 ( 82.15% )

a. b.

c. d.

Figure 4 Frequency of Expressions with Differing Complexities. Complexity is characterized by (a) number of symbols, (b)
number of baselines, (c) number of distinct baselines, and (d) maximum layout tree depth. Frequencies are shown for the full
2014 test set (red + blue bars), and for expressions recognized correctly by none of the participants (red). Percentages on red
bars give the ratio of unrecognized expressions to the all expressions belonging to the column/parameter.

systems are merged first) or decreasing (the two best

systems are merged first).

The first observation is that each system contributes

to the merging, indeed the number of correct expres-

sions always increases whatever the order of the sys-

tems. Table 4, in addition, shows that one system has

no expressions which are recognized only by it, but at

the stroke and relation level it participates significantly

(10 expressions added in the last step of the decreasing

order). The second point is that this merging strategy

can reach a better recognition rate of 82.15% which is

much more than the 71.7% by considering only the ex-

pression level results. It means that among the 279 ex-

pressions which are never recognized, 103 expressions

can be recognized using an early merging of the sys-

tem results. Some expressions are partially recognized

by several systems and the correct expression can be re-

trieved from these partial results. Note that no language

model has been used in this merging process. It means

that if some errors introduce completely wrong struc-

tures, even by correcting the stroke labels, it will be

difficult to retrieve the correct structure. Nevertheless,

once correct and incorrect nodes and edges are detected,

we can measure the primitive and object level metrics.

The globally merged system incurs 214 errors on stroke

labels and 600 on edge labels which are only a quarter

of the errors shown by the best system results (845 er-

rors on strokes and 2489 edges, cf. [5]). If we consider
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the object level metrics, the object recall rate is 98.32%

(well segmented and well recognized) and relation re-

call rate is 97.13% (well detected with valid objects and

relationships). Compared to the system Mys, the sym-

bol recognition has been increased more than spatial

relation recognition (+4.41% vs. +2.87%). These cor-

rections allow recovering half of their miss-recognized

expressions (-47%, from 368 to 176 wrong expressions).

5.3 Bigram Error Analyses

As described in section 3.2 the CROHME metrics are

based on counting the errors at stroke level (stroke la-

bels or relation label between strokes) or object level.

However, it also possible to count the errors at sub-

graph level without a big increase of complexity. In this

section, we show what can be done at the bigram level

where two symbols are linked by a spatial relation.

Starting from the ground-truth object tree, we enu-

merate each pair of symbols which are connected in

this tree. Using corresponding strokes, it is possible to

check if this sub-graph is correct or not in the recog-

nized expression. One drawback of this approach is that

sometimes one primitive level error can lead to several

wrong bigrams because the corresponding symbol ap-

pears in several sub-graphs. Nevertheless this counting

allows a high level error analysis. Figure 5 presents a

small capture of the HTML file generated by this error

analysis tool applied to Nan system. For this system, a

total of 4056 errors are counted for 1489 different ob-

ject bigrams. Figure 5 shows the errors for only one

particular bigram pattern x+. For a particular symbol

bigram many different conditions at stroke level exist in

the test set. For instance, the bigram ’x+’ appears with

4 different conditions in the test set (from 2 strokes to

5 strokes). In Figure 5, the wrong labels are drawn in

red. With the 4-stroke case (row 1), out of the 34 errors

which appear, 7 errors concern a missing spatial rela-

tion between x and +, 4 errors concern a wrong spatial

relation (Sub instead of Right, x+), missing nodes (AB-

SENT label) happen twice; in the 3-strokes cases (row

2), 2 errors concern wrong symbol and spatial relation

label (n+) and 1 error accumulates a wrong segmenta-

tion and wrong labels (x1−), . . .

Table 5 presents the most frequent bigram errors for

each system and for all systems together. For each sys-

tem, the three most frequent errors are selected (in bold

font) and can be compared with errors from other sys-

tems. Figure 6 shows one example which explains one

occurrence of the error on the bigram +1 for the system

Nan. Furthermore, this figure shows one possible visu-

alization of the errors in the corresponding label graph:

five strokes are used (numbered in nodes from 0 to 4),

3 nodes have the correct label (blue ones) and 2 are

incorrect (wrong segmentation of the x); all edges are

misrecognized (the correct label is in brackets, the label

‘ ’ stands for ‘no edge’).

It is interesting to note that the systems have differ-

ent behaviors but also share some common difficulties.

The two sub-expressions x+ and 1 are the most fre-

quent errors, maybe because these 4 symbols are the

most frequent ones (see table 2). Furthermore x+, x×
and ×x are very frequent, it can be explained because

these bigrams combine several difficulties. They are multi-

strokes, thus at first, there is difficulty in segmentation

phase. These symbols can easily be confused keeping a

valid structural subexpression (if xx is recognized in-

stead of x× it could still be a valid expression). The

− = and = − sub expressions are difficult to recognize

because the horizontal lines can be merged to build an

extended fraction bar. For example, = − can be re-

cognized as − . Note that the horizontal bar can be a

fraction bar or a minus sign. It is surprising that the

most of frequent symbol bigram errors have left-right

relation. The only complex structure is 1 and several

errors are possible. For instances, merging of the sym-

bol in a + sign or in a digit 1 written with a horizontal

stroke.

If we look at the merged system results, we can say

that the most difficult bigrams to recognize are
∑n

and∑
i (mainly confusion between relations Above with Sup

and Below with Sub). Among the presented cases, the

three most frequent errors use spatial relations with

complex symbols (
∑

, fraction bar) and the other types

use very confusing symbols × and x. Actually 303 dif-

ferent bigrams are listed in the full error list of the

merged system and 705 are listed in the error list for
the best participating system, i.e, Mys.

6 Open Problems and Conclusion

The analysis of CROHME results shows two import-

ant aspects. Firstly, the community of CROHME has

proposed efficient solutions to solve the problem for

simple cases: small expressions with simple structures

have only about 13% of errors. The second point is that

the complex expressions are still challenging. However,

complex expressions do not heavily degrade the over-

all performance of the systems as a system can easily

achieve accuracy like 30% just by recognizing simple

expressions present in the dataset. The error analysis

shows that symbol segmentation and recognition are

still difficult in the context of complex expressions. The

problem is not in the symbol classifier (as shown in the

isolated symbol classification task in CROHME 2014)
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Table 5 Symbol Bigram Error Counts (CROHME 2014). Errors are shown for each system, globally for all systems (All) and
using the merged label output from all systems. The top-3 errors in each column are shown in bold.

Number of Errors
Bigram All Merged Mys Nan Ria Rib Sap Tok Val

1 358 1 5 27 60 91 108 52 15
x+ 285 1 11 55 41 41 56 55 26
(x 224 5 32 44 32 52 50 9

+1 224 7 34 29 44 67 38 5
= − 209 6 20 34 49 60 22 18
= 1 180 17 33 52 46 26 5

00 160 31 53 31 20 17 5
− = 157 1 17 21 55 39 15 7
x× 145 6 24 22 20 24 22 10 23
×x 141 5 23 20 19 24 22 10 23
f( 136 4 30 21 18 21 19 23

n
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Figure 6 Misrecognized Expression from Nan System and Corresponding Label Graph Error Visualization. The five input
strokes are numbered from 0-4, appearing at the bottom of each node. Red nodes and edges represent incorrect labels, with
the correct label shown in brackets. This sample illustrates one error for the ‘+1’ pattern: the left-right link between the ‘+’
and the ‘1’ is wrong (Sup instead of Right) and ‘+’ is over-segmented into ‘−1.’ Note: on edges, ‘ ’ represents no relationship.
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but in taking into account a more global or local con-

text. Furthermore, we show that having efficient tools

to analyze complex elements like math expressions is

important. They can highlight some specific problems

which can be hidden in the mass of information. The

merging experiment shows that the different systems

have different strengths which are often complement-

ary. Thus, it is important that the community would

continue to share the tools, datasets and the part of

their systems in order to capitalize the efforts done by

each one. Finally, it could be concluded that the organ-

ization of CROHME is indeed a huge effort which leads

to setting up a full framework for handwritten math

recognition and it has a tremendous contribution for

advancement of the related research field.

To conclude, exciting perspectives for this field of re-

search can be suggested. One of the most promising one

would be to incorporate in a deeper way statistical lan-

guage models. Using basic n-gram, or more elaborated

skip-gram, models defined either at the symbol or at

the sub-expression level seems appealing. Such models

have proved to be very efficient to improve text recog-

nition performances. Of course, the adaptation is not

straightforward because of the nature of the 2D struc-

tures which are not present in regular texts. Extending

this concept, it may be tempting to get rid of the use

of formal CFG to guide the interpretation stage, and to

consider more semantic approaches, so that mathemat-

ical concepts could be revealed. Following this idea, it

would be interesting to look in the direction of Continu-

ous Bag of Words for computing vector representations

of sub-expressions.
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