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Evaluating order acceptance policies for divergent production systems 

with co-production 

Abstract: The impacts of using different order acceptance policies in 

manufacturing sectors are usually well known and documented in the literature. 

However, for industries facing divergent processes with co-production (i.e. 

several products produced at the same time from a common raw material), the 

evaluation, comparison, and selection of policies are not trivial tasks. This paper 

proposes a framework to enable this evaluation. Using a simulation model that 

integrates a custom-built ERP, we compare and evaluate different order 

acceptance policies in various market conditions. Experiments are carried out 

using a case from the forest products industry. Results illustrate how and when 

different market conditions related to divergent/co-production industries may call 

for Available-To-Promise (ATP), Capable-To-Promise (CTP), and other known 

strategies. Especially, we show that advanced order acceptance policies like CTP 

may generate a better income for certain types of market and, conversely to 

typical manufacturing industries, ATP performs better than other strategies for a 

specific demand patterns. 

Keywords: Order acceptance policies, discrete event simulation, co-production 

systems, divergent production systems, decision support systems. 

1. Introduction 

For traditional manufacturing industries (e.g. assembly), the behaviour induced by 

mainstream planning and order acceptance policies such as Available-To-Promise 

(ATP) or Capable-To-Promise (CTP) is well known and documented (Slotnick, 2011). 

The literature typically shows the trade-off between accepting orders and losing sales 

(Altendorfer and Minner, 2015). However, it is very difficult to assess the impact of 

such policies for industries with divergent processes and where several co-products and 

by-products are made from the same raw material at the same time (i.e. co-production, 

see Öner and Bilgiç [2008]). We denote an important difference between these two 

terms. A co-product is a valuable product that we can produce when producing our first 



choice of products. By-products are unintended and inexorably produced when 

producing any product. By-products are lower-value products like wood chips in the 

lumber industry, in contrast to co-products that can be lumber products. Co-production 

generates inventories for products that can be hard to sell or have less value. The agro-

food industry, the oil industry, the forest products industry, and natural resources in 

general, are all examples of manufacturing systems facing divergent/co-production 

processes. 

For this context, selecting a production planning and an order acceptance policy 

(based on CTP, ATP, or others) and determining how it should be managed (e.g. 

planning horizon, replanning frequency, etc.) is not a tremendous task. The answer will 

depend on the co-production structure of the processes, the presence or absence of 

alternative production processes, and, of course, on market considerations.  

With this in mind, we developed a simulation-based framework that integrates a 

custom-built ERP system. It allows comparing and evaluating different order 

acceptance policies according to the business environment and market conditions. By 

testing different scenarios using the framework, one can answer questions concerning 

the order acceptance policy to implement, the planning horizon and planning frequency 

to apply, and the impact all the configurations may have on the financial performance of 

the company. 

With the help of this framework, we were able to simulate different approaches 

suitable for the North American lumber industry. This industry is a very interesting case 

of divergent process with co-production as it produces and sells both very standard 

commodity products as well as other products specifically designed for certain 

customers. Our experiments led to recommendations that would have been seen as 

counter-intuitive without any experimentations. For example, we show that advanced 



order acceptance policies like CTP may generate a better income for certain types of 

market and, conversely to typical manufacturing industries, ATP performs better than 

other strategies for a specific demand patterns. 

The remainder of the paper is organised as follows. Section 2 presents 

preliminary notions regarding decision-making models for divergent production 

systems with co-production, as well as a description of the lumber manufacturing 

industry. Section 3 introduces the simulation framework and presents a first experiment 

conducted to verify and validate the model. Section 4 highlights how a lumber company 

may perform under various market conditions when adopting different production 

planning and order acceptance policies. Section 5 concludes the paper. 

2. Preliminary notions 

2.1 Divergent processes with co-production 

In some industries, a common raw material may conduct to multiple finished and semi-

finished products. This is called a divergent process (Arnold, Chapman, and Clive 

[2012]). When the production process produces these co-products at the same time, then 

it is said to be a divergent process with co-production (Gaudreault et al. [2011]). Facing 

both divergent processes and co-production makes the production planning especially 

challenging. As a result, the development of decision-making tools to support this 

specific context becomes necessary.  

A first example of an industry dealing with divergent processes is the food sector. 

Ahumada and Villalobos (2009) listed more than fifty models that were developed, used 

or tested to plan all the activities of the food supply chain from farm to table (Aramyan 

et al. 2006). Another example is the oil industry. Pinto, Joly, and Moro (2000) proposed 

an overview of linear programming and nonlinear programming models as well as 



commercial tools created to support planning and scheduling in oil refineries. Taskin 

and Unal (2009) looked at the float glass manufacturing process and developed a 

decision-support system at the tactical level for a company in Turkey. They also 

mentioned several works that proposed models to better plan the production of this 

industry (Liu and Sherali [2000], Crama et al. [2001]) and co-production systems in 

general (Bitran and Leong [1992], Bitran and Gilbert [1994], Joly, Moro and Pinto. 

[2002]). Finally, Kallrath (2002) studied planning and scheduling approaches for the 

case of the chemical industry. Even though those models are useful for all the industries 

mentioned, they didn’t focus on comparison between different order acceptance 

policies. 

 

2.2 The case of the lumber industry 

Due to the limited availability of wood fibre, the heterogeneity of the material in 

terms of inherent characteristics, quality, physical dimensions (diameter, length, etc.), 

complex transformation processes, and a divergent product flow, sawmilling is a 

difficult-to-manage process. In Canada, 90% of the forest belongs primarily to the 

government which decides on the quantity of wood to allocate to each forest products 

company (see the Annual report: « The state of Canada’s forests » from the Natural 

Resources Canada). In the province of Quebec, this supply doesn’t cover all the 

company’s needs, the remainder has to be satisfied via auctions and private forests (i.e. 

unreliable supply). As a result, a forest products company facing an increasing demand 

will not necessarily be able to increase its procurement accordingly.  

Producing lumber involves a three-phase manufacturing process (Gaudreault et 

al. 2010). It first encompasses a sawing unit responsible for sawing logs into green 

rough lumber according to a certain cutting pattern. At this stage, the lumber produced 



varies in terms of quality (grade), length, and dimensions. The lumber must then be 

dried using a kiln unit so as to reduce its moisture content. According to Yan, De Silva, 

and Wang (2001), the drying operation is crucial to reduce biological damage, increase 

dimensional stability, and reduce transportation costs. Furthermore, this step is 

necessary for lumber use in the construction market (Wery et al. 2014). The final step is 

conducted by the finishing unit to obtain the desired surface and thickness. 

Many optimisation models have been developed to better support lumber 

production planning. Marier et al. (2011; 2014) proposed a tactical mixed-integer 

programming (MIP) model that integrates the three production phases (sawing, drying, 

finishing) into a Sales and Operations Planning (S&OP). It is used to correlate sales, 

marketing, procurement, production, so as to create an annual plan that takes different 

product families into consideration. A similar tactical planning model was proposed by 

Singer and Donoso (2007) for the Chilean sawmilling industry. At the detailed 

operational level, Gaudreault et al. (2010) proposed three MIP models used to 

plan/schedule sawing, drying, and wood finishing operations. The objective function 

allows maximising production value and/or minimising order lateness. A basic 

coordination mechanism is provided to synchronise those plans. Improved coordination 

mechanisms are proposed in Gaudreault, Frayret, and Pesant (2009) and Gaudreault et 

al. (2012). A stochastic version of the sawing operations planning was developed by 

Kazemi-Zanjani, Ait-Kadi, and Nourelfath (2013). An improved version of the drying 

model was also proposed in Gaudreault et al. (2011).  

 

2.3 Evaluating order acceptance policies 

The previous sub-sections exposed that many researchers have proposed mathematical 

models which aim to plan/optimise divergent processes with co-production. However, 



companies do not necessarily know the best way to integrate these mathematical models 

within their management processes nor which of these models would be the most 

efficient one regarding their market contexts. 

The same situation applies for order acceptance policies. Order acceptance 

policies define the rules used to accept or reject an order depending on the product 

availability and the production capacity of the company. The best-known strategies are 

available-to-promise (ATP) and capable-to-promise (CTP), see APICS (2012). Many 

researchers have spent time studying those acceptance policies such as Vollmann, Bery 

and Whybark (1997) and Taylor and Plenert (1999) that propose a heuristic technique 

(Finite Capacity Promising) which calculate due dates for customer orders. More 

recently Slotnick (2011) proposed a literature review on order acceptance and 

scheduling. The study focuses on the balance between revenue and costs of processing 

of accepting an order and how to schedule them. Wang et al. (1994) developed some 

rules to accept or refuse an order in a job-shop environment based on profit. More 

recently, Moses et al. (2004) proposed a real-time order promising model based on the 

CTP in a make-to-order environment. The model takes into account the capacity 

requirement and generates due dates before scheduling orders. Pibernik and Yadav 

(2009) developed a combination of both ATP and CTP (Advanced Available-To-

Promise AATP) in a make-to-stock environment while considering a stochastic demand. 

Kirche and Srivastava (2015) developed a real-time order management model that takes 

into account due dates and possible negotiations with penalties in a make-to-order 

environment.  

Order acceptance policies received less attention for industries facing both 

divergent and co-production processes. Kilic et al. (2010) proposed a two-bound 

method for orders acceptance/rejection in the food industry in a stochastic environment, 



based on the resource level. It accepts every order when the resource level is high 

enough. If resource level is low, accept an order is permitted only if future orders with 

higher value are not possible. They compare the method to a First Come Fist Served 

(FCFS) approach. Azevedo, D’Amours, and Rönnqvist (2012) proposed an order 

acceptance model for the Canadian softwood lumber industry, but for make-to-stock 

environment only. Islam (2013) studied order-promising and production planning 

methods for sawmills. He developed a MIP model that included ATP calculation and 

production planning while considering two types of demand: contract and spot market. 

However, only one variant ATP calculation is used without any comparison with other 

order acceptance policies. 

2.4 Assessment with simulation  

 

Comparing different production strategies or acceptance policies for various 

market conditions may be facilitated by the use of simulation. El Haouzi, Thomas, and 

Petin (2008) used discrete-event simulation to compare different manufacturing systems 

for a company implementing Demand Flow Technology (DFT). Abdel-Malek, 

Kullpattaranirun, and Nanthavanij (2005) also exploited simulation to compare different 

supply chain outsourcing strategies, using the inventory levels and the total cost as 

performance indicators. Jerbi (2014) used simulation, coupled with optimisation, to 

assess allocation strategies of a forest value chain. Many works highlighted the 

possibilities of combining multi-agent systems with simulation. Lemieux (2010) 

mentioned several ones, including Julka, Srinivasan, and Karimi (2002) as well as 

Garcia-Flores and Wang (2002) who provided frameworks for the simulation of supply 

chains in the chemical industry. Mourtzis, Doukas, and Psarommatis (2015) integrated 

different optimisation methods to design and operate manufacturing networks subject to 



various constraints (economical and environmental) and demand fluctuation. Some 

criteria like cost, time, environmental impact and quality are highlighted. They used 

discrete-event simulation to examine the complexity of the network and to compare 

different network configuration alternatives. Renna (2015) developed a multi-agent 

architecture to model the decentralized structure of a production network. He then used 

the model to study diverse coordination strategies between network members. The 

author demonstrated that market conditions influence the performance of both the 

customer and the supplier. Finally, Raaymakers, Bertrand, and Fransoo (2000) used 

simulation to accept or refuse an order in a chemical company depending on the 

maximal capacity of the work centre. They showed that simulation is an efficient tool to 

compare and evaluate order acceptance strategies. 

2.5 Summary 

The literature showed that some models have been developed and methods used 

over the years to better plan production activities and order acceptance. Nevertheless, to 

the best of our knowledge, there are still no studies that compare diverse order 

acceptance policies for divergent/co-production process industries depending on market 

conditions. That is the challenge we aim to address in the next section. 

3. Proposed simulation framework 

This section introduces a generic framework developed to evaluate and compare 

different order acceptance policies according to a certain production context and diverse 

market conditions. 

A conceptual representation of the framework is shown in Figure 1. The 

simulation process is carried out as follows: Orders are first generated according to a 

Poisson distribution (Ben Ali et al., 2014) and a given demand lead-time distribution 



(i.e. time between the order arrival and the required delivery date, (see Arnold et al. 

[2012]). Each order can next be either accepted or rejected according to a policy (ATP, 

CTP, or other ones). If the order is accepted, it “waits” until there is material availability 

and a delivery date associated with it. It is then shipped. To provide support for 

inventory management, production planning, and ATP and CTP calculations, a custom-

built ERP system has been developed using the C# programming language and 

connected to the simulation tool. In particular, this custom-built ERP uses a 

mathematical model from Marier et al. (2014) and the Cplex optimisation solver for 

lumber production planning. 

INSERT Figure 1 HERE 

 

The next sub-section explain how the simulation analyst can configure and use 

the framework to assess different order acceptance policies. 

3.1 Configuring the framework 

Instead of implementing/coding ATP and CTP explicitly in our framework, we provide 

the simulation analyst with a set of more generic parameters that allow configuring the 

system in order to adopt many ATP variants, CTP variants, or other order acceptance 

policies of its choice. Those generic parameters that allow defining various detailed 

operations planning and orders acceptance policies are: 

• Length of the production planning horizon; 

• Re-planning frequency; 

• After planning/replanning to satisfy orders, should we use still available capacity 

according to target previously established at the tactical level?  



• Is it mandatory when planning/replanning to continue satisfying previous 

commitments (make them hard constraints)? 

• When a new tentative order arrives, are we allowed to re-plan (update the 

production plan) in order to try to satisfy it? 

• Should we accept an order even though the quantity is not available according to 

our production plan and current commitments? 

Setting the last parameter to “yes” allows implementing “dumb” strategies 

(‘accept all orders’) which can be used as a baseline to compare with other more 

advanced strategies. By default, an order of size Q is accepted only if: 

 Q ≤ I + P& − E&)*+
&,-./ − max

)3&34
(E6 − P6)&

6,)  (1) 

Where D is the order due date, T the simulation horizon, I the current inventory, 

Pt the production at period t, and Et the previous commitments for period t. 

It is also possible to configure the system to accept orders only if the product is 

already in inventory (we call that policy ‘stock’). 

Different combinations of the other parameters allow implementing a large 

variety of strategies, from “plan once a week without taking demand into account” to 

advanced approaches such ATP or CTP. It is also possible to define different strategies 

for different product families, such as a mixed approach using ATP for commodity 

product orders and CTP for customised products. 

Finally, the simulation analyst can plug-in the production planning algorithm of 

its choice. 

3.2 Verification and validation of the model  

Experiments were carried out in order to perform verification and validation of the 



model (see Sargent (2004)). By definition, model verification concerns the way the 

system implementation is error-free (i.e. verification to ensure that the flow equilibrium 

is always satisfied). Model validation checks whether the model fits the real-life system 

or not. In order to do this, different scenarios were tested on a case small enough to 

anticipate the results. 

Table 1 below shows the full-factorial design used for this purpose. It defines 

parameter values for the order acceptance policy, the production planning policy, and 

market conditions. The values used in the simulation were inspired by the standards 

typically found in Canadian sawmills.  

(Table 1) 

 

A total of 600 scenarios were defined. The simulation horizon covered a full 

year, each day being divided into 2 production shifts (periods) of 7 hours of work. 

Enough raw materials were available for the actual production capacity. Responses of 

the simulation were related to the volume of sales and the average inventory. We 

needed 15 replications to obtain a significant confidence interval (confidence level of 

95%). The time needed to run one scenario considering the confidence interval was 

around 50 seconds, except for the CTP case which was around 10 minutes.  

3.2.1 Impact of the length of the planning horizon 

Figure 2 shows the impact of the length of the planning horizon on the total volume of 

orders accepted and on the average inventory level. The parameters of the model are set 

for a demand intensity corresponding to 130% of the production capacity, a triangular 

demand lead-time distribution (1, 2, 3), and a re-planning frequency of 1 week. Results 

are shown for the different acceptance policies investigated (ATP, CTP, Stock, and 



AcceptAll). AcceptAll is utopic because accepted volume exceeds the total capacity, 

hence generating backorders. However, it defines an upper bound for the total volume 

of sales and a lower bound for the inventory level. It is the same idea as with the Stock 

policy, which provides the lower bound for the total volume of accepted orders and the 

upper bound for inventory levels when the length of the planning horizon is high 

enough to take the entire demand into account.  

INSERT Figure 2 HERE 

 

If we look at the volume of orders accepted for ATP and CTP, as expected, they 

are greater than for Stock when we reach a planning horizon that takes into account the 

entire demand. Volume of accepted orders for ATP and CTP increases with the length 

of the planning horizon (the shorter the horizon, the more we need to refuse some orders 

because our production plan and ATP do not reach that point). In our specific case, with 

a cumulative lead time of 4 weeks and a replanning frequency of 1 week, there is no 

need to have a planning horizon superior to 4 weeks since no order can be received after 

the fourth week (although industry often uses a longer planning horizon to have a better 

visibility, as mentioned by Arnold, Chapman, and Clive (2012)). This result was 

expected (see Vollman, Berry, and Whybark (1997)) and contributed to establish the 

validity of the model. 

Conversely, the inventory level associated to ATP and CTP policies decreases 

when the length of the planning horizon increases, until we reach a planning horizon of 

four weeks. This result is also coherent.  

Finally, we note that for ATP and CTP policies, even though the accepted 

volume is only slightly higher than the Stock policy (as the global production capacity 



remains the same), the reduction of the average inventory is significant (around 58.5% 

for a planning horizon of four weeks). 

3.2.2 Impact of demand intensity 

We first recall that demand intensity is the total demand expressed as a percentage of 

the total production capacity. Figure 3 shows the total volume of accepted orders and 

the average inventory according to the demand intensity. 

As expected, the greater the demand intensity is, the greater the total volume of 

accepted orders will be. This is true until we reach a point where the entire production 

can be sold. For the specific case reported, it was reached at around 300% (the volume 

of accepted orders is then equalled to the global production capacity). An intensity of 

100% of the production capacity would thus not be enough (due to the stochastic 

environment, demand for some specific products would be less than their production 

volumes; some orders would have due date outside the simulation horizon).  

INSERT Figure 3 HERE 

 

Regarding the average inventory level, the greater the intensity of demand is, the 

smaller the average inventory has to be. This is true for any policy. However, the 

greater the intensity is, the bigger the difference between ATP/CTP and Stock policies 

is. 

We recall that AcceptAll policy may look attractive (less inventory). However, 

there is a huge number of late deliveries and therefore customer satisfaction is very 

poor. By comparison, on-time delivery reaches 39% for AcceptAll, against 100% for 

Stock, ATP, and CTP policies.  



4. Using the framework to select the best policy according to market 

conditions 

In this section, we show how the simulation model was used to determine which 

strategy should be followed by a company according to specific market characteristics. 

We will thereby measure the company's performance, in terms of volume of sales, 

inventory levels, and total income, when a certain order acceptance strategy is applied 

and some market conditions faced. Those results have been established for a particular 

context (i.e. the forest sector) and based on specific values (i.e. reflecting the sawmilling 

industry). Those results should not be generalised to any types of industry nor parameter 

values. On the other hand, the proposed framework could be adapted and used for other 

industries facing divergent processes and co-production. 

4.1 Experiments 

The simulation parameters remained the same as the ones used for model validation, 

except for the following points: the simulation horizon covers two years, and a warm-up 

period of one year is set (this allowed reaching a steady state situation). A total of 240 

scenarios were simulated with a significant number of replications to have a desired 

confidence interval (confidence level of 95%). 

4.2 Results and Analysis 

4.2.1 Commodity-product market  

We first compare how the different policies perform in a 100% commodity-product 

market. For better readability, the error bars are shown every 5% on the x-axis. Figure 4 

shows the volume of sales (number of orders) according to the demand intensity for 

different order acceptance policies (Stock, ATP, and CTP).  



INSERT Figure 4 HERE 

 

When demand is low, CTP accepts more orders than ATP (i.e. it pays to plan the 

production again according to customers’ needs, otherwise opportunities are missed). 

This is the same result we would get in typical manufacturing system with no divergent 

/ co-production processes. However, the particularities of our divergent/co-production 

process arise when demand intensity reaches 125%. From that point, ATP outperforms 

CTP. This is explained by the following reason. When demand intensity reaches 125%, 

demand is significant enough to allow the sale of all the production planned according 

to forecasts. As for CTP, we recall it changes the production processes used to best fit 

the most recent orders. By changing the manufacturing process used, the co-products 

produced change too, and nothing assures that in the short term, demand will exist for 

these new co-products. On the other hand, ATP retains the same production plan that 

was established using forecasts and when demand is high, that volume is easily sold. 

Therefore, what is an advantage when demand is low becomes a disadvantage when 

demand is high. This situation is a good example of the specific impact and difficulties 

associated to process embedding mandatory co-production. Furthermore, forest 

products companies in North-America have frequently to deal with this extra demand 

and even though they would acquire more capacity to better satisfy a demand increase, 

they would still not be able to increase their wood fibre procurement accordingly (i.e. 

limited raw material procurement). 

In order to show how the ATP/CTP trigger point is affected by forecast 

accuracy, Figure 5 provides the same results as Figure 4, but for a situation with 

inaccurate forecasts. In the previous experiments, planning was carried out using a 

forecast supposing that 80% of the most popular produced products would form 100 % 



of demand. In this new experiment, we badly forecast that 20% of the less popular 

products will form 100% of the demand; this is obviously not the case. 

INSERT Figure 5 HERE 

 
The ATP/CTP trigger point is shifted to the right in comparison to Figure 4 

because the ATP policy needs a greater demand intensity so that more of the low-

demand produced products can be used to fulfil the demand. 

4.2.2 Consideration of a market with customised products 

We previously compared different policies in a market composed of 100% commodity 

products. In North America, lumber are standardised by the National Lumber Grades 

Authority (NLGA) , which allows for the products to be considered as a commodity. 

However, in recent years, the demand for customised product has increased while in 

Europe customised products represent the main part of the market.  

In the next experiments, some additional parameters and a new order acceptance 

policy (a mixed approach called MIX that uses ATP for commodity product orders and 

CTP for customised products) are included to represent these two different markets. 

Figure 6 shows the results for a market composed of 70% commodity products 

and 30% customised products.  

INSERT Figure 6 HERE 

 

CTP can again accept more orders than ATP as it can accept orders for 

customised products. However, when demand intensity is high enough, ATP is still able 

to use its entire capacity considering demand for commodity products only. ATP 



becomes even better than CTP for very high demand (around 190% demand intensity) 

for the same reason explained previously. 

This figure also introduces the MIX policy. We recall that MIX policy uses the 

ATP to satisfy demand for commodity products. It only calls re-planning when there is 

demand for customised products. When demand is very low, ATP is outperformed by 

MIX (for the same reason ATP is outperformed by CTP). When demand intensity 

reaches 100%, MIX performs better than CTP because it benefits from the effect of 

good forecasts: MIX uses ATP for commodity products and then keeps the same 

production plan that was established using forecast. When demand is high, that volume 

is easily sold. At a very high demand intensity level, the three policies are almost equal. 

4.2.3 Impact of the strategies on inventory 

All the previous analyses focused on the volume of sales according to the demand 

intensity for each strategy, without considering the average inventory over the year. 

However, it needs to be considered when defining company policies. The following 

figure shows the impact of the different policies on the inventory level. We choose to 

represent the average inventory for a market composed of 90% commodity products and 

10% customised products with an accurate forecast.  

INSERT Figure 7 HERE 

 

For any policy, the average inventory decreases with an increase of the intensity 

of the demand. However, a greater demand intensity involves a larger difference 

between ATP/CTP and Stock policies. We observed previously that for a very high 

demand intensity, the number of accepted orders by an ATP or a CTP policy is equal. In 

contrast, the average inventory for the CTP policy is smaller than for the ATP policy 



because the CTP policy can trigger a new plan each time an order is received. As a 

result, the product spends less time in stock. Finally, we recall that the AcceptAll policy 

is utopic (we accept orders we will not be able to fill) and is only used for comparison 

purposes.  

If the market changes and some customised products are on demand, we observe 

the same trend as previously for the average inventory: the greater the intensity, the 

bigger the difference between ATP/CTP/MIX and Stock policies. 

4.3 Managerial insights 

The proposed framework aims to guide the decision maker in the policy to apply 

according to the market conditions he is facing. However, beyond the performance 

indicators analysed, the fact remains that changes to sales revenues associated with 

customised products and market conditions can be significant. It is therefore interesting 

to show the effect of such a value and how it can guide the decision maker in his choice.  

4.3.1 Margin and total income 

The revenues associated to customised products will usually be greater than the ones 

obtained for standard/commodity products. In North America, a customised product in 

the sawmilling sector can be more expensive by about 10 to 20%. For other industries, a 

customised product can be more expensive by 50% or more. To illustrate the 

importance of the choice of the strategy according to the market conditions, the figure 

below shows the total income for each strategy according to the demand intensity. In 

this example, a unit price of 10$ has been set for the commodity product and a unit 

price of 12$ for the customised product. As expected, the difference in revenues 

associated to commodity and customised products increases the gap between 

approaches. 



INSERT Figure 8 HERE 

 

Moreover, MIX and CTP show a better total income than ATP or Stock. It is 

interesting to see the possible margin to gain depending on the businesses involved as 

well as the customised product requested.  

4.3.2 Decision chart 

In order to facilitate analysis, we propose that decision makers use a decision chart 

synthesising the previous results (Figure 9). Depending on the demand intensity and the 

proportion of orders for customised (versus commodity) products, this chart identifies 

the policy that maximises profit.  

We recall that this decision graph has been established for a particular context 

(i.e. the forest sector) and based on specific values (i.e. reflecting the sawmilling 

industry). The chart should rather be viewed as an “easy-to-read” diagram that allows a 

sawmill company to rapidly understand all the possibilities the different order 

acceptance policies may offer depending on its business context. It would have to be 

recomputed each time major changes occur.  

INSERT Figure 9 HERE 

 

5. Conclusion 

This article proposed a simulation framework to compare and evaluate different order 

acceptance policies for divergent production systems with co-production. The 

simulation tool developed encompasses a custom-built ERP system that covers 

inventory management, lumber production, planning algorithms, and ATP/CTP 

calculation. After being verified and validated, the tool was used to perform different 



studies for North-American lumber production context. By testing different scenarios, 

we were able to measure the impact of well-known order acceptance policies on the 

performance of a sawmilling company. 

It allowed us to illustrate that the best strategy to use in divergent with co-

production context often differs from the one that would have been optimal in a 

classical manufacturing (e.g. assembly) context. As an example, we showed that 

although CTP (capable–to-promise) allows us to have a better income in certain types of 

markets where demand is very low, ATP (available-to-promise) performs better in some 

other cases. Moreover, we showed that using a mixed strategy when the market was 

composed by commodity products and customised products is a better option. Even 

though the results should not be generalised to all types of industry nor parameter 

values, the proposed framework could be used for other industries facing divergent 

processes and co-production. 

In future work, this simulation framework could be used to perform a more 

complex study. For example, it could be adapted to take into account stochastic events 

in production and raw material procurement so as to propose guidelines for more agile 

operations management driven by demand. The framework could also allow simulating 

different coordination mechanisms between the tactical and operational planning level, 

as well as between the different departments (e.g. raw material procurement, production 

and sales). 
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Table 1: Full-factorial design for the validation purpose 

	 Parameters	 Level	 Value	

Market	conditions	

Demand	

Intensity1	
5	

100,	110,	130,	150,175%	

	

Demand	lead	

time	
2	

Random	 triangular	

(1,2,3);	 Random	

triangular	(0.5,1,2)	

Order	Size	 1	
50	MBFM2	 (capacity	 of	 a	

full-truck	load)	

Production	planning	policy	

Re-planning	

frequency	
3	 1,	2,	3	weeks	

Length	of	the	

Planning	

horizon	

5	 2,	2.5,	3,	3.5,	4	weeks	

Order	acceptance	policy		

Order	

acceptance	

policy		

4	 Stock,	ATP,	CTP,	AcceptAll	

  

                                                

1 Demand intensity is a parameter we defined to express the total number of orders received as a 

percentage of the production capacity. It is used to define the arrival rate. 

2 MBFM stands for “thousand-foot board measure”. Board-foot is the unit of wood volume 

measurement used in North America. 



Figure 1: Conceptual representation of the model  

 

Figure 2: Impact of the length of the planning horizon (demand intensity = 130%, 

replanning frequency = 1 week) 
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Figure 3: Impact of the demand intensity (length of the planning horizon = 4 weeks; 

replanning frequency = 1 week) 

 

 

Figure 4: Volume of sales according to the demand intensity (Commodity product = 

100%; accurate forecast; length of the planning horizon = 4 weeks; replanning 

frequency = 1 week) 
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Figure 5: Volume of sales according to the demand intensity (Commodity product = 

100%; inaccurate forecast; length of the planning horizon = 4 weeks; replanning 

frequency = 1 week) 

   

 

Figure 6: Volume of sales according to the demand intensity (Commodity product = 

70%; accurate forecast; length of the planning horizon = 4 weeks; replanning frequency 

= 1 week) 
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Figure 7: Average inventory over the year according to the demand intensity and the 

associated volume of sales (Commodity product = 90%; accurate forecast; length of the 

planning horizon = 4 weeks; replanning frequency = 1 week) 

 

 

Figure 8: Revenues for each policy (commodity product = 70%, accurate forecasts; 

length of the planning horizon = 4 weeks; replanning frequency = 1 week) 
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Figure 9: Decision graph taking into account the margin for a market with an accurate 

forecast (length of the planning horizon = 4 weeks; replanning frequency = 1 week) 

  


