
HAL Id: hal-01319738
https://hal.science/hal-01319738

Preprint submitted on 22 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Viabilitree: A kd-tree Framework for Viability-based
Decision

Isabelle Alvarez, Romain Reuillon, Ricardo de Aldama

To cite this version:
Isabelle Alvarez, Romain Reuillon, Ricardo de Aldama. Viabilitree: A kd-tree Framework for
Viability-based Decision. 2016. �hal-01319738�

https://hal.science/hal-01319738
https://hal.archives-ouvertes.fr

Viabilitree: A kd-tree Framework for Viability-based
Decision

Isabelle Alvareza,b,∗, Romain Reuillonc, Ricardo de Aldamac

aIrstea, UR LISC Laboratoire d’ingénierie des systèmes complexes, Aubière, France
bUPMC Univ Paris 06, LIP6, Paris, France

cISC-PIF, Paris, France

Abstract

The mathematical viability theory offers concepts and methods that are suitable to
study the compatibility between a dynamical system described by a set of differential
equations and constraints in the state space. The result sets built during the viabil-
ity analysis can give very useful information regarding management issues in fields
where it is easier to discuss constraints than objective functions. However, computa-
tional problems arise very quickly with the number of state variables, and the practical
implementation of the method is difficult, although there exists a convergent numeri-
cal scheme and several approaches to bypass the computational problems. In order to
popularize the use of viability analysis we propose a framework in which the viability
sets are represented and approximated with particular kd-trees. The computation of
the viability kernel is seen as an active learning problem. We prove the convergence
of the algorithm and assess the approximation it produces for known problems with
analytical solution. This framework aims at simplifying the declaration of the viability
problem and provides useful methods to assist further use of viability sets produced by
the computation.

Keywords: Viability theory, kd-tree, decision support

1. Introduction

Mathematical Viability Theory, as stated by Aubin (1991), is a mathematical frame-
work designed to study the compatibility between evolutions of dynamical systems and
constraints in the state space. A viability problem is generally defined with a controlled
dynamical system S, (which may be a multi-valued map), a set of admissible controls
U , (which may depend on the state of the system) and a set of constraints, K, which is
a subset of the state space. The viability kernel viabS(K) is a subset of the constraints

∗Corresponding author
Email addresses: isabelle.alvarez@irstea.fr (Isabelle Alvarez),

romain.reuillon@iscpif.fr (Romain Reuillon), ricardo.de.aldama@gmail.com
(Ricardo de Aldama)

Preprint submitted to Elsevier May 22, 2016

set K that gathers all the states from which it is possible to maintain at least one evolu-
tion within K. Its capture basin gathers the states from which it is possible to reach the
viability kernel. More generally it is possible to compute the capture basin of a target
in the constraint set, as done for example by Tinka et al. (2009). The viability kernel
classifies the states into viable and not viable. Once the viability kernel is computed,
it is possible to use the information generated by the viability analysis. Viability anal-
ysis and the sets it produces (the viability kernel and its capture basin) can be used to
define, test and compare control strategies (Sabatier et al., 2015; Gourguet et al., 2015;
Andrès-Domenech et al., 2014; Rapaport et al., 2006), to simulate particular viable
evolutions or to optimize objective function inside the viability kernel or capture basin
(Sicard et al., 2012; Mesmoudi et al., 2010), to illustrate concepts related to sustain-
ability and trade-off (Martinet and Doyen, 2007; Hardy et al., 2013; Wei et al., 2013),
or concepts related to resilience, robustness and risk (Martin, 2004; Alvarez and Mar-
tin, 2011; Accatino et al., 2014; Rougé et al., 2013). Aubin et al. (2011) gives more
examples.

In some cases it is is possible to provide an analytical description of a viability ker-
nel (see the consumption model by Aubin (1991), the population model by Aubin and
Saint-Pierre (2007), and the bilingualism model by Bernard and Martin (2012)). But
generally it is necessary to compute approximations. The main algorithm for comput-
ing exact viability kernel was established by Saint-Pierre (1994), it proposes a numer-
ical scheme that approaches the viability kernel by a decreasing sequence of sets that
contain the viability kernel (possibly empty). This algorithm has been used as a basis
in numerous problems (Aubin et al., 2011)). It is a numerical scheme with proved con-
vergence towards the viability kernel in the most general conditions (infinite horizon).
However, it is difficult to operate since the problem dynamic is embedded in the algo-
rithm for convergence and efficiency reasons. It is also memory consuming since viable
states are represented on a regular grid. In the case of capture basin, several algorithms
are available, and in some cases it is possible to compute both an inner and outer ap-
proximation (Lhommeau et al., 2011). But for the computation of the viability kernel
with infinite horizon, there is still no bound of convergence. To bypass these difficul-
ties, other algorithms restrict their objective to the computation of an approximation
at a given horizon (as done by Maidens et al. (2013), with a very efficient Lagrangian
method for Linear models, or like Doyen and Lara (2010) with dynamic programming
in stochastic case) or the computation of a set of trajectories (as done by Bonneuil
(2006) with simulated annealing to generate trajectories near the boundary). An alter-
native to Saint-Pierre’s algorithm, using classification functions instead of the regular
grid, is proposed by Deffuant et al. (2007). When the classification function verifies
some specific conditions, the convergence towards the viability kernel is guaranteed.
Although very attractive, in particular to handle multidimensional control space, the
Support Vector Machine (SVM) functions used by Chapel and Deffuant (2011), don’t
fulfill the conditions of the convergence theorem.

Besides, since obtaining a viability kernel is a difficult and time consuming task,
it is often considered as a result in itself, and the potential information provided by
the viability kernel is not fully used. Moreover, there are only a few control strategies
available in the general case to govern the system in the viability kernel at each time
step, since it can be very difficult to prove that a particular choice of control builds an

2

evolution. These are mainly the heavy (or inertia) strategy by Aubin (1991) (which
consists in minimizing the norm of the control rate of change at each time step), and
the slow strategy by Falcone and Saint-Pierre (1987), which consists in minimizing
the norm of the control vector (at each time step). In practice both strategies are very
difficult to operate since the trajectories they produces can spend a lot of time on the
boundary of the viability kernel (Alvarez and Martin, 2011). Since the viability kernel
is approximated by its outside this is a robustness issue: Lying on the boundary of the
approximation can mean being outside the true viability kernel.

In any case the computation of the viability kernel can be seen as a preliminary step
in the study of the governance of an evolutionary system subjected to state constraints.
Once the viability kernel (and possibly its capture basin) is computed, it is possible to
compare decisions, scenarios, or control strategies from the viability viewpoint. It is
also possible to perform a viability analysis, to answer to sustainable management is-
sues: is it possible to maintain the desirable properties in the future ? And if so, which
actions are required ? If not, is it possible to restore these properties and how ? It is
also possible to take into account new criteria which were not available prior to the
viability study, particularly the robustness to perturbation in the state space (consider-
ing perturbation as uncertainty in a similar way to Regan et al. (2005)). This approach
was successfully followed in a real application of Camembert cheese ripening process
(Mesmoudi et al., 2014). The viability study showed that it was possible to reach the
target (a good Camembert cheese) in 8 days rather than 12. Within the viable set it was
possible to select a sequence of actions that was tested in a pilot and proved to be both
viable and robust. However, the computation of the viable sets necessary to the study
was very difficult to implement (it was a 5 dimensions problem) and it was not possible
to develop reusable components. The present work was undertaken to facilitate viabil-
ity studies, which require the computation of several viability kernels and basic tools
to exploit the viability results.

In this paper we propose a framework in order to compute and study viability ker-
nels and capture basins when the dynamical system is described by a set of differential
equations. Its objective is to propose basic tools and output functions in order to con-
sider viability kernels as tools for decision support. The computation algorithm uses
classification functions and active learning as proposed by Deffuant et al. (2007). It
is designed to be as independent as possible on the differential equations, so that the
framework can be used for different types of viability problems and also to give the
possibility to improve or modify the viability algorithm easily.

As classification functions we adapted kd-trees (proposed by Bentley (1975) to
store a set of points in a p-dimensional space) to represent a set with finer divisions
near its boundary. This choice of classification function preserves the set-theoretic
vision of viability kernels (since basic operations on this structure of kd-trees can be
implemented without learning stage). It is very easy to implement a set of constraints
in this framework, without being limited to hyper-rectangles or simple polytopes, since
the same kd-tree structure can be used to approximate the constraint set. This kd-tree
structure generally compresses the information stored on the regular grid, although
in the worst case it is less efficient (computing an empty viability kernel requires the
complete splitting of the search space, see Rouquier et al. (2015) for more details).

This article is organized as follows: In the next section we present the viability

3

problem, and we recall the approximation algorithm with classification function. In
section 3, we present our kd-tree structure, and we show how it can be used to approxi-
mate a set. We describe our viability approximation algorithm with kd-tree as learning
functions. We also present the basic functions we provide in order to conduct a viability
analysis. In section 4 we presents examples that show how to define viability problems
in our framework, together with computation of viability kernel and comparison with
theoretic viability kernels. We present a viability study and examples of viability-based
decision issues. Limits and possible improvements are discussed in this section. The
main conclusions of this work are summarized in section 5.

2. Viability problem: Approximation with classification functions

We consider a viability problem defined by a controlled dynamical system S, a set-
valued map U (the set of admissible controls depending on the state of the system), and
a subset K of the state space (the set of constraints):

(S)

{
x′(t) = Φ(x(t), u(t))
u(t) ∈ U(x(t))

(1)

where x(t) is the state of the system S, x(t) ∈ X a finite dimensional vector space ;
u(t) is the control, with u(t) ∈ Y a finite dimensional vector space (in the following
we consider X = Rp) and Y = Rq). The set-valued map U : X Y gives the set of
admissible control for each state x ∈ X . Φ is a function from Graph(U) to X .

Let K ⊂ X a compact subset of X be the set of desirable states, the constraint set
in which the state x(t) is supposed to stay. The viability kernel viabS(K) is the subset
of K (possibly empty) that gathers the states from which it is possible to find a control
function u(t) such that the evolution x(.) stays in the compact set K.

x ∈ viabS(K)⇔ ∃u(.) ∀t ≥ 0

 x′(t) = Φ(x(t), u(t))
u(t) ∈ U(x(t))
x(t) ∈ K

(2)

Following the method described in Deffuant et al. (2007), the dynamical system S
is discretized in time. We consider the time step dt > 0, and we considered the discrete
controlled dynamical system (Sdt) defined by the set-valued map F : X X

F (x) = {x+ Φ(x, u)dt, u ∈ U(x)} . (3)

We assume that F is µ-Lipschitz with closed images, which means that the images
of two states x and y can’t diverge from more than µ ‖x− y‖: ∀x, ∀y ∈ K,F (y) ⊂
F (x) + µ ‖x− y‖B where B is the unit ball, and F(x) is a closed set.

We consider the viability kernel viabSdt(K) of the discretized dynamical system
(Sdt) with constraint setK. The viability theory theorems from Aubin (1991) state that
viabSdt(K) is the largest subset Z of K verifying: ∀x ∈ Z,F (x)

⋂
Z 6= ∅.

We consider a discrete grid Kh defined on K such that:

∀x ∈ K,∃xh ∈ Kh, such that ‖x− xh‖ ≤ β(h) (4)

4

where β is a function defined on R+ such that β(h) → 0 when h → 0. There exists
such grids since K is a compact set.

Let us consider a learning algorithm LA that uses as input a learning set of pairs
(xi, ei) ∈ K × {0, 1} and produces a characteristic function g of a connected set Γ as
output. The approximation algorithm builds a decreasing sequence of discrete subsets
Kn of Kh, Kn+1 ⊂ Kn ⊂ Kh, and a sequence of characteristic functions gn built
with the learning algorithm LA from the learning sets Kn × {1} and Kh\Kn × {0}.

We note L(Kn) the inverse image of 1 by gn: L(Kn) = (gn)−1(1) = {x ∈
K, gn(x) = 1}). The initialization of the sequence is the following: K0 := Kh.
The recursive definition of the sequence is the following:

Kn+1 = {xh ∈ Kn | d(F (xh), L(Kn)) ≤ µβ(h)} . (5)

This sequence converges in finite steps towards a set K ′h possibly empty (since the
sequence is decreasing). The approximation theorem from Deffuant et al. (2007) states
that L(K ′h) converges towards viabSdt(K) under some conditions.

Theorem 1 (fact from Deffuant et al. (2007)). The set produced by the learning algo-
rithm L(K ′h) converges towards viabSdt(K) when h tends to 0 if the following condi-
tions are fulfilled:

L(K0) = K (6)

∃λ > 0, ∀n ≥ 0 { ∀x ∈ L(Kn) d(x,Kn) ≤ λβ(h) (7)
∀x ∈ K\L(Kn) d(x,Kh\Kn) ≤ β(h) (8)

The learning algorithm kd-LA we use here relies on a data structure based on kd-trees
which is presented in section 3.1 (and fully described by Rouquier et al. (2015)). It
verifies the conditions of Theorem 1, (see 3.3) so when the spatial discretization step h
tends to 0 the kd-tree approximation tends to the viability kernel.

It uses as input a characteristic function 1S where S is a subset of a hyperrectangle
of Rp (for example, with a learning set of of pairs (xi, ei) ∈ K × {0, 1}, we would
have S = {xi with ei = 1}, with S ⊂ K ⊂ R, where R is a hyperrectangle that
boundsK. There exists such a hyperrectangle sinceK is a compact set. The associated
learning function t provides as a result t(1S), an approximation of 1S built on a tree
structure G, refined from root to leaves. Each node covers the hyperrectangle covered
by the leaves it contains. The root node of G is defined on R. Each leaf has a label,
either 0 or 1. So if we note {li} the set of leaves of G, a state x ∈ R belongs to one
leaf only lx, so t(x) = label(lx) and t = 1G1

, where G1 = {li, label(li) = 1}. When
K is a hyperrectangle of Rp (or more generally the set G1 of a kd-tree structure G),
the kd-tree based learning function t is such that t0 = t(Kh, ∅) = 1K . In other cases
1K is directly used instead of t0 in the initialization step of the viability algorithm.

5

3. Algorithms

The approximation method with learning function implies the computation ofL(Kn)
at each step n with the learning algorithm kd-LA. Besides, in order to handle a great
class of constraint sets, and not only hyperrectangles, it is useful to propose an algo-
rithm to approximate a compact set included in a hyperrectangle R ⊂ Rp. This is
the reason why we first design a learning algorithm from an oracle with kd-trees, as
described by Rouquier et al. (2015).

3.1. Learning a Set with kd-trees: The kd-LA algorithm

We consider that a function f : R ⊂ Rp 7→ {0, 1} is available, where f is the
indicator 1S of a compact simply connected set S subset of the hyperrectangle R. This
function is called the oracle. Calls to the oracle can be very costly depending on the
set S, but they can be easily parallelized.

We consider the general learning algorithm, that builds a kd-tree, approximation
of a given set S with discretization step h > 0 as in (4), using the indicator function
f = 1S as oracle (see Rouquier et al. (2015) for a complete description).

Algorithm 1. LearnBoundary(root, h,1S) kd-LA algorithm
root is the leaf tree corresponding to R (the area to explore),

or a kd-tree, with at least a positive leaf

0. G← root
1. A← leavesToRefine(G, h) (a set of distinct non atomic leaves)
2. while A 6= ∅ do {
3. foreach nodei ∈ A do {
4. Refine(nodei,1S ,α(h))}
6. A← leavesToRefine(G, h)
7. return G

Refine(node,1S , α(h)) creates two children at node node if the stopping crite-
rion α(h) is not reached. When the stopping criteria is reached the corresponding leaf
is called atomic. The stopping criterion defines the maximal length of the path of a
node or the minimal size of the area associated with the node.

The discretization step of the grid h in equation (4) is linked to the stopping criteria
α depending on the method that is used to divide a node, since several methods can
be used: splitting it along its largest dimension if the length of the path from the root
is smaller than α; splitting it following a cyclic order (while the number of division is
lower than α), etc. The default method we used is the following: a leaf is no longer
divided if the length of its path to the root node is greater than α = pα′ where p is the
dimension of the state space, and a leaf is always divided along its largest dimension.
In these conditions we have h = 1

2α/p
, and h→ 0 when α→∞.

If node is represented by the vector of intervals ([ai, bi[)1,..,p and is divided along
j, its children will have the same vector values except for the jth coordinate which is
[aj ,

(bj−aj)
2 [for one child and [

(bj−aj)
2 , bj [(if bj 6= 1) for the other ([(1−aj)2 , 1] with

bj = 1). Several methods can be considered to assign a label to the children. Using
the center of the leaf requires two calls to the oracle to label the two children. Here we

6

systematically reuse the point of the parent node to label the child it belongs. A point is
randomly drawn to label the other leaf and aligned on the closest point of the h = 1

2α/p

grid. The image of this grid point by the oracle gives the label of the leaf. It is possible
(as a parameter of the algorithm) to disregard the grid alignment and use directly the
randomly drawn point.

At each step, all the refining operations involve different leaves of the tree, so the
calls to the oracle in order to label the new leaves can be parallelized. This is an
option of Algorithm 1. Algorithm leavesToRefine(G, h) recursively gathers pos-
itive border leaves (that is leaves that are on the boundary of the exploratory set with
positive label) and pairs of adjacent leaves with different labels.

Leaves that are refined are non atomic leaves next to the boundary of the hyper-
rectangle R (the area to explore), and non atomic adjacent leaves with different labels.
Two leaves are adjacent when they share a boundary: When leaves are described by an
interval on each axis, for each axis, the interval of one leaf is included in (or equal to)
the other, except for exactly one coordinate axis where both intervals are adjacent (their
closures have exactly one common point). Since there is only a finite number of atomic
leaves in the hyperrectangle R, and in the worst case all leaves are eventually atomic,
Algorithm leavesToRefine returns an empty set in finite time. So algorithm (1)
BuildG terminates in finite time.

When the learning set is a close set (respectively an open set), atomic leaves adja-
cent to a leaf with different label have their interval definition to be changed in order to
include (respectively exclude) the adjacent boundary.

3.2. Operations on kd-trees
In order to provide the sequence of sets defined by equation (5), and to provide

analysis tools, we propose some operators on the kd-trees.
Let G be a kd-tree produced with Algorithm 1. The dilation algorithm com-

putes a basic dilation of G. Every atomic leaves of the boundary are labeled to 1 and
the tree is refined again. This operation is repeated p times (where p is the dimension
of the state space), in order to perform an approximation of the Euclidean dilation.

Algorithm 2. Dilation(G = 1S , h, ν ∈ N)
returns a kd-tree Gν with adjacent atomic leaves in G labeled to

1 recursively ν times

0. i← 0, Gi ← G
1. while i 6= ν do {
2. leaves← {boundaryLeaves(Gi)}
3. foreach l ∈ leaves do {label(l)← 1}
4. Gi+1 ← LearnBoundary(Gi, h,1Gi)
5. i← i+ 1}
7. return Gν

boundaryLeaves gathers pairs of adjacent atomic leaves with different labels
(we call these pairs critical pairs). We note S<ν> the indicator set forGν = Dilation
(G, h, ν) (that is ν basic dilation steps), and S<pν> = Sν the indicator set for Gpν (pν
basic dilation steps corresponding to ν standard dilation steps when p is the dimen-
sion of the space). We note ⊕ the Minkowski sum of subsets in an Euclidean space:

7

A⊕B = {a+ b | a ∈ A, b ∈ B}. In the following we note A⊕ r the Minkowski sum
of set A and the Euclidean ball of radius r. With the dilation algorithm, we have:

Theorem 2. A ν ∈ N steps standard dilation (pν basic dilation) verifies:

S ⊕ νh ⊂ Sν ⊂ S ⊕ νhp

The proof is given in AppendixA.
Let G be a kd-tree such that G = 1S . By switching the label of the leaves of G

(label 1 becomes 0 and conversely), we define another kd-tree G′ = 1S′ with S′ =
K\S. We consider now the erosion algorithm, which consists basically in labeling
every atomic leaves of the boundary to 0 and refining the tree again. We have by
construction, when S and its dilation are subsets of the interior of K:

(Erosion(G, h, 1))′ = Dilation(G′, h, 1)

If we note S<−1> the indicator set of the kd-tree built by the Erosion algorithm, we
have:

K\S<−1> = (K\S)<1> (9)

We note 	 the Euclidean erosion operator: S 	 B(ρ) = {x ∈ S, B(x, ρ) ⊂ S}. We
note here S 	 ρ = S 	 B(ρ) , and we note S−ν the set produced by ν ∈ N steps
standard erosion (pν basic erosion). From Theorem 2 and from (9), we have:

K\S ⊕ νh ⊂ (K\S)ν ⊂ K\S ⊕ νhp

Corollary 1. A ν ∈ N steps standard erosion (pν basic erosion) verifies:

S 	 νhp ⊂ S−ν ⊂ S 	 νh

Proof. We already have K\S ⊕ νh ⊂ K\S−ν ⊂ K\S ⊕ νhp. We now recall that
with ρ > 0, we have: (K\S) ⊕ ρ = K\(S 	 ρ). Let x ∈ K\(S 	 ρ), if x ∈ S then
there is y ∈ B(x, ρ) such that y /∈ S, so x = y+ (x− y) ∈ (K\S)⊕ ρ. Conversely, if
x ∈ (K\S) and s ∈ B(ρ), if x+s ∈ S, then (x+s)−s = x /∈ S so x+s ∈ K\(S	ρ).
We then have: K\(S 	 νh) ⊂ K\S−ν ⊂ K\(S 	 νhp). �

With the erosion algorithm, it is necessary to specify which parts of the boundary
are to be eroded, since it depends on the motives of the user (an example is given
in section 4.1.4). In the kd-tree viability framework, the end-user defines a specific
domain. The parts of the boundary that reach the domain boundary are not to be eroded.

3.3. Computation of the Viability Kernel with kd-LA
The viability kernel is computed with a kd-tree that stores at each leaf:

• the input grid point x associated to the leaf (test point)

• the label of the leaf

8

• the control index i of a viable control ui ∈ U(x) if the label is true

• the result point F (x, ui) of x by the dynamics (3)

• the index of the next control to test in the discretized set Dis(U(x)) in the case
of the exhaustive search of a viable control (1+ argmax { i|∀j ≤ i, F (x, uj)
is not viable}).

The algorithm follows the general guidelines of section 2 with the definition of the
sequence Kn in equation (5). Calls to the oracle are aligned on the grid such that
β(h) = h

2

√
p.

Algorithm 3. ComputeVK(root,h,F ,1K ,µ)
1K is an indicator function of the constraint set K

1. Define Oracle(x) = 1 iff ∃u ∈ Dis(U(x)), F (x, u) ∈ K, 0 otherwise
2. G0 ← buildInitialTree(SearchArea, h,Oracle)
3. with Define function viabilityStep(Gn)
4. if (Gn = ∅) return ∅
5. else Gn+1 ← buildStepVK(Gn, h, F, µ)
6. if (Gn = Gn+1) return Gn else return viabilityStep(Gn+1)
7. return viabilityStep(G0)

SearchArea is a hyperrectangle R which contains the constraint set K ⊂ R. The
definition of the Oracle in algorithm (3) is the initialization step of the sequence Gn.
buildInitialTree returns, if it succeeds, a tree which contains one leaf for which the
label is true. Otherwise it returns the empty set: This means that the viability kernel is
empty (for this specific value of h), the algorithm couldn’t find a single atomic leaf for
which the image of the grid point stays inKat the first time step. Algorithm (4) defines
the sequence Gn with the updated Oracle following equation (5).

Algorithm 4. buildStepVK(Gn,h,F ,µ)
1. Gµ ← Dilation(Gn,h,ν(µ))
2. Define Oracle← {Oracle(x) = Gµ(F (x))}
3. Gn+1 ← findTrueLabel(Reassign(Gn),Oracle)
4. If Gn+1 = ∅ Then return ∅
5. Else return learnBoundary(Gn+1,h,Oracle)

The function ν determines from the Lipschitz parameter of F the input of the basic
dilation that must be perform in order to include all points at a distance µh2

√
p. (From

Theorem 2, we have ν(µ) = p(E(µ2
√
p) + 1) when µ

2

√
p /∈ N, and µ

2 p
√
p otherwise).

Reassign creates a clone of the tree in which leaves with label 0 are preserved
while leaves with label 1 are updated: It checks whether their result point is still viable
with the new oracle, using first the previously registered control value.

Algorithm 5. findTrueLabel(tree,Oracle)
1. If (∃leaf ∈ tree;label(leaf) = 1) Then return tree
2. Else refineBiggestLeaves(tree)
3. with Define function refineBiggestLeaves(tree)
4. leaves← {leaf with shortest path from the root s 6= h}

9

5. If (leaves = ∅) Then return ∅
6. Else
7. For each leaf ∈ leaves Refine(leaf,Oracle)
8. If (∃leaf ∈ leaves;label(leaf) = 1) Then return tree
9. Else refineBiggestLeaves(tree)

findTrueLabel and buildInitialTree differ mainly by the way of choos-
ing the control values to be tested (since in buildInitialTree no previous control
is available).

Implementation examples and indication to user are available on the site 1

With slight modification of Algorithm 3 it is possible to compute the capture basin
of a target in a search area. The search area D is bounded by a hyperrectangle R
and defined by an indicator function. The target set T is first learned (if it is not al-
ready a kd-tree) with Algorithm 1 (LearnBoundary). Then a time step algorithm
buildStepBC is applied. It is similar to Algorithm 4 (buildStepVK), except for
the Reassign step in which leaves with label 1 (already in the capture basin) are
preserved and leaves with label 0 are updated. All control values are tested for this
update (since a control that did not previously drive a point in the capture basin can be
successful at a following time step).

3.4. Convergence
In order to build a close set, it is necessary to assign a close interval in the direction

of adjacency to boundary leaves with label 1. In that case, Algorithm ComputeVK pro-
duces a kd-tree G which is an outer approximation of the viability kernel viabSdt(K)
as defined in Section 2, when some smoothness and regularities conditions are fulfilled.

Let us consider as particular learning function L the function that associates to
xh ∈ Kh the closed ball of the sup-norm of radius h/2 centered on xh: Lt(xh) =
B∞(xh, h/2). We note Mn the sequence built from definition (5) with L = Lt, M0 =
Kh.

Proposition 1. Lt verifies the conditions (7) and (8) of Theorem 1.

The proof is given in AppendixB.
We consider the following set of hypotheses H1, depending on F and K only:

The sequence Mn is such that there exists for each n ∈ N, a closed set M(n) ⊂ K
verifying Mn ⊂M(n) and Kh\Mn ⊂ K\M(n), and the sets M(n) verify: ∃ρ1 > 0,
∃ρ2 > 0, ∀n ∈ N,

∀x ∈M(n), ∃yx ∈M(n), x ∈ B(yx, ρ1) ⊂M(n) (10)
∀x ∈ K\M(n), ∃yx ∈ K\M(n), x ∈ B(yx, ρ2) ⊂ K\M(n) (11)
M(n)	B(ρ1) and (K\M(n))	B(ρ2) are path-connected (12)

The set of hypotheses H1 ensures that the viability kernel has no tentacles possibly as
thin as wanted, that can’t be discovered by the learning algorithm. Let us consider with

1https://github.com/ISCPIF/viabilitree

10

the notation of Section 2, the kd-tree Gn = L(Kn) built at step n with Algorithm (4)
BuildStepVK.

Proposition 2. When hypothesis H1 is verified, the sequenceKn defined by the kd-tree
learning algorithm L is the sequence Mn defined by Lt.

Proposition 3. When the initialization conditionL(K0) = K is fulfilled and H1 is ver-
ified, the set produced by the kd-tree learning algorithm converges towards viabSdt(K)
when h tends to 0.

This last proposition is the consequence of Propositions 1 and 2. Proof of the
propositions is given in AppendixB.

4. Application and Discussion

4.1. Comparison with Exact Solution

Very few analytical solutions of viability kernel are available. We used the ex-
amples from Aubin (1991), Aubin and Saint-Pierre (2007), and Bernard and Martin
(2012).

4.1.1. Population growth model
This example is taken from Aubin and Saint-Pierre (2007). The population model

is defined from Maltus and Verhulst (Verhulst, 1845). The population viability problem
consists in maintaining the size of the population in a given interval [a; b]. The state of
the system is described by the variables x(t), the size of the population, and y(t), the
population growth rate. The dynamics are described by the following equations:{

x(t+ dt) = x(t) + x(t)y(t)dt
y(t+ dt) = y(t) + u(t)dt with |u(t)| ≤ c (13)

The dynamics are controlled by taking the growth rate evolution in interval [−c, c].
This viability problem can be resolved analytically (see Aubin and Saint-Pierre (2007)
for details). When dt tends toward 0, the theoretical viability kernel is defined by:

V iab(K) =

{
(x, y) ∈ R2| x ∈ [a; b], y ∈ [−

√
2clog(

x

a
);

√
2clog(

b

x
)]

}
(14)

Figure 1 shows approximations obtained with the kd-tree viability algorithm. When
the dilation is applied there is some diffusion but it is an outer approximation. Table 1
gives a summary of the accuracy of the approximation for approximation with dilation
parameter ν = 0 and ν = 1. The approximation without dilation (ν = 0) is already a
good approximation (only 13 grid points are false negative). This is due to the Lipschitz
constant of the dynamics x′ = c.x which is |c|-Lipschitz continuous. Here we have
c = 0.5.

11

Figure 1: Approximation of the viability kernel with 1024 points / axis for the population problem with
constraint set K = [a = 0.2, b = 3] × [d = −2, e = 2], parameters dt = 0.1 (integration step 0.01),
control set U = [−0.5; 0.5] with discretization step 0.02. In gray the approximated viability kernel with
dilation parameter ν = 1. Colored points are testing points of the leaves of the approximation with ν = 0.
The color stands for the value of the control u. In black the boundary of the true kernel. Detailed view on
the right.

Dilation Approximation FP FP FN FN
ν size size rate size rate

0 571 238 4 695 8.218991e-03 13 2.294618e-05
1 605 330 38 774 6.405432e-02 0 0

Table 1: Accuracy summary for the population viability problem, with the parameters of figure 1. The size
of the sets are in number of points of the grid. The size of the true viability kernel is 566 556 points. False
Positive (FP) are points of the approximation that are not in the true viability kernel viab(K). The FP rate is
compared to the size of the approximation (number of positive points). False Negative (FN) are points of the
true kernel that are not in the approximation. The FN rate is compared to the size of the true positive points.

4.1.2. Consumption Model
The consumption model is proposed by Aubin (1991) to describe the consumption

of raw material governed by price. The state variable x(t) represents the consumption
of the raw material, and the state variable y(t) its price. The rate of change at each
time step of the price is controlled and bounded par parameter c with u(t) ∈ [−c, c].
The constraint set is K = [0, b]× [0, d]. The dynamics are described by the following
equations: {

x(t+ dt) = x(t) + (x(t)− y(t))dt
y(t+ dt) = y(t) + u(t)dt with |u(t)| ≤ c (15)

12

This viability problem can be resolved analytically (see Aubin (1991) for details).
When dt tends toward 0, the theoretical viability kernel is defined by:

((x, y) ∈ [0, b]× [0, d]) ∈ V iab(K)⇔{
x ≥ y − c+ c.e(−y/c)

and when y ≤ b then x ≤ y + c− c.e
y−b
c

(16)

The corresponding dynamics in dimension 1 is x′ = x − c, it is Lipschitz continuous
with constant µ = 1. As it can be seen on Figure 2, the approximation with no dilation

Figure 2: Approximation of the viability kernel for the consumption problem with parameters b = 2, d =
3, c = 0.5, depth=20 (1024 points per axis), dt = 0.05 (integration step 0.001), 0.1. for the control
discretization step. In gray the viability kernel with basic dilation parameter ν = 2. Colored points are the
testing points of the leaves of the approximation with ν = 0. The color stands for the value of the control u.
In black color points of the boundary of the true kernel

Dilation Approximation FP FP FN FN
ν size size rate size rate

0 296 109 11 031 3.73e-02 1 3.51e-06
2 350 292 65 213 1.86e-01 0 0

Table 2: Accuracy summary for the consumer viability problem, with the parameters of figure 2. The size of
the sets are in number of points of the grid. The size of the true viability kernel viab(K) is 285 079 points.
False Positive (FP) are points of the approximation that are not in viab(K). The FP rate is compared to the
size of the approximation (number of positive points). False Negative (FN) are points of the true kernel that
are not in the approximation. The FN rate is compared to the size of the true positive points. ν is the number
of basic dilation.

0 (ν = 0) is almost an outer approximation. Table 2 gives a summary of the accuracy
of the approximation with parameters of Figure 2. The ν = 2 approximation is an outer
approximation of the true viability kernel, although the diffusion is rather important.

4.1.3. Bilingualism model
This example is taken from Bernard and Martin (2012). The bilingual society

model is based on the work from Abrams and Strogatz (2003) which studies language

13

competition. It considers as state variables the proportions of monolingual speakers of
each language (σA and σB , with the proportion of bilingual speakers 1 − σA − σB),
and the prestige s of language A (as 1 − s is the prestige of language B). The value
of the prestige can evolve with public action, so ds

dt is considered as a control on the
dynamics, bounded in some interval U = [−ū; ū] with ū > 0.

dσA
dt = (1− σA − σB)(1− σB)as− σAσaB(1− s)
dσB
dt = (1− σA − σB)(1− σA)a(1− s)− σBσaAs
ds
dt = u ∈ U

(17)

If s is constant in]0; 1[, the dynamics has three equilibria: (0, 1), (1, 0) which are
stable, and an unstable one. Consequently, one language is doomed to become extinct.
Therefore it is necessary to apply control policy on s to insure the coexistence. The
viability domain is described by Bernard and Martin (2012), and an approximation
was computed for the following parameters and set of desirable set in E = [0, 1]3,
K = {(σA, σB , s)} such that: 0 < σ ≤ σA ≤ 1 σ=0.2

0 < σ ≤ σB ≤ 1 ū=0.1
0 ≤ s ≤ 1 a=1.31

(18)

Parameter a is set according to the literature. (It is calibrated in Abrams and Strogatz
(2003) from historical data). The domain D was computed by labeling hypercubes of
edge size 1/100 when they contain at least a point of the viability kernel.

Figure 3 shows the 3D-view of the viability domainD and the shape of approxima-
tion obtained with the kd-tree viability algorithm. Figure 4 shows in a sliced 2D-view
the difference between the domain D and the kernel approximation obtained with the
kd-tree viability algorithm for several value of the dilation and time step parameters. It
is not possible to disregard the Lipschitz coefficient for the bilingual model, since the
viability kernel approximation with ν = 0 is not an outer approximation for dt = 1.

Figure 3: 3D view of the bilingual domain with parameters from (18), discretization step of 0.01 for the
control. In blue the kernel computed by labeling hypercubes of size 1/100 when they contain at least a point
of the viability domainD. The viability kernel obtained with the kd-tree LA are computed with depth = 21,
i.e. 27 = 128 points per axis, in white with ν = 0, in red with ν = 1. On the left with dt = 1, (with
integration step 0.1), on the right dt = 0.5, (with integration step 0.05)

14

Figure 4: Measurement of ν effect. A sliced view of the bilingual domain (plane H defined by its normal
vector (110) and a point (0.420.420.5)). In blue the kernel computed by labeling hypercubes of size 1/100
when they contain a point of the viability kernel. The approximation are computed with depth = 21, i.e.
27 = 128 points per axis, in dark green with ν = 1, in light green with ν = 2 and pink with ν = 3 with
time step 1 and integration step 0.1.

Figure 5 shows in sliced 2D-views the influence of time discretization (controlled with
parameter dt), which is important.

Figure 5: Measurement of the time effect. Sliced views of the bilingual domain (plane H defined by its
normal vector (110) and a point (0.420.420.5)). In white the boundary points of the viability kernel. The
approximation are computed with depth = 21, i.e. 27 = 128 points per axis, in black with dt = 0.5, in
light grey with dt = 1. From left to right with ν = 0 , ν = 1 and ν = 3.

Table 3 gives a summary of the accuracy of the approximation with ν = 0 and
ν = 1. As it can be seen on Figure 5, the approximation without dilation (ν = 0) is
completely inside the viability domain. With dt = 0.5 the approximation is better and
with ν increasing the approximation more points of the true domain.

4.1.4. Lake and nearby farms
The lake and nearby farms viability problem is based on Martin (2004). The issue

is to determine how a lake can remain in a clear-water (oligotrophic) state and not shift
to turbid-water (eutrophic) state while agricultural activity is performed. The problem
can be modeled by the dynamic between phosphorus concentration P and phospho-
rus inputs L (excess phosphorus due to fertilizer and animal feed supplements input
through leaching and runoff). Agriculture requires a minimum value for L, Lmin,
and oligotrophic state imposes a maximum value for P , Pmax. Regulation laws are
constraints on

∣∣dL
dt

∣∣ ≤ V : this means that the regulation law cannot set the maximum
amount of phosphorus inputs, but rather imposes a decrease of the phosphorus inputs,

15

Time Dilation Approx. FP FP FN FN
step ν size size rate size rate

0.5 0 332 026 0 0 44 534 1.34e-01
0.5 1 374 094 2 628 7.03e-03 5 094 1.37e-02
0.5 3 441 291 66 521 0.15 1 790 4.78e-03

Table 3: Accuracy summary for the languages viability problem, with the parameters of figure 3. The size of
the sets are in number of points of the grid. The size of the true viability domain (once translated on the more
refined grid) is 376 560 points. False Positive (FP) are points of the approximation that are not in the true
viability domain viab(K). The FP rate is compared to the size of the approximation (number of positive
points). False Negative (FN) are points of the true kernel that are not in the approximation. The FN rate is
compared to the size of the true positive points.

for example by a percentage each year. This decrease is bounded by V . The viability
problem is the following:

(L,P) ∈ K = [Lmin, Lmax]× [0, Pmax]
U = [−V, V]
dL
dt = u(t) ∈ U
dP
dt = −bP (t) + L(t) + r P q(t)

m+P q(t)

(19)

Parameters b,m,r,q depends on the lake and in particular they express the possible hys-
teresis and irreversibility of the eutrophication (see Carpenter et al. (1999) for details),
since the equilibrium locus presents a cusp in the (L,P, b) space. The viability kernel
is bounded on the left by the line L = Lmin. On the right the theoretical boundary
can be computed by identifying the trajectory that reaches the intersection between the
equilibrium locus and the boundary of K (with maximum value of P), while applying
the most constraining control (u = −V).

Figure 6 shows approximations obtained with the kd-tree viability algorithm. When
the dilation is applied this is an outer approximation. When the dilation parameter is 0
the approximation can be an outer parameter depending on the grid step. Table 4 gives
a summary of the accuracy of the approximation for approximation with ν = 0 and
ν = 1 with depth = 20 and 16 respectively. As it can be seen on Figure 6, the approxi-
mation without dilation (ν = 0) can already contain the viability domain depending on
the depth parameter. The accuracy of the approximation is far better with the diminu-
tion of the spatial discretization step (corresponding to increasing depth parameter).

4.2. Viability-based analysis

Dealing with sustainable issues in environmental sciences problems but not only,
classical utility maximization approach are challenged by constraint-based approach
such as the Safe Minimum Standard (Ciriacy-Wantrup, 1952) or Tolerable Windows
Approach (TWA) (Petschel-Held et al., 1999). As it was already shown by Bruckner
et al. (2003) for TWA, or by Martinet and Doyen (2007), the mathematical viability
theory offers a natural framework to study the compatibility between constraints and
dynamical systems. To define and solve a viability problem requires the definition by

16

Figure 6: Approximation of the viability kernel for the lake problem with parameters m = r = 1, q = 8,
b = 0.8, V = 0.9, dt = 0.1 (integration step 0.01), discretization step for the control is 0.1. On the left
different values of ν for depth = 20 (1024 points per axis). In dark (light) gray the viability kernel with
dilation parameter ν = 1 (ν = 0). In white the outline of the constraint set K = [0.1; 1] × [0; 1.4]. In
white color points of the boundary of the true kernel. On the right the approximation for different value of
the depth parameter (with ν = 0). In light gray depth = 18, in color black depth = 20 (very close to the
true kernel), in color dark gray depth = 16.

Depth Dilation Approximation FP FP FN FN
ν size size rate size rate

20 0 587 346 3 5.107722e-06 3 340 5.69e-03
20 1 605 986 15 303 0.025 0 0
16 0 38 675 1 665 0.043 0 0
16 1 43 047 6 124 0.142 0 0

Table 4: Accuracy summary for the lake viability problem, with the parameters of figure 6. The size of
the sets are in number of points of the grid. The size of the true viability kernel viab(K) is 590 683
points with depth=20 (1024 points per axis) and 36 923 with depth=16 (256 points per axis). False Positive
(FP) are points of the approximation that are not in viab(K). The FP size is compared to the size of the
approximation (number of positive points). False Negative (FN) are points of the true kernel that are not in
the approximation. FN size is compared to the size of the true positive points (approximation - FP size).

the stakeholders of the set of desirable states (the constraint set K) and of admissible
control set U . It requires also sufficient knowledge on the dynamical system, includ-
ing the effect of control. Before considering control strategy or action scenarios, it is
necessary to agree on desirable states, possible controls and dynamics, which allow to
define a viability problem (S).

The computation of the viability kernel is then the consequence of the definition of
the viability problem (S). Once the viability kernel viabS(K) is known, it can be used
for several viability analysis and decision support.

In particular, when the viability kernel is empty, it means that the definition of
the constraints set and the policy are inappropriate regarding the dynamics. Before
any consideration of optimization and thus of objective function, it is essential for the
stakeholders to discuss the definition of desirable states and the means to achieve it

17

(here the set of admissible controls). When the viability kernel is not an empty set, is is
useful to examine the sensitivity of the viability kernel to the parameters of the viability
problem (constraint set, control set, dynamics). The present framework can be useful
to compare different version of the viability problems because of its modularity. Once
the viability problem is well stated, it is possible to consider further issues, such as the
choice of the control strategy, robustness or resilience of the system to perturbations.

4.2.1. Choice of a control strategy
As an example we rely on the case of the lake and the lakeside farms (see section

4.1.4). The viability kernel is the subset of the (L,P)-plane that gathers all states
(L,P) such that there exists at least one regulation law that allows the oligotrophic
state to be maintained. Figure 7 shows the viability kernel in the case of a reversible
lake, with the value of the viable control associated to the test point of each leaf. A leaf

Figure 7: Viable control value for test points in the viability kernel (in light grey) for the lake problem with
parameters of Figure 6 and ν = 0. On the left controls are ordered from positive values to negative ones. On
the right controls are tested in reverse order.

is declared viable as soon as one control value maintains the test point in the current
version of the viability kernel. This means that only one control value is recorded for
each viable leaf, although there may be several alternatives. Actually, inside the interior
of the viability kernel, in continuous time, every controls are viable (although it can be
for a very short time only). On the boundary, on the contrary, not all the controls are
viable. Figure 7 shows in particular that near L = Lmin, the control value can’t be
negative (the point color is no longer black). Near the boundary with maximum values
of L, the control value gets closer to −0.09 and reaches it on the boundary: the point
color goes from white to black when the distance to the boundary tends to 0.

Modifying the order in which the control values are tested manifests which con-
straints apply on the control near the boundary.

The order is set by the user and is state-dependent, so it is possible to apply a cost
function depending from the state in order to get straight in one pass for each state the
viable control that minimizes locally the control cost.

18

In the lake problem, the cost of the control for the farmers is obviously increasing
with the control value, so the simplest definition of the control set that respects the
order � induced by this cost function is not state-dependent: u1 � u2 ⇔ u1 > u2.
Figure 7 shows the result of order (left view). More complicated criteria could easily
be defined for optimization purpose.

4.2.2. Defining a new decision criteria: the robustness to perturbation in the state
space

In many applications, perturbations can occur in the state space, with the result of
possible shift of the state of the system. Uncertainties about the state of the system can
also be seen as its belonging to a set rather than a single vector. For these reasons, it
is interesting to consider the distance to the boundary of the viability kernel. Another
reason is technical: The viability kernel is approximated by its outside, which means
that near the boundary there is a risk to be already outside the true viability kernel, and
thus to be doomed to leave the constraint set in the future. Once the viability kernel
has been computed, it is possible to use its boundary to define robustness criteria as in
Alvarez and Martin (2011).

In the kd-tree viability framework we propose to use the erosion algorithm in
order to define a new constraint set, which is an eroded set from the viability kernel.
Let (S) be a viability problem defined by equation 2, and let H = viabS(K) be the
viability kernel. We assume that H 6= ∅. We consider the eroded set H	ν computed
from H with the erosion algorithm: H	ν is the indicator set of the kd-tree returned by
erosion(1H , h, ν). We then define a new viability problem:

x ∈ viabS(H	ν)⇔ ∃u(.) ∀t ≥ 0

 x′(t) = Φ(x(t), u(t))
u(t) ∈ U	(x(t))
x(t) ∈ H	ν

(20)

This new viability kernel viabS(H	ν) gathers the states in H = viabS(K) that are
at least at a given distance hν from the boundary of viabS(K) and from which there is
a trajectory that stays that far from the boundary with controls in U	(x). We call these
trajectories conservative trajectories, since they stays at distance from the boundary of
the original viability kernel.

For example, Figure 8 shows the viability kernel viab(H) obtained with 40 steps
erosion of the viability kernel from figure 7, with the same control than for the original
viability problem and with a less costly subset of the original control set (assuming
that in dangerous situation it is possible to ask for greater efforts than in everyday
situation). Trajectories in viabS(H	ν) are robust to a perturbation in the state space
(with size smaller than the erosion size hν): the state will be shifted possibly outside
viabS(H	ν) but still insideH = viabS(K), which means that after the perturbation
it will be possible to find a control strategy to stay in H . This was not possible in H . A
small perturbation of a state near the boundary shifts the state outside H , which means
that the lake is doomed to become eutrophe (to leave K) in the future, at least for a
while.

This robustness criterion can be considered in optimization objectives or as an in-
dependent decision criteria when exploring the viability kernel for optimal solutions or
comparing scenarios.

19

Figure 8: Viable kernel (in grey) of the 40 steps eroded viability kernel (in dark grey) defined with the
parameters of figure 7. The original viability kernel (defined from K) is in light grey. On the left with the
same state of admissible controls. On the right with V = 0.05 and points colored according to their viable
control value.

Other criteria can be considered such as the resilience value (as defined in Martin
(2004)), using the capture basin algorithm. It was done by Alvarez et al. (2013) for the
model of language competition.

4.3. Limits and possible improvement of the framework

Viability algorithm. In order to guarantee the convergence towards the true viability
kernel, it is necessary to consider as viable, points that are in a dilated set within a
distance that depends on the Lipschitz constant of the dynamic. In the present version
the algorithm uses an upper bound of the Lipschitz constant, although it could be more
efficient to estimate the Lipschitz constant locally as done by Saint-Pierre (1994).

Dynamic. The present computation of the image of a state by the discretized dynamics
is done with a fixed time step, which is inefficient when the system exhibits both slow
and rapid dynamics. When the discretization step in time is too small relatively to
the spatial discretization step, slow local dynamics can be seen as invariant and the
classification function cannot be updated. Finding an efficient global discretization step
in space and time is difficult. It would be preferable to handle the time step locally.

Controls. In the present framework, heuristic methods can be implemented in order
to find a viable control, but the size of the set of admissible control is assumed to be
constant. Further work includes variable size of the control set and the implementation
of local-guided search (to propose candidates for adjacent leaves). Besides it could be
also interesting to compute the complete set of viable controls Û(xl) ⊆ U(xl) at xl,
or at least part of it (for instance, a given number of viable controls). It is expensive in

20

computation time but can be very useful for optimization issues. The modular archi-
tecture of the framework allows to perform these changes easily through the content
stored at each leaf.

Cleaning leaves. In the current implementation, leaves close to the true boundary are
maximally refined. Since the same kd-tree is used again at different time steps, when
the dynamic is fast the final kd-tree can be maximally refined in many unnecessary
regions. This is memory consuming and inefficient. It would be preferable to clean the
kd-tree on a regular basis, by merging pair of leaves of the same parent with identical
label. Cleaning operation requires technical choice to merge information stored at the
leaf level (test points, viable control, etc.)

Distance. The distance of a state to the boundary of the viability kernel can be used to
characterize the robustness to perturbation, not only for a given state but also for trajec-
tories (as it is proposed by Alvarez and Martin (2011)). Presently it is possible, using
dilation and erosion functions, to propose distance-based strategy with the distance in-
duced by the kd-tree. But the present erosion function needs some improvement: the
definition of the boundaries that are not to be eroded by the erosion function is limited
to subset of hyperplanes; and the rosion algorithm will gain in efficiency with system-
atic cleaning. The computation of other distance could be also very useful. We are
currently working in this direction by extending basic operations on the trees.

Optimization. Once the viability kernel is computed, it is possible to save it (with
the save function) in order to explore it later for further use. Optimization criteria
could be easily implemented, if several viable controls are stored for each viable leaf.
This would enable the end-user to test different control scenarios and to perform inter-
temporal optimization (with the help of external optimization modules).

Sampling strategy. Currently the test points are taken from a regular grid. This was
convenient to fulfill the conditions of the convergence theorem. Random sampling
is also already implemented. It could be interesting to study the impact of different
sampling strategies on the approximation result.

Curse of dimensionality. As it is the case with many learning algorithms, the present
method is very sensitive to the dimension of the state and control spaces. However, par-
allelization could be used more extensively to bypass this problem. Presently only the
sampling of the test points is done in parallel. The modular structure of the framework
offers many other parallelization opportunities for the test of images over several time
steps, the dilation and cleaning process. Parallelizations through graphics processing
units could also be considered as it as be done by for discrete viability algorithm by
Brias et al. (2016).

5. Conclusion

We have presented a general framework in which viability-based decision problems
can be easily implemented and analyzed. The core of the framework is an algorithm

21

that computes the viability kernel, using kd-trees as underlying data structure. The
approximation is computed recursively. The dynamics equations are used to define a
suitable indicator function to guarantee the convergence. We prove that the algorithm
fulfills the conditions of the convergence theorem of the approximation algorithm with
classification function. We also compare the resulting viability kernels with available
analytical solutions. We have shown an example of what can be achieved in terms of
decision support for the problem of the lake and nearby farms. Our approach is focused
on modularity and re-usability: The algorithms are implemented in Scala and are avail-
able in a free and open-source implementation 2. On the site additional information is
available to help the user to design new viability problems and contribute to the im-
plementation. This is a possibility for external validation and further development of
viability studies and tools for decision support. The main drawback of the framework
is its limit with state dimension. Further work is in progress to improve efficiency
with parallelization and to extend the viability-based decision support framework with
distance and robustness operators.

Acknowledgements

This work was partly supported by the European Community’s Seventh Framework
Programme under the grant agreement no. FP7-222 654-DREAM.

6. References

Abrams, D. and Strogatz, S. (2003). Modelling the dynamics of language death. Na-
ture, 424(6951):900.

Accatino, F., Sabatier, R., De Michele, C., Ward, D., Wiegand, K., and Meyer, K. M.
(2014). Robustness and management adaptability in tropical rangelands: a viability-
based assessment under the non-equilibrium paradigm. Animal, 8:1272–1281.

Alvarez, I., de Aldama, R., Martin, S., and Reuillon, R. (2013). Assessing the Re-
silience of Socio-Ecosystems: Coupling Viability Theory and Active Learning with
kd-Trees. In proceedings of IJCAI, pages 2776–2782.

Alvarez, I. and Martin, S. (2011). Geometric robustness of viability kernels and re-
silience basins. In Deffuant, G. and Gilbert, N., editors, Viability and Resilience of
Complex Systems, Understanding complex systems, pages 193–218. Springer.

Andrès-Domenech, P., Saint-Pierre, P., Fanokoa, P. S., and Zaccour, G. (2014). Sus-
tainability of the dry forest in androy: A viability analysis. Ecological Economics,
104:33 – 49.

Aubin, J. and Saint-Pierre, P. (2007). An introduction to viability theory and man-
agement of renewable resources. In Kropp, J. and Scheffran, J., editors, Advanced

2https://github.com/ISCPIF/viabilitree

22

Methods for Decision Making and Risk Management, pages 43–80. Nova Science
Publishers.

Aubin, J.-P. (1991). Viability theory. Birkhäuser, Basel.

Aubin, J.-P., Bayen, A., and Saint-Pierre, P. (2011). Viability Theory: New Directions.
Springer.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18(9):509–517.

Bernard, C. and Martin, S. (2012). Building strategies to ensure language coexistence
in presence of bilingualism. Appl.Math.Comput., 218(17):8825–8841.

Bonneuil, N. (2006). Computing the viability kernel in large state dimension. Journal
of Mathematical Analysis and Applications, 323(2):1444 – 1454.

Brias, A., Mathias, J.-D., and Deffuant, G. (2016). Accelerating viability kernel com-
putation with cuda architecture: application to bycatch fishery management. Com-
putational Management Science, pages 1–21.

Bruckner, T., Petschel-Held, G., Leimbach, M., and Toth, F. L. (2003). Methodological
aspects of the tolerable windows approach. Climatic Change, 56:73–89.

Carpenter, S. R., Ludwig, D., and Brock, W. A. (1999). Management of eutrophication
for lakes subject to potentially irreversible change. Ecol Appl., 9:751–771.

Chapel, L. and Deffuant, G. (2011). Approximating viability kernels and resilience
values: Algorithms and practical issues illustrated with kaviar software. In Deffuant,
G. and Gilbert, N., editors, Viability and Resilience of Complex Systems, pages 161–
192. Springer.

Ciriacy-Wantrup, S. (1952). Resource Conservation: Economics and Policies. Univer-
sity of California Press, Berkeley.

Deffuant, G., Chapel, L., and Martin, S. (2007). Approximating viability kernels with
support vector machines. IEEE T. Automat. Contr., 52(5):933–937.

Doyen, L. and Lara, M. D. (2010). Stochastic viability and dynamic programming.
Systems & Control Letters, 59(10):629 – 634.

Falcone, M. and Saint-Pierre, P. (1987). Slow and quasi-slow solutions of differential
inclusions. Nonlinear Analysis: Theory, Methods & Applications, 11(3):367–377.

Gourguet, S., Thébaud, O., Jennings, S., Little, L., Dichmont, C., Pascoe, S., Deng,
R., and Doyen, L. (2015). The cost of co-viability in the australian northern prawn
fishery. Environmental Modeling & Assessment, pages 1–19.

Hardy, P.-Y., Béné, C., Doyen, L., and Schwarz, A.-M. (2013). Food security versus
environment conservation: A case study of solomon islands’ small-scale fisheries.
Environmental Development, 8:38 – 56.

23

Lhommeau, M., Jaulin, L., and Hardouin, L. (2011). Capture basin approximation
using interval analysis. International Journal of Adaptive Control and Signal Pro-
cessing, 25(3):264–272.

Maidens, J. N., Kaynama, S., Mitchell, I. M., Oishi, M. M., and Dumont, G. A. (2013).
Lagrangian methods for approximating the viability kernel in high-dimensional sys-
tems. Automatica, 49(7):2017 – 2029.

Martin, S. (2004). The cost of restoration as a way of defining resilience: a viability
approach applied to a model of lake eutrophication. Ecol. Soc., 2(9):8.

Martinet, V. and Doyen, L. (2007). Sustainability of an economy with an exhaustible
resource : A viable control approach. Resour. Energy Econ., 29(1):17–39.

Mesmoudi, S., Alvarez, I., Martin, S., Reuillon, R., Sicard, M., and Perrot, N. (2014).
Coupling geometric analysis and viability theory for system exploration: Applica-
tion to a living food system. Journal of Process Control, 24(12):18–28.

Mesmoudi, S., Perrot, N., Reuillon, R., Bourgine, P., and Lutton, E. (2010). Optimal
viable path search for a cheese ripening process using a multi-objective ea. In Proc.
of Int. Conf. on Evolutionary Computation (ICEC), pages 225–230.

Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Toth, F., and Hasselmann, K.
(1999). The tolerable windows approach: Theoretical and methodological founda-
tions. Climatic Change, 41(3-4):303–331.

Rapaport, A., Terreaux, J., and Doyen, L. (2006). Viability analysis for the sustainable
management of renewable resources. Math Comput Model., 43(5,6):466–484.

Regan, H., Ben-Haim, Y., Langford, B., Wilson, W., and Lundgerg, P. (2005). Robust
decision-making under severe uncertainty for conservation management. Ecological
Applications, 15(4):1471–1477.

Rougé, C., Mathias, J., and Deffuant, G. (2013). Extending the viability theory frame-
work of resilience to uncertain dynamics, and application to lake eutrophication.
Ecological Indicators, 29:420–433.

Rouquier, J.-B., Alvarez, I., Reuillon, R., and Wuillemin, P.-H. (2015). A kd-tree algo-
rithm to discover the boundary of a black box hypervolume. Annals of Mathematics
and Artificial Intelligence, pages 1–16.

Sabatier, R., Oates, L., and Jackson, R. (2015). Management flexibility of a grass-
land agroecosystem: A modeling approach based on viability theory. Agricultural
Systems, 139:76 – 81.

Saint-Pierre, P. (1994). Approximation of the viability kernel. Applied Mathematics &
Optimisation, 29(2):187–209.

Sicard, M., Perrot, N., Reuillon, R., Mesmoudi, S., Alvarez, I., and Martin, S. (2012).
A viability approach to control food processes: Application to a camembert cheese
ripening process. Food Control, 23(2):312 – 319.

24

Tinka, A., Diemer, S., Madureira, L., Marques, E., Sousa, J., Martins, R., Pinto, J.,
Silva, J., Sousa, A., Saint-Pierre, P., and Bayen, A. (2009). Viability-based com-
putation of spatially constrained minimum time trajectories for an autonomous un-
derwater vehicle: Implementation and experiments. In Proc. the 2009 American
Control Conference, pages 3603–3610.

Verhulst, P.-F. (1845). Recherches mathématiques sur la loi d’accroissement de la pop-
ulation. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de
Bruxelles, 18:1–42.

Wei, W., Alvarez, I., and Martin, S. (2013). Sustainability analysis: Viability concepts
to consider transient and asymptotical dynamics in socio-ecological tourism-based
systems. Ecological Modelling, 251:103 – 113.

25

AppendixA. Proof of theorem 2

Let h be the size of the grid (it is also the size of the kd-tree smallest leaf). Let p
be the dimension of the space. We note AC the complement of set A in the state space.
We consider a kd-tree G built with algorithm 1, such that G = 1S. We note S<1> the
indicator set for G1 (one basic dilation step), and S<p> = S1 the indicator set for Gp
(p basic dilation steps corresponding to one standard dilation step in dimension p).

We recall Theorem 2: A ν ∈ N steps standard dilation (pν basic dilations) verifies:

S ⊕ νh ⊂ Sν ⊂ S ⊕ νhp

Proof. We first prove that if y ∈ S<1>, we have: d(y, S) ≤ h.
If y /∈ S, y belongs to a former labeled 0 leaf from a pair of atomic leaves with

different labels. This critical pair has a unique common border. The orthogonal pro-
jection of y on this common border is in S. Since the size of an atomic leaf is h, then
we have d(y, S) ≤ h.

We do a standard dilation step (p basic dilation steps) and let y ∈ S<p>, we have:
d(y, S) ≤ ph. So S<p> ⊂ S ⊕ ph. So a ν ∈ N steps standard dilation verifies:

Sν ⊂ S ⊕ νhp (A.1)

Conversely, let us consider a standard dilation step (p basic dilation steps). We show
that d((S<p>)C , S) ≥ h.

Proof. Let z /∈ S such that d(z, S) < h. Let z′ be a point of S where the distance is
reached, andL′ the leaf to which z′ belongs. z′ belongs to the boundary ofL′ (since the
distance is reached for z′). L′ is represented by a vector of intervals. Let A(z, z′) 6= ∅
be the set of coordinates i for which zi − z′i 6= 0.

We note]A the cardinal of set A. If]A = 1 with A = {j} this means that the leaf
L defined with the same intervals as L′ for i 6= j and with the adjacent interval for the
jth coordinate (in z direction) is labeled 0. L is necessary atomic since it is adjacent
to a labeled 1 leaf, so {L,L′} is a pair of critical leaves and z ∈ L since d(z, S) ≤ h.
With the definition of the dilation algorithm, L will be labeled to 1 at the first basic
dilation step, so L ⊂ S<1> and z ∈ S<1>.

We now show by induction the following property. Let z /∈ S, d(z, S) < h. Then:

∃z′ ∈ S, d(z, z′) < h and]A(z, z′) = k ≤ p then z ∈ S<k>. (A.2)

We first prove that this property is true for k = 1. Let z′ ∈ S, d(z, z′) < h. As
above, there is some v′ = z′+t(z−z′) with t ∈ [0, 1) such that d(z, v′) ≤ d(z, z′) < h
and v′ belongs to the boundary of a labeled 1 leaf L′, adjacent to the labeled 0 leaf to
which z belongs. So z ∈ S<1>.

Let us assume that this proposition A.2 is verified for k < p. We now consider the
case where]A = k+ 1. Without any generality loss we can assume that 1 ∈ A. Let L′

be the leaf to which z′ belongs. Let us consider v = z′+(z−z′).e1, where ei, i ≤ k+1
are the unit vectors of the orthonormal basis. We have d(z, v) < d(z, z′) < h, and
A(z, v) = A(z, z′) − 1. If v ∈ S, then v ∈ S<1>. Proposition A.2 applies to z with
v ∈ S<1>, so z ∈ (S<1>)<k> = S<k+1>. Otherwise, if v /∈ S, let us consider the

26

leaf L defined with the same intervals as L′ for coordinates j 6= i = 1 and with the
adjacent interval for the first coordinate (in z − z′ direction). v belongs to L with label
0. {L,L′} is a pair of critical leaves, so L will be labeled to 1 at the first basic dilation
step, so L ⊂ S<1> and v ∈ S<1>. So we can apply the proposition to z and v ∈ S<1>

at step k: we have z ∈ (S<1>)<k> = S<k+1>.
So if z /∈ S such that d(z, S) < h, then z ∈ S<p>, and so d((S<p>)C , S) ≥ h �

Since d((S<p>)C , S) ≥ h, we have S<p> ⊃ S ⊕ h. If we perform a ν ∈ N steps
standard dilation, we then have:

Sν ⊃ S ⊕ νh (A.3)

With equations A.1 and A.3, we have shown that : S ⊕ νh ⊂ Sν ⊂ S ⊕ νph

AppendixB. Proof of Proposition 3

We note 	 the erosion operator: S 	B(ρ) = {x ∈ S, B(x, ρ) ⊂ S}.
We recall the definition of the sequence built by the learning-algorithm L. The

initialization of the sequence is: K0 := Kh.
The recursive definition of the sequence is the following:

Kn+1 = {xh ∈ Kn | d(F (xh), L(Kn)) ≤ µβ(h)} . (5)

The conditions of the convergence theorem for learning functions are the following:

L(K0) = K (6)

∃λ > 0, ∀n ≥ 0

{
∀x ∈ L(Kn) d(x,Kn) ≤ λβ(h) (7)
∀x ∈ K\L(Kn) d(x,Kh\Kn) ≤ β(h) (8)

We now prove that the kd-tree algorithm verify the conditions of Theorem 1.

Proof. We consider the learning function Lt that associates to a vector xh of the grid
the ball of the sup-norm of radius h/2 centered on xh: Lt(xh) = B∞(xh, h/2). We
note Mn the sequence built from definition 5 with L = Lt, M0 = Kh. We first prove
Proposition 1.

Proposition (1). Lt verifies the conditions (7) and (8) of Theorem 1.

Proof. Let x ∈ Lt(M
n), then by construction there exists xh ∈ Mn such that

x ∈ B∞(xh, h/2), so condition 7 is verified. Let x ∈ K\Lt(Mn), and let xh ∈ Kh

such that d(x, xh) ≤ β(h). We have x ∈ B∞(xh, h/2), so necessarily xh /∈ Mn and
condition 8 is verified. �

Let us consider a kd-tree Gn = 1Sn built at step n with Algorithm (4). If the kd-
tree learning algorithm uses at each step all the vectors from the sequence Mn, then
Kn = Mn and Sn = Lt(M

n). But the main interest of the method is to use only a
subset of the grid. The kd-tree learning algorithm uses a subsetHn ofMn and a subset
In of Kh\Mn to compute L(Kn) and when not all leaves are atomic, Hn and In are
strictly included in Mn and Kh\Mn respectively. Kn denotes here the grid vectors

27

that are labeled to 1 as a result of the learning algorithm. In order to show that the
kd-tree learning algorithm verifies the conditions (7) and (8) of Theorem 1, we prove
that Kn = Mn.

We recall the set of hypotheses H1, depending on F and K only:
The sequence Mn is such that there exists for each n ∈ N, a closed set M(n) ⊂ K
verifying Mn ⊂M(n) and Kh\Mn ⊂ K\M(n), and the sets M(n) verify: ∃ρ1 > 0,
∃ρ2 > 0, ∀n ∈ N, ∀x ∈M(n), ∃yx ∈M(n), x ∈ B(yx, ρ1) ⊂M(n) (10)
∀x ∈ K\M(n), ∃yx ∈ K\M(n), x ∈ B(yx, ρ2) ⊂ K\M(n) (11)
M(n)	B(ρ1) and (K\M(n))	B(ρ2) are path-connected (12)

We now prove Proposition 2: When hypothesis H1 is verified, the sequenceKn defined
by the kd-tree learning algorithm L is the sequence Mn defined by Lt.

Proof. Let xh ∈ Kh\Kn. We note l the leaf of Gn to which xh belongs. The label
of l is 0. If the label of l is evaluated at xh, then xh ∈ In ⊂ Kh\Mn. We now prove
that xh ∈ Kh\Mn when xh /∈ In.

Let us suppose that xh ∈Mn. Then from hypothesis H1.10 there is x′ ∈M(n)	
B(ρ) such that d(xh, x

′) ≤ ρ. Let yh ∈ Hn. There is such a vector since Sn 6= ∅.
(Otherwise, if Sn = ∅ the kd-tree is completely refined, and in that case we have
xh ∈ In). Since Hn ⊂ Mn, with Hypothesis (10), there is y′ ∈ M(n) 	 B(ρ) such
that d(yh, y

′) ≤ ρ. With Hypothesis (12) there is a path γ2 : [t1, t2] 7→ M(n)	 B(ρ)
connecting x′ and y′ in M(n) 	 B(ρ), a segment γ3 : [t2, 1] 7→ B(y′, ρ) connecting
y′ and yh, and a segment γ1 : [0, t1] 7→ B(x′, ρ) connecting x′ and xh. We call γ the
path from xh to yh built from γ1, γ2, γ3. The label of yh is 1 while the label of xh
is 0 (since it is the label of l), so the boundary of L(Kn) is crossed along γ: there is
a pair of critical leaves (z, z′) along the path, with zh ∈ z ∩ In and z′h ∈ z′ ∩ Hn,
and 0 ≤ t1 < t2 ≤ 1 with γ(t1) ∈ z and γ(t2) ∈ z′ We note t1 < T ≤ t2 such that
γ(T) ∈ (z̄ ∩ z̄′). The boundary cannot be crossed along γ2 (since h << ρ, we would
have z ⊂M(n) and consequently zh ∈Mn, which is not possible since zh ∈ In). For
the same reason it cannot be crossed along γ3, since yh ∈ Hn, and even if yh = z′h
we have d(zh, y

′) < d(yh, y
′) when h is small enough compared to ρ. (Since γ(T),

yh, zh, y′ belongs to the same plane P and in that plane, the projection of γ(T) on the
segment [yh, zh] is yh+zh

2). This implies that zh ∈ B(y′, ρ) and therefore zh ∈ Mn,
which is impossible. The same reasoning shows that it cannot be along γ1 either: since
xh /∈ In, xh 6= zh and xh 6= z′h, so d(z′h, x

′) < d(xh, x
′), so z′ ⊂M(n), which is not

possible. So xh ∈ Kh\Mn.
We then have Kh\Kn ⊂ Kh\Mn. Since symmetrically, we have Kn ⊂Mn, then

Kn = Mn. �

So if H1 is verified, the sequence Kn built by the kd-tree learning algorithm is
Kn = Mn (with Proposition 2). This sequence verifies the conditions (7) and (8)
of Theorem 1 (with Proposition 1). So if L(K0) = K, Theorem 1 applies and the
set produced by the kd-tree learning algorithm converges towards viabSdt(K) when h
tends to 0.

The authors thank JE Dabas for the petanque-like proof.

28

