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On the two-filter approximations of marginal smoothing

distributions in general state space models

Thi Ngoc Minh Nguyen∗ Sylvain Le Corff† Eric Moulines‡

Abstract

A prevalent problem in general state space models is the approximation of the

smoothing distribution of a state conditional on the observations from the past, the

present, and the future. The aim of this paper is to provide a rigorous analysis of

such approximations of smoothed distributions provided by the two-filter algorithms.

We extend the results available for the approximation of smoothing distributions to

these two-filter approaches which combine a forward filter approximating the filtering

distributions with a backward information filter approximating a quantity proportional

to the posterior distribution of the state given future observations.

1 Introduction

State-space models play a key role in a large variety of disciplines such as engineering,
econometrics, computational biology or signal processing, see [9, 8] and references therein.
This paper provides a nonasymptotic analysis of a Sequential Monte Carlo Method (SMC)
which aims at performing optimal smoothing in nonlinear and non Gaussian state space
models. Given two measurable spaces (X,X ) and (Y,Y), consider a bivariate stochastic
process {(Xt, Yt)}t≥0 taking values in the product space (X× Y,X ⊗ Y), where the hidden
state sequence {Xt}t≥0 is observed only through the observation process {Yt}t≥0. Statisti-
cal inference in general state space models usually involves the computation of conditional
distributions of some unobserved states given a set of observations. These posterior distri-
butions are crucial to compute smoothed expectations of additive functionals which appear
naturally for maximum likelihood parameter inference in hidden Markov models (compu-
tation of the Fisher score or of the intermediate quantity of the Expectation Maximization
algorithm), see [3, Chapter 10 and 11], [17, 25, 20, 21].

Nevertheless, exact computation of the filtering and smoothing distributions is possible
only for linear and Gaussian state spaces or when the state space X is finite. This paper
focuses on particular instances of Sequential Monte Carlo methods which approximate se-
quences of distributions in a general state space X with random samples, named particles,
associated with nonnegative importance weights. Those particle filters and smoothers rely
on the combination of sequential importance sampling steps to propagate particles in the
state space and importance resampling steps to duplicate or discard particles according to
their importance weights. The first implementation of these SMC methods, introduced in
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[14, 18], propagates the particles using the Markov kernel of the hidden process {Xt}t≥0

and uses a multinomial resampling step based on the importance weights to select particles
at each time step. An interesting feature of this Poor man’s smoother is that it provides
an approximation of the joint smoothing distribution by storing the ancestral line of each
particle with a complexity growing only linearly with the number N of particles, see for in-
stance [4]. However, this smoothing algorithm has a major shortcoming since the successive
resampling steps induce an important depletion of the particle trajectories. This degeneracy
of the particle sequences leads to trajectories sharing a common ancestor path; see [25, 16]
for a discussion.

Approximations of the smoothing distributions may also be obtained using the forward
filtering backward smoothing decomposition in general state space models. The Forward
Filtering Backward Smoothing algorithm (FFBS) and the Forward Filtering Backward Sim-
ulation algorithm (FFBSi) developed respectively in [18, 15, 10] and [13] avoid the path
degeneracy issue of the Poor man’s smoother at the cost of a computational complexity
growing with N2. Both algorithms rely on a forward pass which produces a set of particles
and weights approximating the sequence of filtering distributions up to time T . Then, the
backward pass of the FFBS algorithm modifies all the weights computed in the forward pass
according to the so-called backward decomposition of the smoothing distribution keeping
all the particles fixed. On the other hand, the FFBSi algorithm samples independently
particle trajectories among all the possible paths produced by the forward pass. It is shown
in [22, 2, 5] that the FFBS algorithm can be implemented using only a forward pass when
approximating smoothed expectations of additive functionals but with a complexity still
growing quadratically with N . Under the mild assumption that the transition density of the
hidden chain {Xt}t≥0 is uniformly bounded above, [6] proposed an accept-reject mechanism
to implement the FFBSi algorithm with a complexity growing only linearly with N . Concen-
tration inequalities, controls of the Lq-norm of the deviation between smoothed functionals
and their approximations and Central Limit Theorems (CLT) for the FFBS and the FFBSi
algorithms have been established in [5, 6, 11].

Recently, [23] proposed a new SMC algorithm, the particle-based rapid incremental
smoother (PaRIS), to approximate online, using only a forward pass, smoothed expecta-
tions of additive functionals. The crucial feature of this algorithm is that its complexity
grows only linearly with N as it samples on-the-fly particles distributed according to the
backward dynamics of the hidden chain conditionally on the observations Y0, . . . , YT . The
authors show concentration inequalities and CLT for the estimators provided by the PaRIS
algorithm.

In this paper, we extend the theoretical results available for the SMC approximations of
smoothing distributions to the estimators given by the two-filter algorithms. These meth-
ods were first introduced in the particle filter literature by [18] and developed further by
[1] and [12]. The two-filter approach combines the output of two independent filters, one
that evolves forward in time and approximates the filtering distributions and another that
evolves backward in time approximating a quantity proportional to the posterior distribution
of a state given future observations. In [12], the authors introduced a proposal mechanism
leading to algorithms whose complexity grows linearly with the number of particles. An algo-
rithm similar to the algorithm of [1] may also be implemented with an O(N) computational
complexity following the same idea. We analyze all these algorithms which approximate
the marginal smoothing distributions (smoothing distributions of one state given all the
observations) and provide concentration inequalities as well as CLT.

This paper is organized as follows. Section 2 introduces the different particle approxima-
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tions of the marginal smoothing distributions given by the two-filter algorithms. Sections 3
and 4 provide exponential deviation inequalities and CLT for the particle approximations
under mild assumptions on the hidden Markov chain. Under additional strong mixing as-
sumptions, it is shown that the results of Section 3 are uniform in time and that the asymp-
totic variance in Section 4 may be uniformly bounded in time. All proofs are postponed to
Section 5.

Notations and conventions

Let X and Y be two general state-spaces endowed with countably generated σ-fields X and Y.
Fb(X,X ) is the set of all real valued bounded measurable functions on (X,X ). Q is a Markov
transition kernel defined on X×X and {gt}t≥0 a family of positive functions defined on X. For
any x ∈ X, Q(x, ·) has a density q(x, ·) with respect to a measure λ on (X,X ). The oscillation
of a real valued function defined on a space Z is given by: osc (h) := supz,z′∈Z |h(z)− h(z′)|.

2 The two-filter algorithms

For any measurable function h on X
t−s+1, probability distribution χ on (X,X ), T ≥ 0 and

0 ≤ s ≤ t ≤ T , define the joint smoothing distribution by:

φχ,s:t|T [h] :=

∫

χ(dx0)g0(x0)
∏T

u=1Q(xu−1, dxu)gu(xu)h(xs:t)
∫

χ(dx0)g0(x0)
∏T

u=1Q(xu−1, dxu)gu(xu)
, (1)

where au:v is a short-hand notation for {as}vs=u. In the following we use the notations
φχ,s|T := φχ,s:s|T and φχ,t := φχ,t:t|t. The aim of this paper is to provide a rigorous analysis
of the performance of SMC algorithms approximating the sequence φχ,s|T for 0 ≤ s ≤ T .
The algorithms analyzed in this paper are based on the two-filter formula introduced in
[1, 12], which we now detail.

2.1 Forward filter

Let {ξℓ0}Nℓ=1 be i.i.d. and distributed according to the instrumental distribution ρ0 and define
the importance weights

ωℓ
0 :=

dχ

dρ0
(ξℓ0) g0(ξ

ℓ
0) .

For any h ∈ Fb(X,X ),

φNχ,0[h] := Ω−1
0

N
∑

ℓ=1

ωℓ
0h(ξ

ℓ
0) , where Ω0 :=

N
∑

ℓ=1

ωℓ
0 ,

is a consistent estimator of φχ,0[h], see for instance [4]. Then, based on {(ξℓs−1, ω
ℓ
s−1)}Nℓ=1 a

new set of particles and importance weights is obtained using the auxiliary sampler intro-
duced in [24]. Pairs {(Iℓs , ξℓs)}Nℓ=1 of indices and particles are simulated independently from
the instrumental distribution with density on {1, . . . , N} × X:

πs|s(ℓ, x) ∝ ωℓ
s−1ϑs(ξ

ℓ
s−1)ps(ξ

ℓ
s−1, x) , (2)

3



Nguyen et al. Two-filter approximations of marginal smoothing distributions

where ϑs is the adjustment multiplier weight function and ps is a Markovian transition
density. For any ℓ ∈ {1, . . . , N}, ξℓs is associated with the importance weight defined by:

ωℓ
s :=

q(ξ
Iℓ
s

s−1, ξ
ℓ
s)gs(ξ

ℓ
s)

ϑs(ξ
Iℓ
s

s−1)ps(ξ
Iℓ
s

s−1, ξ
ℓ
s)

(3)

to produce the following approximation of φχ,s[h]:

φNχ,s[h] := Ω−1
s

N
∑

ℓ=1

ωℓ
sh(ξ

ℓ
s) , where Ωs :=

N
∑

ℓ=1

ωℓ
s .

2.2 Backward filter

Let {γt}t≥0 be a family of positive measurable functions such that, for all t ∈ {0, . . . , T },
∫

γt(xt) dxt

[

T
∏

u=t+1

gu−1(xu−1)Q(xu−1, dxu)

]

gT (xT ) <∞ . (4)

Following [1], for any 0 ≤ t ≤ T we introduce the backward filtering distribution ψγ,t|T on X
(referred to as the backward information filter in [18] and [1]) defined, for any h ∈ Fb(X,X ),
by:

ψγ,t|T [h] :=

∫

γt(xt) dxt

[

∏T
u=t+1 gu−1(xu−1)Q(xu−1, dxu)

]

gT (xT )h(xt)

∫

γt(xt) dxt

[

∏T
u=t+1 gu−1(xu−1)Q(xu−1, dxu)

]

gT (xT )
.

If the distribution of Xt has probability density function γt, then ψγ,t|T is the conditional
distribution of Xt given Yt:T . Contrary to [1] or [12],

∫

γt(xt)dxt may be infinite. The only
requirement about the nonnegative functions {γt}t≥0 is the condition (4) and the fact that
γt should be available in closed form. Here γt is a possibly improper prior introduced to
make ψγ,t|T a proper posterior distribution, which is of key importance when producing
particle approximations of such quantities. For 0 ≤ t ≤ T − 1, the backward information
filter is computed by the recursion

ψγ,t|T [h] ∝
∫

ψγ,t+1|T (dxt+1)

[

γt(xt)gt(xt)
q(xt, xt+1)

γt+1(xt+1)

]

h(xt) dxt , (5)

in the backward time direction. (5) is analogous to the forward filter recursion and particle
approximations of the backward information filter can be obtained similarly. Using the
definition of the forward filtering distribution at time s − 1 and the backward information
filter at time s+ 1, the marginal smoothing distribution may be expressed as

φχ,s|T [h] ∝
∫

φχ,s−1(dxs−1)ψγ,s+1|T (dxs+1)q(xs−1, xs)gs(xs)
q(xs, xs+1)

γs+1(xs+1)
h(xs)dxs . (6)

We now describe the Sequential Monte Carlo methods used to approximate the recursion
(5) in [1], [12]. Let ρ̌T be an instrumental probability density on X and {ξ̌iT |T }Ni=1 be i.i.d.

random variables such that ξ̌iT |T ∼ ρ̌T and define

ω̌i
T |T :=

gT (ξ̌
i
T |T )γT (ξ̌

i
T |T )

ρ̌T (ξ̌iT |T )
.
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Let now {(ξ̌it+1|T , ω̌
i
t+1|T )}Ni=1 be a weighted sample targeting the backward information

filter distribution ψγ,t+1|T [h] at time t+ 1:

ψN
γ,t+1|T [h] := Ω̌−1

t+1|T

N
∑

i=1

ω̌i
t+1|Th(ξ̌

i
t+1|T ) , where Ω̌t+1|T :=

N
∑

i=1

ω̌i
t+1|T .

Plugging this approximation into (5) yields the target probability density

ψ̂tar
γ,t|T (xt) ∝

N
∑

i=1

ω̌i
t+1|T

[

γt(xt)gt(xt)
q(xt, ξ̌

i
t+1|T )

γt+1(ξ̌it+1|T )

]

,

which is the marginal probability density function of xt of the joint density

ψ̂aux
γ,t|T (i, xt) ∝

ω̌i
t+1|T

γt+1(ξ̌it+1|T )
γt(xt)gt(xt)q(xt, ξ̌

i
t+1|T ) .

A particle approximation of the backward information filter at time t can be derived by
choosing an adjustment weight function ϑt|T and an instrumental density kernel rt|T , and

simulating {(Ǐit , ξ̌it|T )}Ni=1 from the instrumental probability density on {1, . . . , N}×X given
by

πt|T (i, xt) ∝
ω̌i
t+1|Tϑt|T (ξ̌

i
t+1|T )

γt+1(ξ̌it+1|T )
rt|T (ξ̌

i
t+1|T , xt) . (7)

Subsequently, the particles are associated with the importance weights

ω̌i
t|T :=

γt(ξ̌
i
t|T )gt(ξ̌

i
t|T )q(ξ̌

i
t|T , ξ̌

Ǐi
t

t+1|T )

ϑt|T (ξ̌
Ǐi
t

t+1|T )rt|T (ξ̌
Ǐi
t

t+1|T , ξ̌
i
t|T )

. (8)

Ideally, a fully adapted version of the auxiliary backward information filter is obtained by
using the adjustment weights ϑ⋆t|T (x) =

∫

γt(xt)gt(xt)q(xt, x) dxt and the proposal kernel
density

r⋆t|T (x, xt) = γt(xt)gt(xt)
q(xt, x)

ϑ⋆t|T (x)
,

yielding uniform importance weights. Such a solution is most likely to be cumbersome from
a computational perspective.

2.3 Two-filter approximations of the marginal smoothing distribu-

tions

Plugging the particle approximations of the forward and backward filter distributions into
(6) provides the following mixture approximation of the smoothing distribution:

φ̂tarχ,s|T (xs) ∝
N
∑

i=1

N
∑

j=1

ωi
s−1ω̌

j
s+1|T

γs+1(ξ̌
j
s+1|T )

q(ξis−1, xs)gs(xs)q(xs, ξ̌
j
s+1|T ) . (9)
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Following the TwoFiltfwt algorithm of Fearnhead, Wyncoll and Tawn [12], the probability
density (9) might be seen as the marginal density of xs obtained from the joint density on
the product space {1, . . . , N}2 × X given by

φ̂auxχ,s|T (i, j, xs) ∝
ωi
s−1ω̌

j
s+1|T

γs+1(ξ̌
j
s+1|T )

q(ξis−1, xs)gs(xs)q(xs, ξ̌
j
s+1|T ) . (10)

The TwoFiltfwt algorithm draws a set {(Iℓs, Ǐℓs , ξ̃ℓs|T )}Nℓ=1 of indices and particle positions
from the instrumental density

πs|T (i, j, xs) ∝
ωi
s−1ϑ̃s|T (ξ

i
s−1, ξ̌

j
s+1|T )ω̌

j
s+1|T

γs+1(ξ̌
j
s+1|T )

r̃s|T (ξ
i
s−1, ξ̌

j
s+1|T ;xs) , (11)

where, as above, ϑ̃s|T (x, x
′) is an adjustment multiplier weight function (which now depends

on the forward and backward particles) and r̃s|T is an instrumental kernel. We then associate

with each draw (Iℓs , Ǐ
ℓ
s , ξ̃

ℓ
s|T ) the importance weight

ω̃ℓ
s|T :=

q(ξ
Iℓ
s

s−1, ξ̃
ℓ
s|T )gs(ξ̃

ℓ
s|T )q(ξ̃

ℓ
s|T , ξ̌

Ǐℓ
s

s+1|T )

ϑ̃s|T (ξ
Iℓ
s

s−1, ξ̌
Ǐℓ
s

s+1|T )r̃s|T (ξ
Iℓ
s

s−1, ξ̌
Ǐℓ
s

s+1|T ; ξ̃
ℓ
s|T )

, Ω̃s|T :=
N
∑

ℓ=1

ω̃ℓ
s|T . (12)

Then, the auxiliary indices {(Iℓs , Ǐℓs)}Nℓ=1 are discarded and {(ω̃ℓ
s|T , ξ̃

ℓ
s|T )}Nℓ=1 approximate the

target smoothing density φ̂tarχ,s|T . Mimicking the arguments in [15] and further developed

in [19], the auxiliary particle filter is fully adapted if the adjustment weight function is
ϑ⋆s|T (x, x

′) =
∫

q(x, xs)gs(xs)q(xs, x
′) dxs and the instrumental kernel is

r⋆s|T (x, x′;xs) = q(x, xs)gs(xs)q(xs, x
′)/ϑ⋆s|T (x, x

′) .

Except in simple scenarios, simulating from the fully adapted auxiliary filter is computa-
tionally intractable.

Instead of considering the target distribution (9) as the marginal of the auxiliary distri-
bution (10) over pairs of indices, the TwoFiltbdm algorithm of [1] uses the following partial
auxiliary distributions having densities,

φ̂aux,fs|T (i, xs) ∝ ωi
s−1q(ξ

i
s−1, xs)gs(xs)

N
∑

j=1

ω̌j
s+1|T

γs+1(ξ̌
j
s+1|T )

q(xs, ξ̌
j
s+1|T ) ,

φ̂aux,bs|T (j, xs) ∝
ω̌j
s+1|T

γs+1(ξ̌
j
s+1|T )

q(xs, ξ̌
j
s+1|T )gs(xs)

N
∑

i=1

ωi
s−1q(ξ

i
s−1, xs) .

Since φ̂tarχ,s|T is the marginal probability density of the partial auxiliary distributions φ̂aux,fs|T

and φ̂aux,bs|T with respect to the forward and the backward particle indices, respectively,

we may sample from φ̂tarχ,s|T by simulating instead {(Iℓs , ξℓs)}Nℓ=1 or {(Ǐℓs, ξ̌ℓs|T )}Nℓ=1 from the
instrumental probability density functions

πf
s|T (i, xs) ∝ ωi

s−1ϑs(ξ
i
s−1)ps(ξ

i
s−1, xs) ,

πb
s|T (j, xs) ∝ ϑs|T (ξ̌

j
s+1|T )ω̌

j
s+1|T rs|T (ξ̌

j
s+1|T , xs)/γs+1(ξ̌

j
s+1|T ) ,

6
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where (ϑs, ps) and (ϑs+1|T , rs|T ) are the adjustment multiplier weight functions and the
instrumental kernels used in the forward and backward passes. In this case the algorithm
uses the particles obtained when approximating the forward filter and backward information
filter to provide two different weighted samples {(ω̃i,f

s|T , ξ
i
s)}Ni=1 and {(ω̃i,b

s|T , ξ̌
i
s|T )}Ni=1 targeting

the marginal smoothing distribution, where the forward {ω̃i,f
s|T}Ni=1 and backward {ω̃i,b

s|T}Ni=1

importance weights are given by

ω̃i,f
s|T := ωi

s

N
∑

j=1

ω̌j
s+1|T q(ξ

i
s, ξ̌

j
s+1|T )/γs+1(ξ̌

j
s+1|T ) , Ω̃f

s|T :=

N
∑

j=1

ω̃j,f
s|T , (13)

ω̃j,b
s|T := ω̌j

s|T

N
∑

i=1

ωi
s−1q(ξ

i
s−1, ξ̌

j
s|T )/γs(ξ̌

j
s|T ) , Ω̃b

s|T :=

N
∑

j=1

ω̃j,b
s|T . (14)

An important drawback of these algorithms is that the computation of the forward and
backward importance weights grows quadratically with the number N of particles.

2.4 O(N) approximations of the marginal smoothing distributions

In [12], the authors introduced a proposal mechanism in (11) such that the indices (Is, Ǐs)
of the forward and backward particles chosen at time s− 1 and s+ 1 are sampled indepen-
dently. Such choices lead to algorithms whose complexity grows linearly with the number
of particles. The O(N) algorithm displayed in [12] suggests to use an adjustment multiplier
weight function in (11) such that Is and Ǐs are chosen according to the same distributions as
the indices sampled in the forward filter and in the backward information filter. It is done
in [12] by choosing ϑ̃s|T (x, x

′) = ϑs(x)ϑs|T (x
′) so that (11) becomes

πs|T (i, j, xs) ∝ ωi
s−1ϑs(ξ

i
s−1)

ϑs|T (ξ̌
j
s+1|T )ω̌

j
s+1|T

γs+1(ξ̌
j
s+1|T )

r̃s|T (ξ
i
s−1, ξ̌

j
s+1|T ;xs) . (15)

In this case, the importance weight (12) associated with each draw (Iℓs , Ǐ
ℓ
s , ξ̃

ℓ
s|T ) is given by

ω̃ℓ
s|T :=

q(ξ
Iℓ
s

s−1, ξ̃
ℓ
s|T )gs(ξ̃

ℓ
s|T )q(ξ̃

ℓ
s|T , ξ̌

Ǐℓ
s

s+1|T )

ϑs(ξ
Iℓ
s

s−1)ϑs|T (ξ̌
Ǐℓ
s

s+1|T )r̃s|T (ξ
Iℓ
s

s−1, ξ̌
Ǐℓ
s

s+1|T ; ξ̃
ℓ
s|T )

. (16)

Instead of sampling new particles at time s, an algorithm similar to the TwoFiltbdm algorithm
of [1] which uses the forward particles {ξℓs}Nℓ=1 or backward particles {ξ̌ℓs|T }Nℓ=1 may also be

implemented with an O(N) computational complexity.

(a) Choosing r̃s|T (ξ
Iℓ
s

s−1, ξ̌
Ǐℓ
s

s+1|T ;xs) = rs|T (ξ̌
Ǐℓ
s

s+1|T , xs) in (15), the smoothing distribution

approximation is obtained by reweighting the particles obtained in the backward pass.
The backward particles {ξ̌ℓs|T }Nℓ=1 are associated with the importance weights:

ω̃ℓ
s|T :=

γs(ξ̌
ℓ
s|T )gs(ξ̌

ℓ
s|T )q(ξ̌

ℓ
s|T , ξ̌

Ǐℓ
s

s+1|T )

ϑs|T (ξ̌
Ǐℓ
s

s+1|T )rs|T (ξ̌
Ǐℓ
s

s+1|T , ξ̌
ℓ
s|T )

q(ξ
Iℓ
s

s−1, ξ̌
ℓ
s|T )

γs(ξ̌ℓs|T )ϑs(ξ
Iℓ
s

s−1)
,

= ω̌ℓ
s|T

q(ξ
Iℓ
s

s−1, ξ̌
ℓ
s|T )

γs(ξ̌ℓs|T )ϑs(ξ
Iℓ
s

s−1)
. (17)
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(b) Choosing r̃s|T (ξ
Iℓ
s

s−1, ξ̌
Ǐℓ
s

s+1|T ;xs) = ps(ξ
Iℓ
s

s−1, xs) in (15), the smoothing distribution ap-

proximation is obtained by reweighting the particles obtained in the forward filtering
pass. The forward particles {ξℓs}Nℓ=1 are associated with the importance weights:

ω̃ℓ
s|T :=

q(ξ
Iℓ
s

s−1, ξ
ℓ
s)gs(ξ

ℓ
s)

ϑs(ξ
Iℓ
s

s−1)ps(ξ
Iℓ
s

s−1, ξ
ℓ
s)

q(ξℓs, ξ̌
Ǐℓ
s

s+1|T )

ϑs|T (ξ̌
Ǐℓ
s

s+1|T )
= ωℓ

s

q(ξℓs, ξ̌
Ǐℓ
s

s+1|T )

ϑs|T (ξ̌
Ǐℓ
s

s+1|T )
. (18)

3 Exponential deviation inequality for the two-filter al-

gorithms

In this section, we establish exponential deviation inequalities for the two-filter algorithms
introduced in Section 2. Before stating the results, some additional notations are required.
Define, for all (x, x′, x′′) ∈ X

3,

q[2](x, x′;x′′) = q(x, x′′)q(x′′, x′)

and for any functions f : X2 → R and g : X → R,

f ⊙ g(x, x′) := f(x, x′)g(x′) .

Consider the following assumptions:

A1. |q|∞ <∞ and for all 0 ≤ t ≤ T , gt is positive and |gt|∞ <∞.

A2. For all 0 ≤ t ≤ T , |ϑt|∞ <∞, |pt|∞ <∞ and |ωt|∞ <∞ where

ω0(x) :=
dχ

dρ0
(x)g0(x) and for all t ≥ 1 ωt(x, x

′) :=
q(x, x′)gt(x

′)

ϑt(x)pt(x, x′)
.

A3. - For all 0 ≤ t ≤ T − 1,
∣

∣ϑt|T /γt+1

∣

∣

∞
< ∞ and |rt|T |∞ < ∞. For all 0 ≤ t ≤ T

∣

∣ω̌t|T

∣

∣

∞
<∞, where

ω̌T |T (x) :=
gT (x)γT (x)

ρ̌T (x)
and for all 0 ≤ t < T, ω̌t|T (x, x

′) :=
γt(x)gt(x)q(x, x

′)

ϑt|T (x′)rt|T (x′, x)
.

- For all 1 ≤ t ≤ T − 1,
∣

∣

∣ϑ̃t|T ⊙ γ−1
t+1

∣

∣

∣

∞
< ∞,

∣

∣q ⊙ γ−1
t+1

∣

∣

∞
< ∞,

∣

∣ω̃t|T

∣

∣

∞
< ∞ and

∣

∣r̃t|T
∣

∣

∞
<∞ where

ω̃t|T (x, x
′;x′′) :=

q[2](x, x′;x′′)gs(x
′′)

ϑ̃t|T (x, x′′)r̃t|T (x, x′;x′′)
.

We first show that the weighted sample {(ωi
sω̌

j
t|T ), (ξ

i
s, ξ̌

j
t|T )}Ni,j=1 targets the product

distribution φχ,s ⊗ ψγ,t|T .

Theorem 1. Assume that A1, A2 and A3 hold for some T < ∞. Then, for all 0 ≤
s < t ≤ T , there exist 0 < Bs,t|T , Cs,t|T < ∞ such that for all N ≥ 1, ǫ > 0 and all
h ∈ Fb(X× X,X ⊗ X ),

P





∣

∣

∣

∣

∣

∣

N
∑

i,j=1

ωi
s

Ωs

ω̌j
t|T

Ω̌t|T

h(ξis, ξ̌
j
t|T )− φχ,s ⊗ ψγ,t|T [h]

∣

∣

∣

∣

∣

∣

> ǫ



 ≤ Bs,t|T e
−Cs,t|TNǫ2/ osc2(h) .

8
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Proof. The proof is postponed to Section 5.1.

We now study the weighted sample {(ω̃i
s|T , ξ̃

ℓ
s|T )}Nℓ=1 produced by the TwoFiltfwt algo-

rithm of Fearnhead, Wyncoll and Tawn [12] defined in (11) and (12) and targeting the
marginal smoothing distribution φχ,s|T .

Theorem 2 (deviation inequality for TwoFiltfwt of [12]). Assume that A1, A2 and A3 hold
for some T < ∞. Then, for all s < T , there exist 0 < Bs|T , Cs|T < ∞ such that for all
N ≥ 1, ε > 0 and all h ∈ Fb(X,X ),

P

(∣

∣

∣

∣

∣

N
∑

i=1

ω̃i
s|T

Ω̃s|T

h(ξ̃is|T )− φχ,s|T [h]

∣

∣

∣

∣

∣

> ǫ

)

≤ Bs|T e
−Cs|TNǫ2/ osc2(h) .

Proof. The proof is postponed to Section 5.2.

Using Theorem 1 and Lemma 7, we may derive an exponential inequality for the weighted
samples {(ξis, ω̃i,f

s|T )}Ni=1 and {(ξ̌is|T , ω̃
i,b
s|T )}Ni=1 produced by the TwoFiltbdm algorithm of [1],

where ω̃i,f
s|T and ω̃i,b

s|T are defined in (13) and (14). Therefore, both the forward and the

backward particle approximations of the smoothing distribution converge to the marginal
smoothing distribution, and these two approximations satisfy an exponential inequality.

Theorem 3 (deviation inequality for the TwoFiltbdm algorithm of [1]). Assume that A1, A2
and A3 hold for some T <∞. Then, for all 1 ≤ s ≤ T − 1, there exist 0 < Bs|T , Cs|T <∞
such that for all N ≥ 1, ε > 0 and all h ∈ Fb(X,X ),

P

(∣

∣

∣

∣

∣

N
∑

i=1

ω̃i,f
s|T

Ω̃f
s|T

h(ξis)− φχ,s|T [h]

∣

∣

∣

∣

∣

> ǫ

)

≤ Bs|T e
−Cs|TNǫ2/ osc2(h) , (19)

P

(∣

∣

∣

∣

∣

N
∑

i=1

ω̃i,b
s|T

Ω̃b
s|T

h(ξ̌is|T )− φχ,s|T [h]

∣

∣

∣

∣

∣

> ǫ

)

≤ Bs|T e
−Cs|TNǫ2/ osc2(h) . (20)

Proof. The proof is postponed to Section 5.3.

Remark 1. Following [23, 6, 11], time uniform exponential inequalities for the two-filter
approximations of the marginal smoothing distributions may be obtained using strong mixing
assumptions which are standard in the SMC literature:

H1. There exist 0 < σ− < σ+ < ∞ and c− > 0 such that for all x, x′ ∈ X, σ− ≤ q(x, x′) ≤
σ+ and for all t ≥ 0,

∫

χ(dx0)g0(x0) ≥ c− and inf
x∈X

∫

Q(x, dx′)gt(x
′) ≥ c− .

H2. There exist 0 < γ− < γ+ < ∞ and č− > 0 such that for all x ∈ X and all t ≥ 0,
γ− ≤ γt(x) ≤ γ+ and for all t ≥ 0,

∫

γT (xT )gT (xT )dxT ≥ č− and inf
x∈X

∫

γt(xt)gt(xt)q(xt, x)γ
−1
t+1(x)dxt ≥ č− .

9
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(i) If A1 and A2 hold uniformly in T and if H1 holds, then, it is proved in [6] that
Proposition 8 holds with constants that are uniform in time : there exist 0 < B,C <∞
such that for all s ≥ 0, N > 0, ǫ > 0 and all h ∈ Fb(X,X ),

P

(∣

∣

∣

∣

∣

Ω−1
s

N
∑

i=1

ωi
sh(ξ

i
s)− φχ,s[h]

∣

∣

∣

∣

∣

≥ ǫ

)

≤ Be−CNǫ2/ osc(h)2 .

(ii) It can be shown following the exact same steps that if A1 and A3 hold uniformly in
T and if H1 and H2 hold then Proposition 9 holds with constants that are uniform
in time: there exist 0 < B,C < ∞ such that for all t ≥ 0, N ≥ 1, ǫ > 0, and all
h ∈ Fb(X,X ),

P

[∣

∣

∣

∣

∣

Ω̌−1
t|T

N
∑

i=1

ω̌i
t|Th(ξ̌

i
t|T )− ψγ,t|T [h]

∣

∣

∣

∣

∣

≥ ǫ

]

≤ Be−CNǫ2/ osc(h)2 .

(iii) Therefore, if A1, A2 and A3 hold uniformly in T and if H1 and H2 hold, then Theorem 1
holds with constants that are uniform in time. As a direct consequence, Theorems 2
and 3 hold also with constants that are uniform in time.

4 Asymptotic normality of the two-filter algorithms

We now establish CLT for the two-filter algorithms. Note first that under assumptions
A1, A2 and A3, for all 0 ≤ s, t ≤ T a CLT may be derived for the weighted samples
{(ξℓs, ωℓ

s)}Nℓ=1 and {(ξ̌it|T , ω̌i
t|T )}Ni=1 which target respectively the filtering distribution φχ,s

and the backward information filter ψγ,t|T . By Propositions 10 and 11, there exist Γχ,s and

Γ̌γ,t|T such that for any h ∈ Fb(X,X ),

N1/2
N
∑

i=1

ωi
s

Ωs

(

h(ξis)− φχ,s[h]
) D−→N→∞ N (0,Γχ,s [h− φχ,s[h]]) , (21)

N1/2
N
∑

j=1

ω̌j
t|T

Ω̌t|T

(

h(ξ̌jt|T )− ψγ,t|T [h]
)

D−→N→∞ N
(

0, Γ̌γ,t|T

[

h− ψγ,t|T [h]
])

. (22)

Theorem 4 establishes a CLT for the weighted sample {ωi
sω̌

j
t|T , (ξ

i
s, ξ̌

j
t|T )}Ni,j=1 which targets

the product distribution φχ,s⊗ψγ,t|T . As an important consequence, the asymptotic variance

of the weighted sample {ωi
sω̌

j
t|T , (ξ

i
s, ξ̌

j
t|T )}Ni,j=1 is the sum of two contributions, the first one

involves Γχ,s and the second one Γ̌γ,t|T . Intuitively, this may be explained by the fact that
the estimator φNχ,s⊗ψN

γ,t|T [h] is obtained by mixing two independent weighted samples which
suggests the following decomposition:

√
N

N
∑

i,j=1

ωi
s

Ωs

ω̌j
t|T

Ω̌t|T

h̃s,t(ξ
i
s, ξ̌

j
t|T ) =

√
N

N
∑

j=1

ω̌j
t|T

Ω̌t|T

φχ,s[h̃s,t(·, ξ̌jt|T )]

+
√
N

N
∑

i=1

ωi
s

Ωs
ψγ,t|T [h̃s,t(ξ

i
s, ·)] + EN

s,T |t(h̃s,t) ,

10
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where h̃s,t = h− φχ,s ⊗ ψγ,t|T [h] and

EN
s,T |t(h) :=

√
N

N
∑

i,j=1

ωi
s

Ωs

ω̌j
t|T

Ω̌t|T

{

h(ξis, ξ̌
j
t|T )− φχ,s[h(·, ξ̌jt|T )]− ψγ,t|T [h(ξ

i
s, ·)]

}

.

A CLT for the two independent first terms is obtained by (21) and (22). It remains then to
prove that EN

s,T |t(h) converges in probability to 0. However, this cannot be obtained directly
from the exponential deviation inequality derived in Theorem 1 and requires sharper controls
of the smoothing error (for instance nonasymptotic Lp-mean error bounds). Theorem 4
provides a direct proof following the asymptotic theory of weighted system of particles
developed in [7].

Theorem 4. Assume that A1, A2 and A3 hold for some T <∞. Then, for all 0 ≤ s < t ≤
T and all h ∈ Fb(X× X,X × X ),

√
N





N
∑

i,j=1

ωi
s

Ωs

ω̌j
t|T

Ω̌t|T

h(ξis, ξ̌
j
t|T )− φχ,s ⊗ ψγ,t|T [h]





D−→N→∞ N
(

0, Γ̃s,t|T

[

h− φχ,s ⊗ ψγ,t|T [h]
]

)

,

where Γ̃s,t|T [h] is defined by:

Γ̃s,t|T [h] := Γχ,s

[∫

ψγ,t|T (dxt)h(·, xt)
]

+ Γ̌γ,t|T

[∫

φχ,s(dxs)h(xs, ·)
]

, (23)

with Γχ,s and Γ̌γ,t|T are given in Proposition 10 and Proposition 11.

Proof. The proof is postponed to Section 5.4.

Define

σs := φχ,s−1 ⊗ ψγ,s+1|T

[∫

q[2](·, x)gs(x)dx ⊙ γ−1
s+1

]

,

Σs[h] := Γ̃s−1,s+1|T

[∫

q[2](·;x)gs(x)h(x)dx ⊙ γ−1
s+1

]

.

Theorem 5 provides a CLT for the TwoFiltfwt algorithm of [12]

Theorem 5 (CLT for the TwoFiltfwt algorithm of [12]). Assume that A1, A2 and A3 hold
for some T <∞. Then, for all 1 ≤ s ≤ T − 1 and all h ∈ Fb(X,X ),

√
N

(

N
∑

i=1

ω̃i
s|T

Ω̃s|T

h(ξ̃is|T )− φχ,s|T [h]

)

D−→N→∞ N
(

0,Υχ,s|T

[

h− φχ,s|T [h]
])

.

where

Υχ,s|T [h] = σ−2
s

{

Σs[h] + φχ,s−1 ⊗ ψγ,s+1|T

[

ϑ̃s|T ⊙ γ−1
s+1

]

× φχ,s−1 ⊗ ψγ,s+1|T

[∫

ω̃s|T (·;x)q[2](·, x)gs(x)h2(x)dx ⊙ γ−1
s+1

]}

. (24)

11
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Proof. The proof is postponed to Section 5.5.

The decompositions (27) and (28) together with Theorem 4 allow to prove a CLT form
the forward and the backward approximations of the marginal smoothing distribution. The-
orem 6 is a direct consequence of Proposition 11, Theorem 4 and Slutsky Lemma.

Theorem 6 (CLT for the TwoFiltbdm algorithm of [1]). Assume that A1, A2 and A3 hold
for some T <∞. Then, for all 1 ≤ s ≤ T − 1 and all h ∈ Fb(X,X ),

√
N

(

N
∑

i=1

ω̃i,f
s|T

Ω̃f
s|T

h(ξis)− φχ,s|T [h]

)

D−→N→∞ N
(

0,∆f
χ,s|T

[

h− φχ,s|T [h]
]

)

,

where

∆f
χ,s|T [h] := Γ̃s,s+1|T

[

H f
s

]

/{φχ,s ⊗ ψγ,s+1|T [q ⊙ γ−1
s+1]}2 ,

H f
s(x, x

′) := h(x)q(x, x′)γ−1
s+1(x

′) .

Similarly,

√
N

(

N
∑

i=1

ω̃i,b
s|T

Ω̃b
s|T

h(ξis)− φχ,s|T [h]

)

D−→N→∞ N
(

0,∆b
χ,s|T

[

h− φχ,s|T [h]
]

)

,

where

∆b
χ,s|T [h] := Γ̃s−1,s|T

[

Hb
s

]

/{φχ,s−1 ⊗ ψγ,s|T [q ⊙ γ−1
s ]}2 ,

Hb
s (x, x

′) := q(x, x′)γ−1
s (x′)h(x′) .

Note that σs and Σs[h] may be written as:

σs = φχ,s ⊗ ψγ,s+1|T

[

q ⊙ γ−1
s+1

]

× φχ,s−1

[
∫

q(·, x)gs(x)dx
]

and by Theorem 4,

Σs[h] = Γχ,s−1

[∫

q(·, x)gs(x)h1s+1(x)dx

]

+ φ2χ,s−1

[∫

q(·, x)gs(x)dx
]

Γ̌γ,s+1|T

[

h2s+1

]

,

with h1s+1(x) := h(x)ψγ,s+1|T [q(x, ·)γ−1
s+1] and h2s+1(x) := γ−1

s+1(x)φχ,s[h(·)q(·, x)]. In the

case where r̃s|T (xs, xs+1;xs) = ps(xs−1, xs) in (15) and ϑ̃s|T (x, x
′) = ϑs(x)ϑs|T (x

′), the
smoothing distribution approximation given by the TwoFiltfwt algorithm is obtained by
reweighting the particles obtained in the forward filtering pass and Υχ,s|T [h] may be com-

pared to ∆f
χ,s|T [h] as both approximations of φχ,s|T [h] are based on the same particles

(associated with different importance weights). In this case, the two last terms in (24) are
easily interpreted in the case ϑs|T = γs+1:

φχ,s−1 ⊗ ψγ,s+1|T

[

ϑ̃s|T ⊙ γ−1
s+1

]

= φχ,s−1[ϑs]ψγ,s+1|T [ϑs|Tγ
−1
s+1] = φχ,s−1[ϑs]

12
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and by Jensen’s inequality,

φχ,s−1 ⊗ ψγ,s+1|T

[
∫

ω̃s|T (·;x)q[2](·, x)gs(x)h2(x)dx ⊙ γ−1
s+1

]

=

∫

φχ,s−1(dxs−1)ωs(xs−1, x)gs(x)q(xs−1, x)ψγ,s+1|T [q
2(x, ·)γ−2

s+1]h
2(x)dx ,

≥
∫

φχ,s−1(dxs−1)ωs(xs−1, x)gs(x)q(xs−1, x)(h
1
s+1(x))

2dx .

Therefore, by Proposition 11 and Theorem 6

Υχ,s|T [h] ≥ Γχ,s

[

h1s+1

]

+ Γ̌γ,s+1|T

[

h2s+1

]

(

φχ,s ⊗ ψγ,s+1|T

[

q ⊙ γ−1
s+1

])2 = ∆f
χ,s|T [h] ,

where the last inequality comes from Theorem 4. The same inequality holds for ∆b
χ,s|T [h]

when r̃s|T (xs−1, xs+1;xs) = rs|T (xs+1, xs) in (15).

Remark 2. Under the strong mixing assumptions H1 and H2, time uniform bounds for the
asymptotic variances of the two-filter approximations of the marginal smoothing distribu-
tions may be obtained.

(i) If A1 and A2 hold uniformly in T and if H1 holds, then it is proved in [6] that there
exists C > 0 such that for all s ≥ 0 and all h ∈ Fb(X,X ), the asymptotic variance
Γχ,s [h] defined in Proposition 10 satisfies:

Γχ,s [h] ≤ C |h|2∞ .

(ii) Following the same steps, if A1 and A3 hold uniformly in T and if H1 and H2 hold,
there exists C > 0 such that for all 0 ≤ t ≤ T and all h ∈ Fb(X,X ), the asymptotic
variance Γ̌t|T [h] defined in Proposition 11 satisfies:

Γ̌γ,t|T [h] ≤ C |h|2∞ .

(iii) As a consequence, if A1, A2 and A3 hold uniformly in T and if H1 and H2 hold, the
asymptotic variances Γ̃s,t|T [h], ∆f

χ,s|T [h], ∆b
χ,s|T [h] and Υχ,s|T [h] defined in Theo-

rem 4, Theorem 5 and Theorem 6 are all uniformly bounded.

5 Proofs

5.1 Proof of Theorem 1

Define GN
t|T := σ(ξ̌jt|T , ω̌

j
t|T , 1 ≤ j ≤ N) and

ft|T (x) := Ω̌−1
t|T

N
∑

j=1

ω̌j
t|Th(x, ξ̌

j
t|T )

13
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whose oscillation is bounded by osc (h). By the exponential inequality for the auxiliary
particle filter (Proposition 8), there exist constants Bs and Cs such that

P





∣

∣

∣

∣

∣

∣

N
∑

i,j=1

ωi
s

Ωs

ω̌j
t|T

Ω̌t|T

h(ξis, ξ̌
j
t|T )−

N
∑

j=1

ω̌j
t|T

Ω̌t|T

∫

φχ,s(dxs)h(xs, ξ̌
j
t|T )

∣

∣

∣

∣

∣

∣

> ǫ





= E

[

P

(∣

∣

∣

∣

∣

N
∑

i=1

ωi
s

Ωs
ft|T (ξ

i
s)− φχ,s(ft|T )

∣

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

∣

GN
t|T

)]

≤ Bse
−CsNǫ2/ osc2(h) . (25)

Since the oscillation of the function x 7→
∫

φχ,s(dxs)h(xs, x) is bounded by osc (h), by
Proposition 9 there exist constants Bt|T and Ct|T such that

P





∣

∣

∣

∣

∣

∣

N
∑

j=1

ω̌j
t|T

Ω̌t|T

∫

φχ,s(dxs)h(xs, ξ̌
j
t|T )− φχ,s ⊗ ψγ,t|T [h]

∣

∣

∣

∣

∣

∣

> ǫ





≤ Bt|T e
−Ct|TNǫ2/ osc2(h) , (26)

which concludes the proof.

5.2 Proof of Theorem 2

Define h̃s|T := h− φχ,s|T [h]. Lemma 7 is used with

aN := N−1
N
∑

i=1

ω̃i
s|T h̃s|T (ξ̃

i
s|T ) , bN := N−1Ω̃s|T ,

b :=
φχ,s ⊗ ψγ,s+1|T

[∫

q[2](·;xs)gs(xs)dxs ⊙ γ−1
s+1

]

φχ,s ⊗ ψγ,s+1|T

[

ϑ̃s|T ⊙ γ−1
s+1

] .

Lemma 7-(i) is satisfied using β := b and |aN |/|bN | ≤ osc (h). To prove Lemma 7-(ii) for
aN , note that Hoeffding inequality implies that, for any ǫ > 0,

P

(∣

∣

∣aN − E

[

ω̃1
s|T h̃s|T (ξ̃

1
s|T )

∣

∣

∣GN
s,T

]∣

∣

∣ ≥ ǫ
∣

∣

∣GN
s,T

)

≤ 2 exp

{

− Nǫ2

8
∣

∣ω̃s|T

∣

∣

2

∞
osc2(h)

}

,

where GN
s,T := GN,+

s−1 ∨ GN,−
s+1,T and

GN,+
s := σ

{

{(ωi
u, ξ

i
u)}Ni=1, u = 1, . . . , s− 1

}

,

GN,−
s,T := σ

{

{(ω̌i
u|T , ξ̌

i
u|T )}Ni=1, u = s+ 1, . . . , T

}

.

On the other hand, for all ℓ ∈ {1, . . . , N},

E

[

ω̃ℓ
s|T h̃s|T (ξ̃

ℓ
s|T )

∣

∣

∣
GN
s,T

]

=

∑N
i,j=1 ω

i
s−1ω̌

j
s+1|Tγ

−1
s+1(ξ̌

j
s+1|T )

∫

q[2](ξis−1, ξ̌
j
s+1|T ;xs)gs(xs)h̃s|T (xs)dxs

∑N
i,j=1 ω

i
s−1ω̌

j
s+1|Tγ

−1
s+1(ξ̌

j
s+1|T )ϑ̃s|T (ξ

i
s−1, ξ̌

j
s+1|T )

.

14
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The proof of Lemma 7-(ii) is then completed by applying Lemma 7 to a′N , b′N and b′ defined
by:

a′N :=

N
∑

i,j=1

ωi
s−1 ω̌

j
s+1|T

Ωs−1 Ω̌s+1|T

γ−1
s+1(ξ̌

j
s+1|T )

∫

q[2](ξis−1, ξ̌
j
s+1|T ;xs)gs(xs)h̃s|T (xs)dxs ,

b′N :=

N
∑

i,j=1

ωi
s−1 ω̌

j
s+1|T

Ωs−1 Ω̌s+1|T

γ−1
s+1(ξ̌

j
s+1|T )ϑ̃s|T (ξ

i
s−1, ξ̌

j
s+1|T ) ,

b′ := φχ,s ⊗ ψγ,s+1|T [ϑ̃s|T ⊙ γ−1
s+1] .

Note first that Lemma 7-(i) is satisfied using β′ := b′ and |a′N/b′N | ≤
∣

∣ω̃s|T

∣

∣

∞
osc (h). In

addition, by (6),
φχ,s ⊗ ψγ,s+1|T [h̄s|T ] ∝ φχ,s|T [h̃s|T ] = 0 ,

where

h̄s|T (x, x
′) :=

∫

q[2](·;xs)gs(xs)h̃s|T (xs)dxs ⊙ γ−1
s+1(x, x

′) .

Theorem 1 ensures that Lemma 7-(ii) is satisfied for a′N as

osc
(

h̄s|T
)

≤ 2
∣

∣

∣ϑ̃s|T ⊙ γ−1
s+1

∣

∣

∣

∞

∣

∣ω̃s|T

∣

∣

∞
osc (h) .

Similarly, Theorem 1 yields:

P (|b′N − b′| ≥ ǫ) ≤ Bse
−CsNǫ2/ osc2(ϑ̃s|T⊙γ−1

s+1) ,

which proves Lemma 7-(iii) for b′N and concludes the proof of Lemma 7-(ii) for aN . The
proof of Lemma 7-(iii) for bN is along the same lines.

5.3 Proof of Theorem 3

Define

hs(x, x
′) := γ−1

s+1(x
′)h(x)q(x, x′) and hs(x, x

′) := γ−1
s (x′)q(x, x′)h(x′) .

It follows from the definition of the forward and backward smoothing weights (13) and (14)
that,

N
∑

i=1

ω̃i,f
s|T

Ω̃f
s|T

h(ξis) =
Ω−1

s Ω̌−1
s+1|T

∑N
i,j=1 ω

i
sω̌

j
s+1|Ths(ξ

i
s, ξ̌

j
s+1|T )

Ω−1
s Ω̌−1

s+1|T

∑N
i,j=1 ω

i
sω̌

j
s+1|T1s(ξis, ξ̌

j
s+1|T )

, (27)

N
∑

i=1

ω̃i,b
s|T

Ω̃b
s|T

h(ξ̌is|T ) =
Ω−1

s−1Ω̌
−1
s|T

∑N
i,j=1 ω

i
s−1ω̌

j
s|Ths(ξ

i
s−1, ξ̌

j
s|T )

Ω−1
s−1Ω̌

−1
s|T

∑N
i,j=1 ω

i
s−1ω̌

j
s|T1s(ξ

i
s−1, ξ̌

j
s|T )

. (28)

On the other hand, from the definition of the filtering distribution and of the backward
information filter

φχ,s|T [h] = φχ,s ⊗ ψs+1|T

[

hs
]

/φχ,s ⊗ ψs+1|T

[

1s

]

,

φχ,s|T [h] = φχ,s−1 ⊗ ψs|T [hs] /φχ,s−1 ⊗ ψs|T [1s] .
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Then, (19) is established by writing:

N
∑

i=1

ω̃i,f
s|T

Ω̃f
s|T

h(ξis)− φχ,s|T [h] = ai,fN /b
i,f
N ,

where

ai,fN :=

N
∑

i,j=1

ωi
sω̌

j
s+1|T

ΩsΩ̌s+1|T

1s(ξ
i
s, ξ̌

j
s+1|T )

{

hs(ξ
i
s, ξ̌

j
s+1|T )

1s(ξis, ξ̌
j
s+1|T )

− φχ,s ⊗ ψs+1|T

[

hs
]

φχ,s ⊗ ψs+1|T

[

1s

]

}

,

bi,fN :=
N
∑

i,j=1

ωi
sω̌

j
s+1|T

ΩsΩ̌s+1|T

1s(ξ
i
s, ξ̌

j
s+1|T ) , b := φχ,s ⊗ ψs+1|T

[

1s

]

.

Lemma 7 may then be applied with β := b. Note that

hs(ξ
i
s, ξ̌

j
s+1|T )

1s(ξis, ξ̌
j
s+1|T )

− φχ,s ⊗ ψs+1|T

[

hs
]

φχ,s ⊗ ψs+1|T

[

1s

] = h(ξis)− φχ,s|T [h] ,

which ensures that
∣

∣

∣a
i,f
N /b

i,f
N

∣

∣

∣ ≤ osc (h) and that Lemma 7-(i) is satisfied. By

osc
(

1s

)

= osc
(

q ⊙ γ−1
s+1

)

,

osc
(

1s ⊙
{

h(ξis)− φχ,s|T [h]
})

≤ 2
∣

∣q ⊙ γ−1
s+1

∣

∣

∞
osc (h) ,

Theorem 1 shows that Lemma 7-(ii) and (iii) are satisfied. The proof of (20) follows the
exact same lines.

5.4 Proof of Theorem 4

For all 1 ≤ t ≤ T , the result is shown by induction on s where s ∈ {0, . . . , t − 1}. Write
h̃0,t := h− φχ,0 ⊗ ψγ,t|T [h] and set, for i ∈ {1, . . . , N},

UN,i := N−1/2ωi
0

N
∑

j=1

ω̌j
t|T

Ω̌t|T

h̃0,t(ξ
i
0, ξ̌

j
t|T ) .

Then,

√
N





N
∑

i,j=1

ωi
0

Ω0

ω̌j
t|T

Ω̌t|T

h(ξi0, ξ̌
j
t|T )− φχ,0 ⊗ ψγ,t|T [h]



 = (Ω0/N)
−1

N
∑

i=1

UN,i .

Define GN,i := σ
(

{ξℓ0}ℓ≤i, {ξ̌ju|T }t≤u≤T , j = 1, . . . , N
)

. Then,

N
∑

i=1

E [UN,i | GN,i−1] = N1/2
N
∑

j=1

ω̌j
t|T

Ω̌t|T

ρ0

[

ω0h̃0,t(·, ξ̌jt|T )
]

.
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As
∫

ψγ,t|T (dxt)ρ0(dx0)ω0(x0)h̃0,t(x0, xt) = 0, by the CLT for the backward information
filter (Proposition 11),

N
∑

i=1

E [UN,i | GN,i−1]
D−→N→∞ N

(

0, Γ̌t|T [H0,t]
)

,

where H0,t(xt) :=
∫

ρ0(dx0)ω0(x0)h̃0,t(x0, xt). We now prove that

E

[

exp

(

iu

N
∑

i=1

{UN,i − E [UN,i | GN,i−1]}
)∣

∣

∣

∣

∣

GN,0

]

P−→N→∞ exp

(

−
u2σ2

0,t|T [h]

2

)

,

where

σ2
0,t|T [h] :=

∫

ρ0(dx)ω
2
0(x)ψ

2
γ,t|T [h̃0,t(x, ·)] .

This is done by applying [7, Theorem A.3] which requires to show that

N
∑

i=1

(

E
[

U2
N,i

∣

∣GN,i−1

]

− E [UN,i | GN,i−1]
2
)

P−→N→∞ σ2
0,t|T [h] , (29)

N
∑

i=1

E
[

U2
N,i1{|UN,i| > ε}

∣

∣GN,i−1

] P−→N→∞ 0 . (30)

By Proposition 9,

N
∑

i=1

E [UN,i | GN,i−1]
2
=





N
∑

j=1

ω̌j
t|T

Ω̌t|T

H0,t(ξ̌
j
t|T )





2

P−→N→∞ ψ2
γ,t|T [H0,t] = 0 .

On the other hand,

E

[∣

∣

∣

∣

∣

N
∑

i=1

E
[

U2
N,i

∣

∣GN,i−1

]

− σ2
0,t|T [h]

∣

∣

∣

∣

∣

]

=

∫

ρ0(dx)ω
2
0(x)E







∣

∣

∣

∣

∣

∣

∣





N
∑

j=1

ω̌j
t|T

Ω̌t|T

h̃0,t(x, ξ̌
j
t|T )





2

− ψ2
γ,t|T [h̃0,t(x, ·)]

∣

∣

∣

∣

∣

∣

∣






,

≤ 2 osc (h)

∫

ρ0(dx)ω
2
0(x)E [AN (x)] ,

where

AN (x) :=

∣

∣

∣

∣

∣

∣

N
∑

j=1

ω̌j
t|T

Ω̌t|T

h̃0,t(x, ξ̌
j
t|T )− ψγ,t|T [h̃0,t(x, ·)]

∣

∣

∣

∣

∣

∣

.

By Proposition 9, there exist Bt|T and Ct|T such that for all x ∈ X,

E [AN (x)] =

∫ ∞

0

P (AN (x) ≥ ε) dε

≤ Bt|T

∫ ∞

0

e−Ct|TNǫ2/ osc(h)2dε ≤ Dt|T osc (h)N−1/2 , (31)
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which shows that
N
∑

i=1

E
[

U2
N,i

∣

∣GN,i−1

] P−→N→∞ σ2
0,t|T [h]

and concludes the proof of (29). For all N ≥ 1,

{|UN,i| ≥ ε} ⊆
{

ωi
0 ≥ εN1/2 osc (h)

−1
}

,

which implies that

N
∑

i=1

E
[

U2
N,i1{|UN,i| ≥ ε}

∣

∣GN,i−1

]

≤ osc (h)
2
∫

ρ0(dx)ω
2
0(x)1

{

ω0(x) ≥ N1/2 osc (h)
−1
}

and (30) follows by letting N → ∞. Note that

N−1Ω0
P−→N→∞

∫

χ(dx0)g0(x0) ,

which shows (23) since

Γ̃0,t|T

[

h̃0,t

]

=

(
∫

χ(dx0)g0(x0)

)−2

×
(

Γ̌γ,t|T [H0,t] +

∫

ρ0(dx)ω
2
0(x)ψ

2
γ,t|T [h̃0,t(x, ·)]

)

,

= Γ̌γ,t|T

[∫

φχ,0(dx0)h̃0,t(x0, ·)
]

+ Γχ,0

[∫

ψγ,t|T (dxt)h̃0,t(·, xt)
]

.

Assume now that the result holds for some s− 1. Write h̃s,t := h− φχ,s ⊗ ψγ,t|T [h] and set,
for i ∈ {1, . . . , N},

UN,i := N−1/2ωi
s

N
∑

j=1

ω̌j
t|T

Ω̌t|T

h̃s,t(ξ
i
s, ξ̌

j
t|T ) .

Then,

√
N





N
∑

i,j=1

ωi
s

Ωs

ω̌j
t|T

Ω̌t|T

h(ξis, ξ̌
j
t|T )− φχ,0 ⊗ ψγ,t|T [h]



 = (Ωs/N)
−1

N
∑

i=1

UN,i .

Define, for 1 ≤ i ≤ N ,

GN,i := σ

(

{

ξjs
}i

j=1
,
{

ξℓu
}N

ℓ=1
,
{

ξ̌jv|T

}N

j=1
, 1 ≤ u < s, t ≤ v ≤ T

)

.

Then,

N
∑

i=1

E [UN,i | GN,i−1] =
(

φNχ,s−1[ϑs]
)−1

N1/2
N
∑

i,j=1

ωi
s−1

Ωs−1

ω̌j
t|T

Ω̌t|T

Hs(ξ
i
s−1, ξ̌

j
t|T ) ,

where

Hs,t(xs−1, xt) :=

∫

q(xs−1, x)gs(x)h̃s,t(x, xt)dx . (32)

18
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Since φχ,s−1 ⊗ ψγ,t|T [Hs,t] = 0, by the induction assumption,

N
∑

i=1

E [UN,i | GN,i−1]
D−→N→∞ N

(

0, Γ̃s−1,t|T [Hs,t] /φ
2
χ,s−1[ϑs]

)

.

We will now prove that

E

[

exp

(

iu

N
∑

i=1

{UN,i − E [UN,i | GN,i−1]}
)∣

∣

∣

∣

∣

GN,0

]

P−→N→∞ exp

(

−
u2σ2

s,t|T [h]

2

)

,

where

σ2
s,t|T [h] := φχ,s−1[ϑs]

−1φχ,s−1 [fs−1,t] ,

fs−1,t(xs−1) :=

∫

q(xs−1, xs)ωs(xs−1, xs)ψ
2
γ,t|T [h̃s,t(xs, ·)]gs(xs)dxs .

This is done using again [7, Theorem A.3] and proving that (29) and (30) hold with σ2
0,t|T [h]

replaced by σ2
s,t|T [h]. Note that

N
∑

i=1

E [UN,i | GN,i−1]
2
=





N
∑

i,j=1

ωi
s−1

Ωs−1

ω̌j
t|T

Ω̌t|T

Hs,t(ξ
i
s−1, ξ̌

j
t|T )





2

/(φNχ,s−1[ϑs])
2 ,

which converges in probability to 0 by Theorem 1 and the fact that φχ,s−1⊗ψγ,t|T [Hs,t] = 0.
In addition,

N
∑

i=1

E
[

U2
N,i

∣

∣GN,i−1

]

=
(

φNχ,s−1[ϑs]
)−1

N
∑

i=1

ωi
s−1

Ωs−1

∫

q2(ξis−1, xs)gs(xs)

ϑs(ξis−1)ps(ξ
i
s−1, xs)

×
(

ψN
γ,t|T [h̃s,t(xs, ·)]

)2

gs(xs)dxs ,

=
(

φNχ,s−1[ϑs]
)−1

N
∑

i=1

ωi
s−1

Ωs−1

∫

ωs(ξ
i
s−1, xs)q(ξ

i
s−1, xs)

×
(

ψN
γ,t|T [h̃s,t(xs, ·)]

)2

gs(xs)dxs ,

=
(

φNχ,s−1[ϑs]
)−1

φNχ,s−1

[

fN
s−1,t

]

,

where

fN
s−1,t(xs−1) :=

∫

q(xs−1, xs)ωs(xs−1, xs)
(

ψN
γ,t|T [h̃s,t(xs, ·)]

)2

gs(xs)dxs .

First note that φNχ,s−1[ϑs]
P−→N→∞ φχ,s−1[ϑs] and write

∣

∣φNχ,s−1

[

fN
s−1,t

]

− φχ,s−1 [fs−1,t]
∣

∣ ≤ AN
s,t +BN

s,t ,

where AN
s,t := |φNχ,s−1[f

N
s−1,t] − φNχ,s−1[fs−1,t]| and BN

s,t := |φNχ,s−1[fs−1,t] − φχ,s−1[fs−1,t]|.
As (ωi

s−1, ξ
i
s−1)

N
i=1 and (ω̌j

t|T , ξ̌
j
t|T )

N
j=1 are independent,

E
[

AN
s,t

]

≤ |ωs|∞ |gs|∞ E

[

N
∑

i=1

ωi
s−1

Ωs−1

∫

q(ξis−1, xs)E
[∣

∣

∣∆ψN
γ,t|T [h̃s,t](xs)

∣

∣

∣

]

dxs

]

,
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where ∆ψN
γ,t|T [h̃s,t](xs) := (ψN

γ,t|T [h̃s,t(xs, ·)])2 −ψ2
γ,t|T [h̃s,t(xs, ·)]. Following the same steps

as in (31), there exists Dt|T such that

E

[∣

∣

∣∆ψN
γ,t|T [h̃s,t](xs)

∣

∣

∣

]

≤ 2Dt|T osc (h)
2
/
√
N ,

which yields

E
[

AN
s,t

]

≤ 2 osc (h)
2 |ωs|∞ |gs|∞DT |tE

[

N
∑

i=1

ωi
s−1

Ωs−1

∫

q(ξis−1, xs)dxs

]

/
√
N ,

≤ 2 osc (h)2 |ωs|∞ |gs|∞DT |t/
√
N

and E
[

AN
s,t

]

−→N→∞ 0. On the other hand, as osc (fs−1,t) ≤ osc (h)
2 |ωs|∞ |gs|∞, BN

s,t
P−→N→∞

0 by Proposition 8. Finally, the tightness condition (30) holds since |UN,i| ≤ N−1/2 |ωs|∞ osc (h).
Note that,

N−1Ωs
P−→N→∞ φχ,s−1

[∫

q(·, xs)gs(xs)dxs
]

/φχ,s−1[ϑs] .

Therefore (23) holds with

Γ̃s,t|T

[

h̃s,t

]

=
φ2χ,s−1[ϑs]

φ2χ,s−1

[∫

q(·, xs)gs(xs)dxs
]

{

Γ̃s−1,t|T [Hs,t]

φ2χ,s−1[ϑs]
+
φχ,s−1 [fs−1,t]

φχ,s−1[ϑs]

}

,

=
Γ̃s−1,t|T [Hs,t]

φ2χ,s−1

[∫

q(·, xs)gs(xs)dxs
] +

φχ,s−1 [fs−1,t]φχ,s−1[ϑs]

φ2χ,s−1

[∫

q(·, xs)gs(xs)dxs
] ,

where, by induction assumption,

Γ̃s−1,t|T [Hs,t] = Γχ,s−1

[∫

ψγ,t|T (dxt)Hs,t(·, xt)
]

+ Γ̌γ,t|T

[∫

φχ,s−1(dxs−1)Hs,t(xs−1, ·)
]

.

The proof is completed upon noting that

∫

φχ,s−1(dxs−1)Hs(xs−1, ·)
φχ,s−1

[∫

q(·, xs)gs(xs)dxs
] =

∫

φχ,s−1(dxs−1)q(xs−1, xs)gs(xs)h̃s,t(xs, ·)dxs
φχ,s−1

[∫

q(·, xs)gs(xs)dxs
] ,

=

∫

φχ,s(dxs)h̃s,t(xs, ·)

and, by Proposition 10,

Γχ,s−1

[

∫

ψγ,t|T (dxt)Hs,t(·, xt)
φχ,s−1

[∫

q(·, xs)gs(xs)dxs
]

]

+
φχ,s−1 [fs−1,t]φχ,s−1[ϑs]

φ2χ,s−1

[∫

q(·, xs)gs(xs)dxs
]

= Γχ,s

[∫

ψγ,t|T (dxt)h̃s,t(·, xt)
]

.

20



Nguyen et al. Two-filter approximations of marginal smoothing distributions

5.5 Proof of Theorem 5

Write h̃s,T = h− φχ,s|T (h). Note that

√
N

N
∑

i=1

ω̃i
s|T

Ω̃s|T

h̃s,T (ξ̃
i
s|T ) =

(

Ω̃s|T /N
)−1 N

∑

i=1

UN,i ,

where UN,ℓ := N−1/2ω̃ℓ
s|T h̃s,T (ξ̃

ℓ
s|T ). Set, for i ∈ {1, . . . , N},

GN,i := σ
{

{(ω̃ℓ
s|T , ξ̃

ℓ
s|T )}iℓ=1 , {(ωℓ

u, ξ
ℓ
u)}Nℓ=1, u = 0, . . . , s− 1,

{(ω̌ℓ
v|T , ξ̌

ℓ
v|T )}Nℓ=1, v = s+ 1, . . . , T

}

.

By the proof of Theorem 2,

N−1Ω̃s|T
P−→N→∞

φχ,s−1 ⊗ ψs+1|T

[∫

q[2](·, x)gs(x)dx ⊙ γ−1
s+1

]

φχ,s−1 ⊗ ψs+1|T

[

ϑ̃s|T ⊙ γ−1
s+1

] .

The proof therefore amounts to establish a CLT for
∑N

ℓ=1 UN,ℓ and then to use Slutsky

Lemma. The limit distribution of
∑N

ℓ=1UN,ℓ is again obtained using the invariance principle
for triangular array of dependent random variables derived in [7]. As

N
∑

i=1

E [UN,i | GN,i−1]

=
√
N

∑N
i,j=1 ω

i
s−1ω̌

j
s+1|T

∫

q[2](·;xs)gs(xs)h̃s,T (xs)dxs ⊙ γ−1
s+1(ξ

i
s−1, ξ̌

j
s+1|T )

∑N
i,j=1 ω

i
s−1ω̌

j
s+1|Tγ

−1
s+1(ξ̌

j
s+1|T )ϑ̃s|T (ξ

i
s−1, ξ̌

j
s+1|T )

,

it follows from Theorems 1 and 4 that

N
∑

i=1

E [UN,i | GN,i−1]
P−→N→∞ N






0,

Σs[h̃s,T ]
(

φχ,s−1 ⊗ ψs+1|T [ϑ̃s|T ⊙ γ−1
s+1]

)2






.

Using that

φχ,s|T [h̃s,T ] =
φχ,s−1 ⊗ ψs+1|T

[

∫

q[2](·;x)gs(x)h̃s,T (x)dx
]

⊙ γ−1
s+1

φχ,s−1 ⊗ ψs+1|T

[∫

q[2](·;x)gs(x)dx
]

⊙ γ−1
s+1

= 0 ,

Theorem 1 yields

N
∑

i=1

E [UN,i | GN,i−1]
2
=

(∑N
i,j=1 ω

i
s−1ω̌

j
s+1|Tγ

−1
s+1(ξ̌

j
s+1|T )

∫

q[2](ξis−1, ξ̌
j
s+1|T ;x)gs(x)h̃s,T (x)

∑N
i,j=1 ω

i
s−1ω̌

j
s+1|Tγ

−1
s+1(ξ̌

j
s+1|T )ϑ̃s|T (ξ

i
s−1, ξ̌

j
s+1|T )

)2

P−→N→∞





φχ,s−1 ⊗ ψs+1|T

[

∫

q[2](·;x)gs(x)h̃s,T (x)dx ⊙ γ−1
s+1

]

φχ,s−1 ⊗ ψs+1|T [ϑ̃s|T ⊙ γ−1
s+1]





2

= 0 .
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Similarly, using again Theorem 1,

N
∑

i=1

E
[

U2
N,i

∣

∣GN,i−1

] P−→N→∞

φχ,s−1 ⊗ ψs+1|T

[

∫

ω̃s|T (·;x)q[2](·;x)gs(x)h̃2s,T (x)dx ⊙ γ−1
s+1

]

φχ,s−1 ⊗ ψs+1|T [ϑ̃s|T ⊙ γ−1
s+1]

.

Since under A2, |UN,i| ≤ N−1/2
∣

∣ω̃s|T

∣

∣

∞
osc (h), for any ǫ > 0,

N
∑

i=1

E
[

U2
N,i1{|UN,i| ≥ ǫ}

∣

∣GN,i−1

] P−→N→∞ 0 ,

which concludes the proof.
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A Exponential deviation inequalities for the forward fil-

ter and the backward information filter

The following result is proved in [6].

Lemma 7. Assume that aN , bN , and b are random variables defined on the same probability
space such that there exist positive constants β, B, C, and M satisfying

(i) |aN/bN | ≤M , P-a.s. and b ≥ β, P-a.s.,

(ii) For all ǫ > 0 and all N ≥ 1, P [|aN | > ǫ] ≤ Be−CN(ǫ/M)2 ,

(iii) For all ǫ > 0 and all N ≥ 1, P [|bN − b| > ǫ] ≤ Be−CNǫ2 .

Then, for all ε > 0,

P

[∣

∣

∣

∣

aN
bN

∣

∣

∣

∣

> ǫ

]

≤ B exp

{

−CN
(

ǫβ

2M

)2
}

.

Proposition 8 provides an exponential deviation inequality for the forward filter and is
proved in [6].

Proposition 8. Assume that A1 and A2 hold for some T > 0. Then, for all s ≥ 1, there
exist 0 < Bs, Cs <∞ such that for all N ≥ 1, ǫ > 0, and all h ∈ Fb(X,X ),

P

(∣

∣

∣

∣

∣

Ω−1
s

N
∑

i=1

ωi
sh(ξ

i
s)− φχ,s[h]

∣

∣

∣

∣

∣

≥ ǫ

)

≤ Bse
−CsNǫ2/ osc(h)2 .

Proposition 9 provides an exponential inequality for the backward information filter
ψγ,t|T and its unnormalized approximation. Its proof is similar to the proof [6, Theorem 5]
and is omitted.

Proposition 9. Assume that A1 and A3 hold for some T > 0. Then, for all 0 ≤ t ≤ T ,
there exist 0 < Bt|T , Ct|T <∞ such that for all N ≥ 1, ǫ > 0, and all h ∈ Fb(X,X ),

P

[∣

∣

∣

∣

∣

Ω̌−1
t|T

N
∑

i=1

ω̌i
t|Th(ξ̌

i
t|T )− ψγ,t|T [h]

∣

∣

∣

∣

∣

≥ ǫ

]

≤ Bt|T e
−Ct|TNǫ2/ osc(h)2 .

B Asymptotic normality of the forward filter and the

backward information filter

Proposition 10 provides a CLT for the weighted particles {(ωi
s, ξ

i
s)}Ni=1 approximating the

filtering distribution φχ,s and is proved for instance in [4].

Proposition 10. Assume that A1 and A2 hold for some T > 0. Then, for all 0 ≤ s ≤ T
and all h ∈ Fb(X,X ),

N1/2

(

N
∑

i=1

ωi
s

Ωs
h(ξis)− φχ,s[h]

)

D−→N→∞ N (0,Γχ,s [h− φχ,s[h]]) ,
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where

Γχ,0 [h] :=

∫

ρ0(dx0)ω
2
0(x0)h

2(x0)
(∫

ρ0(dx0)ω0(x0)
)2 and for all s ≥ 1 ,

Γχ,s [h] :=
Γχ,s−1

[∫

q(·, xs)gs(xs)h(xs)dxs
]

φ2χ,s−1

[∫

q(·, xs)gs(xs)dxs
]

+
φχ,s−1

[∫

ωs(·, xs)q(·, xs)gs(xs)h2(xs)dxs
]

φχ,s−1[ϑs]

φ2χ,s−1

[∫

q(·, xs)gs(xs)dxs
] .

Proposition 11 provides a CLT for the weighted particles {(ω̌j
t|T , ξ̌

j
t|T )}Nj=1 approximating

the backward information filter. Its proof follows the same lines as the proof of Proposition 10
and is omitted for brevity.

Proposition 11. Assume that A1 and A3 hold. Then, for all 0 ≤ t ≤ T and all h ∈
Fb(X,X ),

N1/2





N
∑

j=1

ω̌j
t|T

Ω̌t|T

h(ξ̌jt|T )− ψγ,t|T [h]





D−→N→∞ N
(

0, Γ̌γ,t|T

[

h− ψγ,t|T [h]
])

,

where

Γ̌γ,T |T [h] :=

∫

ρ̌T (dxT )ω̌
2
T |T (xT )h

2(xT )
(

∫

ρ̌T (dxT )ω̌T |T (xT )
)2 and for all t ≤ T − 1 ,

Γ̌γ,t|T [h] :=
Γ̌γ,t+1|T

[∫

γt(xt)gt(xt)q(xt, ·)γ−1
t+1(·)h(xt)dxt

]

ψ2
γ,t+1|T

[∫

γt(xt)gt(xt)q(xt, ·)γ−1
t+1(·)dxt

]

+
ψγ,t+1|T

[∫

ω̌t(xt, ·)q(xt, ·)gt(xt)γt(xt)γ−1
t+1(·)h2(xt)dxt

]

ψγ,t+1|T

[

ϑt|Tγ
−1
t+1

]

ψ2
γ,t+1|T

[∫

γt(xt)gt(xt)q(xt, ·)γ−1
t+1(·)dxt

] .
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