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Event-triggered output feedback stabilization via dynamic high-gain scaling

This work addresses output feedback stabilization via event triggered output feedback. In the first part of the paper, linear systems are considered, whereas the second part shows that a dynamic event triggered output feedback control law can achieve feedback stabilization of the origin for a class of nonlinear systems by employing dynamic high-gain techniques.

I. INTRODUCTION

The implementation of a control law on a process requires the use of an appropriate sampling scheme. In this regards, periodic control (with a constant sampling period) is the usual approach that is followed for practical implementation on digital platforms. Indeed, periodic control benefits from a huge literature, providing a mature theoretical background (see e.g. [START_REF] Aström | Computer-controlled systems[END_REF], [START_REF] Nesic | Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations[END_REF], [START_REF] Alur | Handbook of networked and embedded control systems[END_REF]) and numerous practical examples. The use of a constant sampling period makes closed-loop analysis and implementation easier, allowing solid theoretical results and a wide deployment in the industry. However, the rate of control execution being fixed by a worst case analysis (the chosen period must guarantee the stability for all possible operating conditions), this may lead to an unnecessary fast sampling rate and then to an overconsumption of available resources.

The recent growth of shared networked control systems for which communication and energy resources are often limited goes with an increasing interest in aperiodic control design. This can be observed in the comprehensive overview on eventtriggered and self-triggered control presented in [START_REF] Heemels | Event-triggered and self-triggered control[END_REF]. Eventtriggered control strategies introduce a triggering condition assuming a continuous monitoring of the plant (that requires a dedicated hardware) while in self-triggered strategies, the control update time is based on predictions using previously received data. The main drawback of self-triggered control is the difficulty to guarantee an acceptable degree of robustness, especially in the case of uncertain systems.

Most of the existing results on event-triggered and selftriggered control for nonlinear systems are based on the inputto-state stability (ISS) assumption which implies the existence of a feedback control law ensuring an ISS property with respect to measurement errors ( [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Anta | To sample or not to sample: Self-triggered control for nonlinear systems[END_REF], [START_REF] Abdelrahim | Input-to-state stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF], [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF]) and also [START_REF] Seuret | Stability of non-linear systems by means of event-triggered sampling algorithms[END_REF].

In this ISS framework, an emulation approach is followed: the knowledge of an existing robust feedback law in con-tinuous time is assumed, and some triggering conditions are proposed to preserve stability under sampling.

Another proposed approach consists in the redesign of a continuous time stabilizing control. For instance, the authors in [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF] adapted the original universal formula introduced by Sontag for nonlinear control affine systems. The relevance of this method was experimentally shown in [START_REF] Villarreal-Cervantes | Stabilization of a (3,0) mobile robot by means of an event-triggered control[END_REF] where the regulation of an omnidirectional mobile robot was addressed.

Although aperiodic control literature has demonstrated an interesting potential, important fields still need to be further investigated to allow a wider practical deployment. In particular, literature on output feedback control for nonlinear systems is scarce ( [START_REF] Yu | Event-triggered output feedback control for networked control systems using passivity: Achieving stability in the presence of communication delays and signal quantization[END_REF], [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback laws[END_REF], [START_REF] Liu | Event-based control of nonlinear systems with partial state and output feedback[END_REF], [START_REF] Tanwani | On using norm estimators for event-triggered control with dynamic output feedback[END_REF]) whereas, in many control applications, the full state information is not available for measurement.

The high-gain approach is a very efficient tool to address the stabilizing control problem in the continuous time case. It has the advantage to allow uncertainties in the model and to remain simple.

Different approaches based on high-gain techniques have been followed in the literature to tackle the output feedback problem in the continuous-time case (see for instance [START_REF] Andrieu | Asymptotic tracking of a reference trajectory by output-feedback for a class of non linear systems[END_REF], [START_REF] Krishnamurthy | Dynamic high-gain scaling: State and output feedback with application to systems with iss appended dynamics driven by all states[END_REF], [START_REF] Andrieu | A unifying point of view on output feedback designs[END_REF], [START_REF] Andrieu | Global asymptotic stabilization for a class of bilinear systems by hybrid output feedback[END_REF]) and more recently for the (periodic) discretein-time case (see [START_REF] Qian | Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control[END_REF]). In the context of observer design, [START_REF] Andrieu | Self-triggered continuous-discrete observer with updated sampling period[END_REF] proposed the design of a continuous discrete time observer, revisiting high-gain techniques in order to give an adaptive sampling stepsize (see also [START_REF] Dinh | Continuous-discrete time observer design for lipschitz systems with sampled measurements[END_REF], [START_REF] Mazenc | Design of continuous-discrete observers for time-varying nonlinear systems[END_REF] for observers with constant sampling period).

In this work, we extend the results obtained in [START_REF] Andrieu | Self-triggered continuous-discrete observer with updated sampling period[END_REF] to eventtriggered output feedback control. In high-gain designs, the asymptotic convergence is obtained by dominating the nonlinearities with high-gain techniques. In the proposed approach, high-gain is dynamically adapted with respect to time varying nonlinearities in order to allow an efficient trade-off between the high-gain parameter and the sampling step size. Moreover, the proposed strategy is shown to ensure the existence of a minimum inter-execution time. Note that a preliminary version of this work has appeared in [START_REF] Peralez | Self-triggered control via dynamic high-gain scaling[END_REF] in which only an event triggered state feedback was considered.

The paper is organized as follows. The control problem and the class of considered systems is given in Section II. In Section III, some preliminary results concerning linear system are given. The main result is stated in Section IV and its proof is given in Section V. Finally Section VI contains an illustrative example.

II. PROBLEM STATEMENT

A. Class of considered systems

In this work, we consider the problem of designing an eventtriggered output feedback for the class of uncertain nonlinear systems described by the dynamical system

ẋ(t) = Ax(t) + Bu(t) + f (x(t)), (1) 
where the state x is in R n ; u : R → R is the control signal in L ∞ (R + , R), A is a matrix in R n×n and B is a vector in R n in the following form

A =        0 1 0 • • • 0 . . . . . . . . . . . . . . . 0 • • • 0 1 0 0 • • • • • • 0 1 0 • • • • • • • • • 0        , B =        0 . . . 0 0 1        , (2) 
and f : R n → R n is a vector field having the following triangular structure

f (x) =      f 1 (x 1 ) f 2 (x 1 , x 2 )
. . .

f n (x 1 , x 2 , . . . , x n )      . ( 3 
)
We consider the case in which the vector field f satisfies the following assumption.

Assumption 1 (Nonlinear bound): There exist a non-negative continuous function c, positive real numbers c 0 , c 1 and q such that for all x ∈ R n , we have

|f j (x(t))| ≤c(x 1 ) (|x 1 | + |x 2 | + • • • + |x j |) , (4) 
with

c(x 1 ) =c 0 + c 1 |x 1 | q . ( 5 
)
Notice that Assumption 1 is more general than the incremental property introduced in [START_REF] Qian | Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control[END_REF] since the function c is not constant but depends on x 1 . This bound can be also related to [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF], [START_REF] Krishnamurthy | Dynamic high-gain scaling: State and output feedback with application to systems with iss appended dynamics driven by all states[END_REF] in which continuous output feedback laws were designed. Note however that in these works no bounds were imposed on the function c. Moreover, in our present context we do not consider inverse dynamics.

B. Updated sampling time controller

In the sequel, we restrict ourselves to a sample-and-hold implementation, i.e. the input is assumed to be constant between any two execution times. The control input u is defined through a sequence (t k , u k ) k∈N in R + × R in the following way

u(t) = u k , ∀ t ∈ [t k , t k+1 ) . (6) 
It can be noticed that for u to be well defined for all positive time, we need that

lim k→+∞ t k = +∞ . (7) 
Our control objective is to design the sequence (u k , t k ) k∈N such that the origin of the obtained closed loop system is asymptotically stable. This sequence depends only on the output which in our considered model is simply given as

y(t) = Cx(t) , C = 1 0 • • • 0 . (8) 
Fig. 1. Event-triggered control schematic.

Note however that in the same spirit as for the sample and hold control, we consider only a sequence of output values

y k = Cx(t k ) , (9) 
which corresponds to the evaluation of the output y(•) at the same time instant t k .

In addition to a feedback controller that computes the control input, event-triggered and self-triggered control systems need a triggering mechanism that determines when a new measurement occurs and when the control input has to be updated again. This rule is said to be static if it only involves the current state of the system, and dynamic if it uses an additional internal dynamic variable [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF]. Our approach is summarized in Fig. 1.

C. Notation

In this paper, we denote by •, • the canonical scalar product in R n and by |•| the induced Euclidean norm; we use the same notation for the corresponding induced matrix norm. Also, we use the symbol to denote the transposition operation.

To simplify the presentation, we introduce the following notations:

ξ(t -) = lim τ →t τ <t ξ(τ ), ξ k = ξ(t k ) and ξ - k = ξ(t - k ).

III. PRELIMINARY RESULT: LINEAR CASE

In high-gain design, the idea is to consider the nonlinear terms (the f i 's) as disturbances. A first step consists in synthesizing a robust control for the linear part of the system, neglecting the effects of the nonlinearities. Then, convergence and robustness are amplified through a high gain parameter to deal with the nonlinearities.

Therefore, let us first focus on a general linear dynamical system

ẋ(t) = Ax(t) + Bu(t), (10) 
where the state x evolves in R n and the control u is in R. The matrix A is in R n×n and the matrix B is in R n . The measured output is given as a sequence of values (y k ) k≥0 in R as in [START_REF] Andrieu | Global asymptotic stabilization for a class of bilinear systems by hybrid output feedback[END_REF] where C is a column vector in R n and (t k ) k≥0 is a sequence of times to be selected. In this preliminary case, we review a well known result concerning periodic sampling approaches. Indeed, an emulation approach is adopted for the stabilization of the linear part: a feedback law is designed in continuous time and a triggering condition is chosen to preserve stability under sampling.

It is well known that if there exists a continuous time dynamical output feedback control law that asymptotically stabilizes the system, then there exists a positive inter-execution time δ = t k+1 -t k such that the sampled control law renders the system asymptotically stable. This result is rephrased in the following Lemma 1 whose proof is postponed to Appendix A.

Lemma 1: Suppose that there exist a row vector K c and a column vector K o (both in R n ) rendering (A + BK c ) and (A + K o C) Hurwitz. Then there exists a positive real number δ * such that for all δ in [0; δ * ) the following holds. Let the sequence (t k , u k ) k∈N be defined as

t 0 = 0 , t k+1 = t k + δ , u k = K c x(t k ) , ∀ k ∈ N , (11) where x(t 0 ) is in R n and for k in N * ẋ(t) = Ax(t) + Bu k , ∀ t ∈ [t k , t k+1 ) , (12) x 
(t k ) = x(t - k ) + δK o (C x(t - k ) -y k ). (13) 
Then (x(t), x(t)) = 0 is a globally and asymptotically stable (GAS) solution for the dynamical system defined by ( 6), ( 10), ( 11), ( 12) and ( 13).

This result which is based on robustness is valid for general matrices A, B and C.

We want to point out that the proof of Lemma 1 is based on the fact that if A + BK c and A + K o C are Hurwitz, the origin of the discrete time linear system defined for all k in N as

xk+1 e k+1 = F c (δ) δK o C exp(Aδ) 0 F o (δ) xk e k (14) 
where e = xx is the estimation error, and

F c (δ) = exp(Aδ) + δ 0 exp(A(δ -s))BK c ds (15) 
F o (δ) = (I + δK o C) exp(Aδ) (16) 
is asymptotically stable for δ sufficiently small. However, when we consider the particular case in which (A, B, C) are as in (2) and (8) (i.e. an integrator chain), it is shown in the following theorem that the inter-execution time can be selected arbitrarily large as long as the control is modified.

Theorem 1 (Chain of integrator): Suppose the matrices A, B and C have the structure stated in (2)- [START_REF] Andrieu | High gain observers with updated gain and homogeneous correction terms[END_REF]. Let K c and K o both in R n , be such that A + BK c and A + K o C are Hurwitz. Then there exists a positive real number α * such that for all α in [0, α * ) the following holds. For all δ > 0, let the sequence (t k , u k ) k∈N be defined as

t 0 = 0 , t k+1 = t k + δ , u k = K c L n+1 Lx(t k ) , (17) 
where

x(t 0 ) is in R n and for k in N * ẋ(t) = Ax(t) + Bu k , ∀ t ∈ [t k , t k+1 ) , (18) x(t k ) = x(t - k ) + δL -1 K o (C x(t - k ) -y k ), (19) 
and

L = diag 1 L , . . . , 1 L n , L = α δ . (20) 
Then (x(t), x(t)) = 0 is a GAS solution for the dynamical system defined by ( 6), [START_REF] Anta | To sample or not to sample: Self-triggered control for nonlinear systems[END_REF], [START_REF] Lakshmikantham | Differential and integral inequalities: Theory and applications[END_REF], [START_REF] Liu | Event-based control of nonlinear systems with partial state and output feedback[END_REF] and [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF].

Remark 1: Note that the difference between equation (13) and equation ( 19) is the L -1 factor that appears in the latter.

Remark 2: Note that in the particular case of the chain of integrator the sampling period δ can be selected arbitrarily large. To obtain this result the two gains K c and K o have to be modified as seen in equations ( 17) and [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF] Proof. In order to analyze the behavior of the closed-loop system, let us mention the following algebraic properties of the matrix L:

LA = LAL , LB = B L n , CL -1 = LC . (21) 
Let e = xx. Consider now the following change of coordinates

X = Lx , E = Le (22) 
Employing ( 21) and ( 17), it yields that in the new coordinates the closed-loop dynamics are for all t in [t k , t k+1 ):

Ẋ(t) =L A X(t) + BK c Xk , (23) 
Ė(t) =LAE(t). (24) 
By integrating the previous equality and employing Lδ = α, it yields for all k in N:

X- k+1 = exp(ALδ) + δ 0 exp(AL(δ -s))LBK c ds Xk = F c (α) Xk , E - k+1 = exp(Aα)E k ,
and with ( 19)

Xk+1 = L x- k+1 + δL -1 K o Ce - k+1 = X- k+1 + αK o CE - k+1 = F c (α) Xk + αK o C exp(Aα)E k .
Similarly, it yields:

E k+1 = L(I + δL -1 K o C)e - k+1 = (I + αK o C)E - k+1 = F o (α)E k .
In other words, this is the same discrete dynamic as the one given in [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF]. Consequently, from Lemma 1, there exists a positive real number α * such that ( X, E) = 0 (and thus (x, x) = 0) is a GAS equilibrium for the system [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF] provided Lδ is in [0, α * ).

IV. MAIN RESULT: THE NONLINEAR CASE We now consider the full nonlinear system (1) with f satisfying Assumption 1. Following the high-gain paradigm, the considered control law is the one used for the chain of integrator in ( 17)-( 18)-( 19) with [START_REF] Andrieu | A unifying point of view on output feedback designs[END_REF]. In the context of a linear growth condition, i.e. if the bound c(x 1 ) defined in Assumption 1 is replaced by a constant c, the authors have shown in [START_REF] Qian | Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control[END_REF] that a (well chosen) constant parameter L can guarantee the global stability, provided that L is greater than a function of the bound. However, with a bound in the form (4) of Assumption 1, we need to adapt the high-gain parameter to follow a function of the time varying bound. Following the idea presented in [START_REF] Andrieu | Self-triggered continuous-discrete observer with updated sampling period[END_REF] in the context of observer design, we define L as the evaluation at time t - k of the following continuous discrete dynamics:

L(t) = a 2 L(t)M (t)c(x 1 (t)), ∀t ∈ [t k , t k + δ k ) (25) Ṁ (t) = a 3 M (t)c(x 1 (t)), ∀t ∈ [t k , t k + δ k ) (26) L k = L - k (1 -a 1 α) + a 1 α (27) M k = 1, (28) 
with initial condition L(0) ≥ 1, M (0) = 1 and where a 1 , a 2 , a 3 are positive real numbers to be chosen. For a justification of this type of high-gain update law, the interested reader may refer to [START_REF] Andrieu | Self-triggered continuous-discrete observer with updated sampling period[END_REF] where it is shown that this update law is a continuous discrete version of the high-gain parameter update law introduced in [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF].

With this high-gain parameter and following what has been done in Theorem 1, the sequence of control is defined as follows.

u k = K c L n+1 k L k x(t k ) , ∀k ∈ N, (29) 
where

x(0) is in R n . And, for k in N * ẋ(t) =Ax(t) + Bu(t), ∀ t ∈ [t k , t k+1 ) , (30) x 
(t k ) =x(t - k ) + δ k-1 (L - k ) -1 K o (C x(t - k ) -y k ). (31) 
with

L - k = diag 1 L - k , . . . , 1 (L - k ) n .
It remains to select the sequences δ k and the execution times t k . These are given by the following relations,

t 0 = 0, t k+1 = t k + δ k , (32) 
δ k = min{s ∈ R + | sL((t k + s) -) = α}. (33) 
Equations ( 32)-(33) constitute the triggering mechanism of the self-triggered strategy. It does not directly involve the state value x but the additional dynamic variable L and so can be referred as a dynamic triggering mechanism ( [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF]). The relationship between L k and δ k comes from the right hand side equation of [START_REF] Mazenc | Design of continuous-discrete observers for time-varying nonlinear systems[END_REF]. It highlights the trade-off between highgain value and inter-execution time (see [START_REF] Dabroom | Output feedback sampled-data control of nonlinear systems using high-gain observers[END_REF], [START_REF] Qian | Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control[END_REF]).

We are now ready to state our main result whose proof is given in Section V.

Theorem 2: (Stabization via event-triggered output feedback control): Assume the functions f i 's in (1) satisfy Assumption 1. Then, there exist positive numbers a 1 , a 2 , a 3 , two gain matrices K c , K o and α * > 0 such that for all α in [0, α * ], there exists a positive real number L max such that the set

{x = 0, x = 0, L ≤ L max } ⊂ R n × R n × R,
is GAS along the solution of system (1) with the self-triggered feedback ( 29)-(33). More precisely, there exists a class KL function β such that by denoting (x(•), x(•), L(•)) the solution initiated from (x(0), x(0), L(0)) with L(0) ≥ 1, this solution is defined for all t ≥ 0 and satisfies

|x(t)| + |x(t)| + | L(t)| ≤ β(|x(0)| + |x(0)| + | L(0)|, t), (34)
where L(t) = max{L(t) -L max }. Moreover there exists a positive real number δ min such that δ k > δ min for all k and so ensures the existence of a minimal inter-execution time.

V. PROOF OF THEOREM 2

Following [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF], let us introduce the following scaled coordinates along a trajectory of system (1) which will be used at different places in this paper (compare with ( 22)).

X(t) = S(t)x(t) , E(t) = S(t)e(t) , (35) 
where

S(t) = L(t) 1-b L(t) , L(t) = diag 1 L(t) , . . . , 1 L n (t)
, e(t) = x(t) -x(t), and where 1 ≥ b > 0 is such that bq < 1 with q given in Assumption 1.

A. Selection of the gain matrices K c and K o

Let D be the diagonal matrix in R n×n defined by D = diag(b, 1 + b, . . . , n + b -1). Let P and Q be two symmetric positive definite matrices and K c , K o two vectors in R n such that (always possible, see [START_REF] Andrieu | High gain observers with updated gain and homogeneous correction terms[END_REF])

P (A + BK c ) + (A + BK c ) P ≤ -I, (36) p 1 I ≤ P ≤ p 2 I, (37) 
p 3 P ≤ P D + DP c ≤ p 4 P, (38) 
Q(A + K o C) + (A + K o C) Q ≤ -I, (39) q 1 I ≤ Q ≤ q 2 I, (40) 
q 3 Q ≤ QD + DQ ≤ q 4 Q, (41) 
with p 1 , . . . , p 4 , q 1 , . . . , q 4 positive real numbers.

With the matrices K c and K o selected it remains to select the parameters a 1 , a 2 , a 3 and α * . This is done on two steps: in Proposition 1 we focus on the existence of the sequence (x k , L k ) for all k in N. Then, Proposition 2 shows using a Lyapunov analysis that a sequence of quadratic function of scaled coordinates is decreasing.

Based on these two propositions, the proof of Theorem 2 is given in Section V-D where it is shown that the time function L satisfies an ISS property (see Proposition 3).

B. Existence of the sequence

(t k , xk , e k , L k ) k∈N
The first step of the proof is to show that the sequence (x k , e k , L k ) k∈N = (x(t k ), e(t k ), L(t k )) k∈N is well defined. Note that it does not imply that (x(t), e(t)) is defined for all t since for the time being it has not been shown that the sequence t k is unbounded. This will be obtained in Section V-D when proving Theorem 2.

Proposition 1 (Existence of the sequence): Let a 1 , a 3 and α be positive, and a 2 ≥ 3n q1 , where q 1 was defined in (40). Then, the sequence (t k , xk , e k , L k ) k∈N is well defined. Proof of Proposition 1: We proceed by contradiction. Assume that k ∈ N is such that (t k , xk , e k , L k ) is well defined but (t k+1 , xk+1 , e k+1 , L k+1 ) is not. This means that there exists a time t * > t k such that x(•), e(•) and L(•) are well defined for all t in [t k , t * ) and such that

lim t→t * |x(t)| + |e(t)| + |L(t)| = +∞. ( 42 
)
Since L(•) is increasing and, in addition, for all t in [t k , t * ) we have (according to (33)) L(t) ≤ α (t-t k ) , we get:

L * = lim t→t * L(t) ≤ α (t * -t k ) < +∞. (43) 
Consequently, lim t→t * |x(t)| + |e(t)| = +∞, which together with (35) yields

lim t→t * | X(t)| + |E(t)| = +∞. ( 44 
)
On the other hand, let U and W be the two quadratic functions

U ( X) = X P X , W (E) = E QE. ( 45 
)
With a slight abuse of notation, when evaluating these functions along the solution of (1), we denote

U (t) = U ( X(t)) and W (t) = W (E(t)). For all t in [t k , t * ), we have U (t) = Ẋ(t) P X(t) + X(t) P Ẋ(t), (46) 
Ẇ (t) = Ė(t) QE(t) + E(t) Q Ė(t), (47) 
where

Ẋ(t) = Ṡ(t)x(t) + S(t) ẋ(t), = - L(t) L(t) D X(t) + L(t)A X(t) + L(t)BK Xk , and 
Ė(t) = Ṡ(t)E(t) + S(t) Ė(t), = - L(t) L(t) DE(t) + L(t)AE(t) -S(t)f (x(t)) .
With the previous equalities, ( 46)-( 47) become for all t in

[t k , t * ) U (t) = - L(t) L(t) X(t) (P D + DP ) X(t) + L(t)[ X(t) (A P + P A) X(t) + 2 X(t) P BK Xk ], Ẇ (t) = - L(t) L(t) E(t) (QD + DQ)E(t) + L(t)E(t) (A Q + QA)E(t) + 2E(t) QS(t)f (x(t)).
Since M ≥ 1, we have with ( 25), ( 38) and (41) for all t in

[t k , t * ) - L(t) L(t) X(t) (P D + DP ) X(t) ≤ -p 3 a 2 c(x 1 (t))U (t), - L(t) L(t) E(t) (QD + DQ)E(t) ≤ -q 3 a 2 c(x 1 (t))W (t).
Moreover, using Young's inequality, we get 2 X(t) P BK Xk ≤ X(t) P X(t) + X k (K B P + P BK) Xk .

Hence, taking λ 1 and λ 2 such that A P + P A + I ≤ λ 1 P , K B P + P BK ≤ λ 2 P , we have, for all t in [t k , t * )

U (t) ≤ (-p 3 a 2 c(x 1 (t)) + L(t)λ 1 ) U (t) + L(t)λ 2 U k . ( 48 
)
On another hand, with Assumption 1 and since L(t) ≥ 1, it yields

|S(t)f (x(t))| 2 = n i=1 f i (x(t)) L(t) i+b-1 2 , ≤ n i=1   c(x 1 (t)) i j=1 |X j (t)|   2 , ≤ n 2 c(x 1 (t)) 2 | X(t) -E(t)| 2 . ( 49 
)
Hence, we get

2E(t) QS(t)f (x(t)) ≤ 2nc(x 1 (t))q 3 3 2 E(t) E(t) + X(t) X(t) .
Taking

λ 3 such that A Q + QA ≤ λ 3 Q and since 2nq 3 I ≤ 2nq3 p1 P it yields Ẇ (t) ≤ 3n q 1 -a 2 q 3 c(x 1 (t)) + L(t)λ 3 W (t) + 2nq 3 p 1 c(x 1 (t))U (t). ( 50 
)
Let us denote

V (t) = U (t) + µW (t) , (51) 
where µ is any positive real number that will be useful in the proof of Proposition 2. Bearing in mind that L(t) ≤ L * for all t in [t k , t * ) (from (43)) and with the couple (a 2 , µ) selected to satisfy a 2 ≥ 3n q1 and a 2 p 3 ≥ µλ 4 , inequalities (48) and (50) yield

V (t) ≤ L * λ 1 U (t) + L * λ 2 U k + µL * λ 3 W (t), ≤ L * (λ 1 + λ 3 )V (t) + L * λ 2 V k .
This with (43) give for all t in [t k , t * )

V (t) ≤ exp ((λ 1 + λ 3 )L * (t -t k )) V k + t-t k 0 exp (λ 1 + λ 3 )L * (t -t k -s) λ 2 V k ds ≤ k(α)V k , (52) 
where k(α) = exp ((λ 44) and thus, ends the proof.

1 + λ 3 )α) + (exp((λ 1 + λ 3 )α) - 1) λ2 λ1+λ3 . Hence, lim t→t * |E(t)| + | X(t)| < +∞ which contradicts (

C. Lyapunov analysis

The second step of the proof of Theorem 2 consists in a Lyapunov analysis to show that a good selection of the parameters a 1 , a 2 and a 3 in the high-gain update law ( 25)-( 28) yields the decrease of the sequences V k = V (t k ) defined from (51) with a proper selection of µ.

Remark 3: Using the results obtained in [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF] on lower triangular systems, the dynamic scaling (35) includes a number b. Although the decreases of V k can be obtained with b = 1, it will be required that bq < 1 in order to ensure the boundedness of L(•) (see equation (87) in Section V-D).

The aim of this subsection is to show the following intermediate result.

Proposition 2 (Decrease of scaled coordinates): There exist a 1 > 0 (sufficiently small), a 2 > 0 (sufficiently large), a continuous function N and α * > 0 such that for a 3 = 2n and for all α in [0, α * ] there exists µ such that with the time function V defined in (51) the following property is satisfied:

V k+1 -V k ≤ -αN (α) L k L - k+1 2(n-1+b) V k . ( 53 
)
Proof of Proposition 2: First of all, we assume that a 2 ≥ 3n q1 . Hence, with Proposition 1, we know that the sequence (t k , x k , e k , L k ) is well defined for all k in N. Let k be in N. The nonlinear system (1) with the control [START_REF] Tanwani | On using norm estimators for event-triggered control with dynamic output feedback[END_REF] gives the closed-loop dynamics

ẋ(t) = Ax(t) + BK c (L k ) n+1 L k x(t k ), ė(t) = Ae(t) -f (x(t)), ∀ t ∈ [t k , t k + δ k ).
Integrating the preceding equalities between t k and t - k+1 yields x-

k+1 = exp(Aδ k )x k + δ k 0 exp(A(δ k -s))BK c L n+1 k L k xk ds, e - k+1 = exp(Aδ k )e k - δ k 0 exp(A(δ k -s))f (x(s))ds, (54) 
and with [START_REF] Yu | Event-triggered output feedback control for networked control systems using passivity: Achieving stability in the presence of communication delays and signal quantization[END_REF], we get

xk+1 = exp(Aδ k )x k + δ k (L - k+1 ) -1 K o Ce - k+1 + δ k 0 exp(A(δ k -s))BK c L n+1 k L k xk ds e k+1 = (I + δ k (L - k+1 ) -1 K o C) exp(Aδ k )e k - δ k 0 exp(A(δ k -s))f (x(s))ds . (55) 
In the following, we successively consider the evolution of the e part of the dynamics and the evolution of x part.

Analysis of the term in e: Employing the algebraic equality given in [START_REF] Nesic | Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations[END_REF] yields that L exp(As) = exp(LAs)L. Hence, when left multiplying (55) by S - k+1 = L - k+1 1-b L - k+1 , we get the following inequality:

S - k+1 e k+1 = F o (α)S - k+1 e k + R o ,
where we have used the notations

F o (α) = (I + αK o C) exp(Aα), R o = -(I + αK o C) δ k 0 exp(L - k+1 A(δ k -s))S - k+1 f (x(s))ds.
Let W k = W (E k ) where W and E k are respectively defined in (45) and (35). Note that, since we have E k+1 = ΨS - k+1 e k+1 with Ψ = S k+1 (S - k+1 ) -1 , it yields from (55)

W k+1 = W (ΨS - k+1 e k+1 ) = W k + T o,1 + T o,2 , with T o,1 =W (ΨF o (α)S - k+1 e k ) -W (E k ), T o,2 =2e k S - k+1 F o (α) ΨP ΨR o + R o ΨP ΨR o . Let β be defined by β = n δ k 0 c(x 1 (t k + s))ds.
The following two lemmas are devoted to upper bound the two terms T o,1 and T o,2 . The term T o,1 will be shown to be negative thanks to [START_REF] Andrieu | Self-triggered continuous-discrete observer with updated sampling period[END_REF]Lemma 3,p109] which in our context becomes the following Lemma.

Lemma 2 ([5]): Let a 1 ≤ 1 2q2q4 and a 3 = 2n. There exists α * o > 0 sufficiently small such that for all α in [0, α * o )

T o,1 ≤ - a 2 q 3 q 1 a 3 e 2β -1 + αq 1 4q 2 S - k+1 e k 2 . (56) 
For the second term, we have the following estimate. Lemma 3: There exist two positive real valued continuous functions N o,x and N o,e such that the following inequality holds

T o,2 ≤ e 2β -1 N o,x (α) S - k+1 xk 2 + N o,e (α) S - k+1 e k 2 .
The proof of Lemma 3 is postponed to Appendix B. Analysis of the term in x: Employing the algebraic equality given in [START_REF] Nesic | Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations[END_REF], we get from (55)

x k+1 = (S k ) -1 F c (α k ) Xk + (S - k+1 ) -1 R c , where F c is defined in (15), α k = δ k L k and R c = αK o CE - k+1 .
Let U k = U ( Xk ) where U is defined in (45). This yields with the former equality

U k+1 =x k+1 S k+1 P S k+1 x k+1 =U k + T c,1 + T c,2 , with T c,1 =U (S k+1 (S k ) -1 F c (α k ) Xk ) -U k , (57) 
T c,2 =2R c ΨP S k+1 (S k ) -1 F c (α k ) Xk + U (ΨR c ).
Similarly, the following two lemmas are devoted to upper bound the two terms T c,1 and T c,2 . The first one is [23, Lemma 5.4] which is devoted to upper bound T c,1 .

Lemma 4 ( [START_REF] Peralez | Self-triggered control via dynamic high-gain scaling (long version)[END_REF]): Let a 1 ≤ 2 p4p2 and a 3 = 2n. Then, there exists α * > 0 sufficiently small such that for all α in [0, α * )

T c,1 ≤ - α p 2 2 U ( Xk ) -|S - k+1 xk | 2 (e 2β -1) p 3 p 1 a 2 2n . (58) 
The proof of Lemma 4 can be found in [START_REF] Peralez | Self-triggered control via dynamic high-gain scaling (long version)[END_REF]. 

V k+1 -V k ≤ - 1 2 α p 2 2 U k + N c,1 (α) -µ αq 1 4q 2 S - k+1 e k 2 + e 2β -1 µN o,x (α) - p 3 p 1 a 2 2n S - k+1 xk 2 + e 2β -1 µN o,e (α) -µ a 2 q 3 q 1 a 3 S - k+1 e k 2 . (59) 
Taking µ sufficiently large such that

N c,1 (α) -µ αq 1 4q 2 ≤ - 1 2 µ αq 1 q 2 ,
and then a 2 sufficiently large such that,

µN o,x (α) - p 3 p 1 a 2 2n ≤ 0 , µN o,e (α) -µ a 2 q 3 q 1 a 3 ≤ 0, it yields V k+1 -V k ≤ -αN 0 (α) U k + S - k+1 e k 2 .
where N 0 is a continuous function taking postiive values. Employing the fact that

L k L - k+1 ≤ 1, it yields S - k+1 e k 2 = S - k+1 (S k ) -1 E k 2 ≥ L k L - k+1 2(n-1+b) U k p 2 ,
which gives the existence of a continuous function N such that inequality (53) holds. This ends the proof of Proposition 2.

Remark 4: Due to the jumps of the high-gain parameter L at instants t k in equation ( 27), the Lyapunov function t → V (t) does not decrease continuously as illustrated in Fig. 2. However, the sequence (V k ) k≥0 is decreasing.

D. Boundedness of L and proof of Theorem 2

Although the construction of the updated law for the highgain parameter ( 25)-( 28) follows the idea developed in [START_REF] Andrieu | Self-triggered continuous-discrete observer with updated sampling period[END_REF], the study of the behavior of the high-gain parameter is more involved. Indeed, in the context of observer design of [START_REF] Andrieu | Self-triggered continuous-discrete observer with updated sampling period[END_REF], the nonlinear function c was assumed to be essentially bounded while in the present work, c is depending on x 1 . This implies The existence of a strictly positive dwell time is obtained from the following proposition.

Proposition 3: There exists a positive real number L max and class K function γ and a non decreasing function in both argument ρ such that

Lk+1 ≤ 1 - a 1 α 2 Lk + γ(V k ), ∀k ∈ N, (60) 
where γ(s) = 0 for all s in [0, 1] with

Lk = max{L k -L max , 0},
and for all t on the time existence of the solution, we have

1 ≤ L(t) ≤ ρ( L0 , V 0 ) . ( 61 
)
The proof of this proposition is given in Appendix D. With this proposition in hand, note that it yields for all k in N, δ k ≥ α ρ( L0,V0) > 0. Consequently, there is a dwell time and the solution are complete (i.e.

k δ k = +∞). Moreover, for all k in N, L k L - k+1 ≥ 1 ρ( L0,V0)
. Consequently, inequality (53) becomes

V k+1 ≤ (1 -σ( L0 , V 0 ))V k , where σ( L0 , V 0 ) = αN (α) ρ(L0,V0) 2(n-1+b) is a decreasing function of both arguments. This gives V k ≤ (1 -σ( L0 , V 0 )) k V 0 , for all k in N. With, (60), it yields Lk ≤ β L ( L0 + V 0 , k) where β L (s, k) = s 1 - a 1 α 2 k + k j=1 1 - a 1 α 2 j γ (1 -σ(s, s)) k-j s . ( 62 
)
The function β L is of class K in s. Moreover, since γ(s) = 0 for s ≤ 1, this implies that there exists k * (s) such that the mapping k → β L (s, k) is decreasing for all k ≥ k * (s).

Moreover, we have lim k→∞ β L (s, k) = 0. On another hand, since δ k ≤ α, it implies that k ≤ t α for all t in [t k , t k+1 ).

L(t) ≤ Lk+1 1 -a 1 α , ≤ β L ( L0 + V 0 , k + 1) 1 -a 1 α . ( 63 
)
Finally, with (52), it yields

V (t) ≤ k(α)(1 -σ( L0 , V 0 )) t α V 0 . ( 64 
)
With the right hand side of (61) and the definition of the Lyapunov function V , we have

p 1 + µq 1 2ρ( L0 , V 0 ) 2(n-1+b) |x(t)| 2 + |x(t)| 2 ≤ V (t), (65) 
Moreover, we have also:

V 0 ≤ 2(p 2 + µq 2 ) |x(0)| 2 + |x(0)| 2 . ( 66 
)
From equations ( 63), ( 64), ( 65), (66) and the properties of the function β L , it yields readily that there exists a class KL function β such that inequality (34) holds.

VI. ILLUSTRATIVE EXAMPLE

We apply our approach to the following uncertain thirdorder system proposed in [START_REF] Krishnamurthy | Dynamic high-gain scaling: State and output feedback with application to systems with iss appended dynamics driven by all states[END_REF] 

     ẋ1 = x 2 ẋ2 = x 3 ẋ3 = θx 2 1 x 3 + u, (67) 
where θ is a constant parameter which only a magnitude bound θ max is known. The stabilization of this problem is not trivial even in the case of a continuous-in-time controller. The difficulties come from the nonlinear term x 2 1 x 3 that makes x 3 dynamics not globally Lipschitz, and from the uncertainty on θ value, preventing the use of a feedback to cancel the nonlinearity.

However, system (67) belongs to the class of systems (1) and the Assumption 1 is satisfied with c(x 1 ) = θ max x 2 1 . Hence, by Theorem 2, an event-triggered output feedback controller ( 29)-( 33) can be constructed. Simulation were conducted with gain matrices K o and K c and coefficient α selected as K o = -8 -12 -16 , K c = -15 -75 -125 , α = 0.1 to stabilize the linear part of the system (67). Parameters a 1 , a 2 and a 3 have then been selected through a trial and error procedure as follows:

a 1 = 1, a 2 = .5, a 3 = .5.
Simulation results are given in Fig. 3 and Fig. 4. The evolution of the control and state trajectories are displayed in Fig. 3 for a particular initial condition. The corresponding evolution of the Lyapunov function V and the high-gain L are shown in Fig. 3. We can see how the inter-execution times δ k adapts to the nonlinearity. Interestingly, it allows a significant increase of δ k when the state is close to the origin: L(t) then goes to 1 and consequently δ k increases toward α value (that was selected as α = 0.1 in this simulation). 

VII. CONCLUSION

In conclusion, we have presented a new event triggered output feedback for a class of nonlinear systems. The triggered mechanism depends on an additional dynamics. This additional dynamics is employed to modify the output feedback following a high-gain paradigm. The stabilization of the origin of the system is demonstrated and the interest of our approach is illustrated on an example.

APPENDIX

A. Proof of Lemma 1

The matrix (A+BK c ) being Hurwitz, let P be a symmetric positive definite matrix such that

P (A + BK c ) + (A + BK c ) P ≤ -I, (68) 
p 1 I ≤ P ≤ p 2 I,
with p 1 , p 2 positive real numbers. Likewise, let Q be a symmetric positive definite matrix such that

Q(A + K o C) + (A + K o C) Q ≤ -I, (69) 
q 1 I ≤ Q ≤ q 2 I,
with q 1 , q 2 positive real numbers.

In order to prove that the origin of the discrete time system ( 14) is GAS, we consider the Lyapunov function

V (e, x) = x P x + µe Qe, (70) 
where µ is a positive real number that will be selected later on. From ( 14), it comes

e k+1 Qe k+1 = e k F o (δ) QF o (δ)e k . (71) 
Given

v in S n-1 = {v ∈ R n | |v| = 1}, consider the function ν(δ, v) = v F o (δ) QF o (δ)v.
We have

ν(0, v) = v Qv, ∂ν ∂δ (0, v) = v [Q(A + K o C) + (A + K o C) Q]v.
So, using the inequalities in (69) , we get

∂ν ∂δ (0, v) ≤ - 1 q 2 v Qv. (72) 
Now, we can write

ν(δ, v) = v Qv + δ ∂ν ∂δ (0, v) + ρ(δ, v), with lim δ→0 ρ(δ,v) δ 
= 0. This equality together with (72) imply that

ν(δ, v) ≤ (1 - δ q 2 )v Qv + ρ(δ, v).
The vector v being in a compact set and the function ρ being continuous, there exists δ * o such that for all δ in [0; δ * o ) we have ρ(δ, v) ≤ δ 2q2 v Qv for all v. This gives

ν(δ, v) ≤ 1 - δ 2q 2 v Qv, ∀ δ ∈ [0, δ * o ), ∀ v ∈ S n-1 .
This property being true for every v in S n-1 , we have

F o (δ) QF o (δ) ≤ 1 - δ 2q 2 Q,
and there exists δ * o such that for all δ in [0; δ * o ) we have

e k+1 Qe k+1 ≤ 1 - δ 2q 2 e k Qe k . (73) 
Similarly, we have

x k+1 P xk+1 = x k F c (δ) P F c (δ)x k + e k F oc (δ) P F oc (δ)e k + 2x k F c (δ) P F oc (δ)e k ,
where F oc (δ) = δK o C exp(Aδ). Notice that F c (0) = I and ∂F c ∂δ (0) = A + BK c . Hence, it implies the existence of a δ * c such that for all δ in [0, δ * c ), we have

x k F c (δ) P F c (δ)x k ≤x k P xk - δ 2p 2 x k P xk . (74) 
Previous inequality with (73) and (74) yields

V k+1 -V k =µe k+1 Qe k+1 -µe k Qe k + x k+1 P xk+1 -x k P xk ≤ -µ δ 2q 2 e k Qe k - δ 2p 2 x k P xk + e k F oc (δ) P F oc (δ)e k +2x k F c (δ) P F oc (δ)e k ≤ -µ δq 1 2q 2 |e k | 2 - δp 1 2p 2 |x k | 2 + |F oc (δ)| 2 |P | |e k | 2 +2 |F c (δ)| |F oc (δ)| |P | |x k | |e k | .
Using Young's inequality, the preceding inequality becomes

V k+1 -V k ≤ -µ δq 1 2q 2 + N (δ) |e k | 2 - δp 1 4p 2 |x k | 2
where

N (δ) = |F ex (δ)| 2 |P | + |F x (δ)| 2 |F ex (δ)| 2 |P | 2 4p 2 δp 1 .
Then, choosing µ as

µ ≥ 2q 2 N (δ) δq 1 , ensures the decrease of V for all δ in [0, δ * ), with δ * = max{δ * c , δ * o }.

B. Proof of Lemma 3

The proof of Lemma 3 uses [5, Lemma 6,p112]. Lemma 6 ( [START_REF] Andrieu | Self-triggered continuous-discrete observer with updated sampling period[END_REF]): The matrix Q and P satisfy the following property for all a 1 and α such that a 1 α < 1 ΨQΨ ≤ ψ 0 (α)Qψ 0 (α) , ΨP Ψ ≤ ψ 0 (α)P ψ 0 (α), where Ψ = S k+1 (S - k+1 ) -1 and

ψ 0 (α) = diag 1 (1 -a 1 α) b , . . . , 1 (1 -a 1 α) n+b-1 .
To prove Lemma 3, we first analyse the term R o . Following what has been done in (49), it yields

S - k+1 f (x(t k + s)) 2 ≤ n 2 c(t k +s) 2 S - k+1 x(t k + s) 2 . ( 75 
)
From the previous inequality, we get

|R o | ≤ |I + αK o C| exp(|A| α) × δ k 0 nc(t k + s) S - k+1 x(t k + s) ds. ( 76 
)
On the other hand, we have for all s in [0, δ k )

S - k+1 ẋ(t k + s) =S - k+1 Ax(t k + s) + BK c (L k ) n+1 L k xk +f (x(t k + s)) =L - k+1 AS - k+1 x(t k + s) + L - k+1 BK c ΩS - k+1 xk + S - k+1 f (x(t k + s)).
where 

Ω =(L - k+1 ) -n-1 (L k ) n+1 L k (L - k+1 ) -1 = diag    L k L - k+1 n , L k L - k+1 n-1 , . . . , L k L - k+1    Note that since L - k+1 ≥ L k , it
S - k+1 x(t k + s) ≤ (L - k+1 |BK c | S - k+1 xk s + S - k+1 x k ) × exp L - k+1 |A|s exp s 0 (nc(t k + r)dr , (77) 
Consequently, according to (76), we get

|R o | ≤ |I + αK o C| exp(2 |A| α) × δ k 0 nc(t k + s)(L - k+1 |BK c | S - k+1 xk s + S - k+1 x k ) × exp s 0 nc(t k + r)dr ds ≤ |I + αK o C| exp(2 |A| α) α |BK c | S - k+1 xk + S - k+1 x k × δ k 0 nc(t k + s) exp s 0 nc(t k + r)dr ds = |I + αK o C| exp(2 |A| α) α |BK c | S - k+1 xk + S - k+1 x k × exp s 0 nc(t k + r)dr s=δ k s=0 = |I + αK o C| exp(2 |A| α) α |BK c | S - k+1 xk + S - k+1 x k × exp δ k 0 nc(t k + r)dr -1 .
Hence, employing e k = xkx k it yields,

|R o | ≤ M 2 (α) S - k+1 xk + M 1 (α) S - k+1 e k × e β -1 .
where

M 1 (α) = |I + αK o C| exp(2 |A| α), M 2 (α) = M 1 (α) (α |BK c | + 1) .
Hence, employing Lemma 6 this gives

|R o ΨP ΨR o | ≤ M 4 (α) S - k+1 xk 2 + M 3 (α) S - k+1 e k 2 × [e β -1] 2
where

M 3 (α) = 2 |Q| (1 -a 1 α) 2(n-b+1) M e,1 (α) 2 , M 4 (α) = 2 |Q| (1 -a 1 α) 2(n-b+1) M x,1 (α) 2 .
Moreover,

2e k S - k+1 F o (α) ΨQΨR o ≤ M 6 (α) S - k+1 xk 2 + M 5 (α) S - k+1 e k 2 × [e β -1],
where

M 5 (α) = 2 |Q| |F o | (1 -a 1 α) 2(n-b+1) M e,1 (α), M 6 (α) = |Q| |F o | (1 -a 1 α) 2(n-b+1) M x,1 (α).
Noticing that 0 ≤ (e β -1) 2 ≤ e 2β -1 , 0 ≤ (e β -1) ≤ e 2β -1, (78) the result follows with

N o,e (α) = M 3 (α) + M 5 (α) , N o,x (α) = M 4 (α) + M 6 (α).

C. Proof of Lemma 5

The first part of the proof is devoted to upper-bound the term

|R c | = α K o CS - k+1 e - k+1 .
From the algebraic equality given in [START_REF] Nesic | Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations[END_REF] 

δ k 0 nc(t k + s) × (L - k+1 |BK c | S - k+1 xk s + S - k+1 x k ) × exp s 0 (nc(t k + r)dr ds, ≤M 7 (α) S - k+1 e k + exp(|A| α) × δ k 0 nc(t k + s) exp s 0 (nc(t k + r)dr ds × (α |BK c | S - k+1 xk + S - k+1 x k ) , =M 7 (α) S - k+1 e k + (e β -1) exp(|A| α) × (α |BK c | S - k+1 xk + S - k+1 x k ) .
Hence, employing e k = xkx k it yields,

|R c | ≤ M 8 (α) S - k+1 xk + M 9 (α) S - k+1 e k e β -1 + M 7 (α) S - k+1 e k .
where

M 8 (α) = M 7 (α)(α |BK c | + 1) exp(|A| α), M 9 (α) = M 7 (α) exp(|A| α).
Hence, employing Lemma 6 and (78) this gives

|R c ΨQΨR c | ≤ M 10 (α) S - k+1 xk 2 + M 11 (α) S - k+1 e k 2 × [e 2β -1] + M 12 (α) S - k+1 e k 2 (79) 
where

M 10 (α) = 3 |P | M 8 (α) 2 (1 -a 1 α) 2(n-b+1) , M 11 (α) = |P | 2M 9 (α) 2 + M 7 (α) 2 + 2M 9 (α)M 7 (α) (1 -a 1 α) 2(n-b+1) , M 12 (α) = |P | M 7 (α) 2 (1 -a 1 α) 2(n-b+1) .
On another hand, with the algebraic equality given in ( 21), we have

S - k+1 (S k ) -1 F c (α k ) Xk = (80) exp(Aα) + α 0 exp(A(α -s))dsBK c Λ S - k+1 xk , where Λ = L k L - k+1 n+1 S k (S - k+1 ) -1 . Note that L - k+1 ≥ L k . Hence, |Λ| ≤ 1 and we have S - k+1 (S k ) -1 F c (α k ) Xk ≤ [exp(|A| α)(1 + |BK c |)] S - k+1 xk .
Hence, employing Lemma 6, this gives

2R c ΨP S k+1 (S k ) -1 F c (α k ) Xk ≤ M 13 (α) S - k+1 xk 2 + M 14 (α) S - k+1 e k 2 [e 2β -1] + M 15 (α) S - k+1 e k U k (81) 
where b+1) .

M 13 (α) = |P | (M 8 (α) + 1 2 ) [exp(|A| α)(1 + |BK c |)] (1 -a 1 α) 2(n-b+1) , M 14 (α) = |P | M 9 (α) 2(1 -a 1 α) 2(n-b+1) , M 15 (α) = |P | M 7 (α) [exp(|A| α)(1 + |BK c |)] |P |(1 -a 1 α) 2(n-
and where we have used

S - k+1 xk = S - k+1 (S k ) -1 Xk ≤ U k |P | Finally note that M 15 (α) S - k+1 e k U k ≤ 1 2 α p 2 2 U k + 1 2 M 15 (α)p 2 2 α 2 S - k+1 e k .
Hence the result follows from the former inequality in combination with inequalities (79) and (81). 

(t)| L(t) b ≤ d 1 (V k ) ≤ d 1 (V 0 ), ∀(t, k) ∈ [t k , T * ). (82) 
With this result in hand, let us analyze the high-gain dynamics.

According to equations ( 25) and ( 26), we have, for all k and all t in [t k , t k+1 ), L(t) = a2 a3 L(t) Ṁ (t), which implies that for all t in [t k , t k+1 )

L(t) = exp a 2 a 3 t t k Ṁ (s)ds L k , = exp a 2 a 3 M (t) - a 2 a 3 L k . (83) 
Consequently, from ( 27) and ( 33)

L k+1 = exp a 2 a 3 (M - k+1 -1) L k (1 -a 1 α) + a 1 α, (84) 
and δ k satisfies

exp a 2 a 3 (M - k+1 -1) δ k L k = α.
Since M - k+1 ≥ 1, a 2 ≥ 0 and a 3 ≥ 0 the previous equality implies

δ k L k ≤ α. (85) 
Moreover, we have

Ṁ (t) = a 3 M (t)c(x 1 (t)) = a 3 M (t)(c 0 + c 1 |x 1 | q ) ≤ a 3 M (t)(c 0 + c 1 d 1 (V k ) q L(t) bq ) (by (82)) ≤ a 3 (c 0 + c 1 d 1 (V k ) q )M (t)L(t) bq (since L(t) ≥ 1) ≤ d 2 (V k )M (t) exp a 2 a 3 bq(M (t) -1) L bq k , (by (83))
where

d 2 (V k ) = a 3 (c 0 + c 1 d 1 (V k ) q ).
Let ψ(t) be the solution to the scalar dynamical system 

ψ(t) = ψ(t) exp a 2 a 3 bq(ψ(t) -1) , ψ(0) = 1. ψ(•) is defined on [0, T ψ )
(V k )(t - t k )L bq k < T ψ M (t) ≤ ψ d 2 (V k )(t -t k )L bq k . Consequently, for all k such that d 2 (V k )δ k L bq k < T ψ M - k+1 = M (t k + δ - k ) ≤ ψ d 2 (V k )δ k L bq k .
From this, we get employing (85) that, for all k such that d

2 (V k )αL bq-1 k < T ψ 1 ≤ M - k+1 ≤ ψ d 2 (V k )αL bq-1 k , (86) 
and employing (84) that, for all k such that d

2 (V k )αL bq-1 k < T ψ L k+1 ≤ F (L k ), (87) 
where

F (L k ) = exp ψ d 2 (V k )αL bq-1 k -1 L k (1 -a 1 α) + a 1 α.
Note that, since bq < 1, lim L→+∞ L bq-1 = 0 and since moreover, ψ(0) = 1, we also get

lim L→+∞ F (L) L = 1 -a 1 α < 1.
Consequently, there exists an increasing function L1 such that for all L > L1 (V k )

d 2 (V k )αL bq-1 < T ψ , F (L) < 1 - a 1 α 2 L. (88) 
On the other hand, consider the following nonlinear system with input χ

L(t) = a 2 L(t)M (t) c 0 + c 1 χ(t) q L(t) bq Ṁ (t) = a 3 M (t) c 0 + c 1 χ(t) q L(t) bq , (89) 
We assume that the norm of the input signal satisfies the bound

|χ(•)| ≤ d 1 (v) , ( 90 
)
where v is a given positive real number. Notice that the couple (L, M ) which satisfies equations [START_REF] Praly | Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate[END_REF] and ( 26) between [t k , t k+1 ) is also a solution of the previous nonlinear system with input χ(t) = x1(t) L(t) b which satisfies (90) with v = V k . Let φ s,t denotes the flow of (89) issued from s, i.e., φ s,t (a, b) is the solution of (89) that takes value (a, b) at t = s. Let C 1 , C 2 , be the two compact subsets of R 2 defined by:

C 1 = {1 ≤ L ≤ L1 (v), M = 1}, C 2 = {1 ≤ L ≤ 2 L1 (v), 0 ≤ M ≤ 2}.
The set C 1 is included in the interior of C 2 , and we have the following Lemma.

Lemma 7: There exists a non increasing function t 1 such that for all input function χ which satisfies the bound (90) the following holds. ∀k ∈ N, ∀t ≤ t 1 (v), φ t k ,t k +t (C 1 ) ⊂ C 2 .

(91)

The proof of Lemma 7 is given in Appendix E. Let L2 (v) := max 2 L1 (v), α t 1 (v) .

Note that L k satisfies the following property:

1) If L k > L1 (V k ) then L k+1 ≤ 1 -a1α 2 L k ; 2) If L k ≤ L1 (V k ) then L k+1 ≤ L2 (V k ).
Indeed, we have 1) If L k > L1 (V k ). With (87) and (88), we get

L k+1 ≤ 1 - a 1 α 2 L k . 2) If L k ≤ L1 (V k ) a) If δ k ≤ t 1 (V k ).
Because L - k+1 ≥ 1 and a 1 α < 1, (27) implies that L k+1 ≤ L - k+1 . It follows, using (91) with v = V k (note that (L k , M k ) ∈ C 1 ), that

L k+1 ≤ L - k+1 = L (t k + δ k ) - ≤ 2 L1 (V k ) ≤ L2 (V k ).
b) If δ k > t 1 (V k ). L k+1 ≤ L - k+1 , and since, by (33), δ k L - k+1 = α, it follows that

L k+1 ≤ α δ k ≤ α t 1 (V k ) ≤ L2 (V k ).
Note that the previous properties, implies that for all k

L k+1 ≤ 1 - a 1 α 2 L k + L2 (V k )
and the first part of the result (i.e. inequality (60)) holds with L max = L2 (1) and γ(V k ) = max{ L2 (V k ) -L2 (1), 0}.

Note that the previous properties 1) and 2) in combination with the fact that the sequence (V k ) is decreasing imply also for all k L k ≤ max{L 0 , L2 (V 0 )} Moreover, since for all k in N and all t in [t k , t k+1 ) 

L(t) ≤ L -
≤ max{L 0 , L2 (V 0 )} 1 -a 1 α , (92) 
and the result holds with ρ(L 0 , V 0 ) = max{ L0+ L2(1), L2(V0)} 1-a1α

.

E. Proof of Lemma 7

Let dL max and dM max be the increasing functions

dL max (v) = 4a 2 L1 (v)(c 0 + c 1 d 1 (v) q (2 L1 (v)) bq ),
dM max (v) = 2a 3 (c 0 + c 1 d 1 (v) q (2 L1 (v)) bq ).

Note that if (L(t), M (t)) is in C 2 and χ(t) satisfies the bound (90), we have L(t) ≤ dL max (v) , Ṁ (t) ≤ dM max (v).

(94)

Let t 1 be the function defined by t 1 (v) = min 1 dL max (v) , 1 dM max (v) .

We show that this function satisfies the properties of Lemma 7. Assume this is not the case. Hence, there exists M (t k ), L(t k ) in C 1 , χ which satisfies the bound (90) and t * ≤ t 1 (v) such that (L(t k + t * ), M (t k + t * )) / ∈ C 2 . Let s * be the time instant at which the solution leaves C 2 . More precisely, let s * = inf{s, t k ≤ s ≤ t k + t * , (L(s), M (s)) / ∈ C 2 }. Note that (L(s * ), M (s * )) is at the border of C 2 and t k < s * < t k + t 1 (v). Moreover, with (94), it yields:

M (s * ) ≤ 1 + (s * -t k )dM max (v) < 1 + t 1 (v)dM max (v) ≤ 2.
Similarly, we have

L(s * ) < L(t k ) + t 1 (v)dL max ≤ L(t k ) + 1 ≤ 2 L1 (v),
where the last inequality is obtained since L1 (v) ≥ 1. This implies that (L(s * ), M (s * )) is not at the border of C 2 which contradicts the existence of t * .
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 2 Fig. 2. Time evolution of Lyapunov function V .
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 34 Fig.3. Control signal and state trajectories of (67) with (x 1 , x 2 , x 3 ) = (5, 5, 10) and (x 1 , x2 , x3 ) = (5, 0, 0) as initial conditions.

2 k+1

 2 max{L 0 , L2 (V 0 )} 1 -a 1 α ,

  yields |Ω| ≤ 1. Hence,denoting by w(s) the expression S - k+1 x(t k + s), this gives

	d ds	|w(s)| =	ẇ(s), w(s) |w(s)|
			≤ L -k+1 |A| + nc(t k + s) |w(s)|
				+L -k+1 |BK c | S -k+1 xk
	Hence, by integrating preceding inequality, it yields
		s	
	|w(s)| ≤	0	(L -k+1 |A| + nc(t k + r))|w(r)|dr
				+ L -k+1 |BK c | S -k+1 xk s + |w(0)| .
	Since (L -k+1 |A| + nc(t k + s)) is a continuous non-negative function and L -k+1 |BK||S -k+1 x k |s + |w(0)| is non-decreasing,
	applying a variant of the Gronwall-Bellman inequality [4,
	Theorem 1.3.1], it comes

  Proof. Inequality (53) of Proposition 2 implies that (V k ) k∈N is a nonincreasing sequence. Consequently, being nonnegative, (V k ) k∈N is bounded. One infers, using inequality (52), that V (t) is bounded. Hence, by the left parts in inequalities (37)-(40), we get that, on the time T x (= δ k ) of existence of the solution, X(t) and E(t) (and consequently so arex1(t) 

	D. Proof of Proposition 3
	L(t) b = L(t) b = E 1 (t)) are bounded. Then we get that x1(t) X1 (t) and e1(t) L(t) b
	is bounded since we have |x 1 (t)| ≤ |x 1 (t)| + |e 1 (t)|.
	Summing up, there exists a class K function d 1 such that
	|x 1

  where T ψ is a positive real number possibly equal to +∞. Note that we have (see e.g.[17, 

Theorem 1.10.1]) that for all t such that 0 ≤ d 2
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