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Abstra
t

As its analogue in the 
ontinuous framework, the digital fundamental group represents

a major information on the topology of dis
rete obje
ts. However, the fundamental

group is an abstra
t information and 
annot dire
tly be en
oded in a 
omputer using

its de�nition. A 
lassi
al mathemati
al way to en
ode a dis
rete group is to �nd a

presentation of this group. In this paper, we 
onstru
t a presentation for the fundamental

group of an arbitrary graph, and a �nite presentation (hen
e en
odable in the memory

of a 
omputer) of any subset of Z

3

. This presentation 
an be 
omputed by an eÆ
ient

algorithm.

Key words: Pattern Re
ognition, Digital topology, graphs, Homotopy.

Introdu
tion

As its analogue in the 
ontinuous framework, the digital fundamental group, originally intro-

du
ed by T. Y. Kong in [4℄ in the 3D 
ase (see also [5℄), represents a major information on the

topology of dis
rete obje
ts. It is in parti
ular related to the notion of a simple point in 3D

([2℄, see also [1℄), and an even 
loser relationship between the fundamental group and topology

preservation has been established within digital surfa
es ([10℄ and [3℄).

For these reasons, we would obtain a very powerfull tool for pattern re
ognition if we 
ould

make the information of the fundamental group a

essible to 
omputers in the 3D 
ase. An

even more diÆ
ult problem is to �nd an algorithm to determine whether two given 3D dis
rete

obje
ts have isomorphi
 fundamental groups. Su
h an algorithm would represent a signi�
ant

step to determine whether two obje
ts 
ould be the same up to some \
ontinuous deformation".

The fundamental group 
ontains stri
tly more information than the �rst homology group.

However, whereas the �rst homology group is always a

essible to 
omputers, it is somehow

diÆ
ult to transform the abstra
t notion of the fundamental group into some data whi
h 
an

be handled by 
omputers. A 
lassi
al way to en
ode 
ertain types of dis
rete groups is to

�nd presentations of these groups. A presentation of a group is a model of the group up

to isomorphism, whi
h is 
hara
terized by an integer and some words on an alphabet 
alled

relators. Su
h a data 
an easily be en
oded in a 
omputer.
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In [8℄, the author studies the planar 2D 
ase. In this 
ase, the fundamental group is shown

to be isomorphi
 to a free group (i.e. there are no relators in this 
ase). This is an ideal


ase sin
e 
omputations in the free groups are easy to perform, and the type of the group

up to isomorphism is easily determined. In [9℄, the 
ase of digital surfa
es is treated. In

this paper, we introdu
e the digital fundamental group in a very general fromework of graph,

and we 
onstru
t a presentation of the fundamental group in this �eld. Then we solve the

general 3D 
ase, for whi
h there are interesting potential appli
ations to pattern re
ognition,

by 
onstru
tively providing a �nite presentation of fundamental groups of 3D digital obje
t.

The paper is organized as follows. First we re
all some basi
 algebrai
 preliminaries about

groups, quotient groups, free groups, and groups given by generators and relations. Afterwards,

we de�ne the fundamental group for an arbitrary graph, with respe
t to an arbitrary set of null

loops, and we 
onstru
t a presentation for this group. Then we set the required de�nitions of

3D digital topology (adja
en
ies, paths, 
onne
tivity, and the digital fundamental group), and

we show how a presentation of the fundamental group of any 
onne
ted subset of Z

3


an be

obtained as a parti
ular 
ase of a graph fundamental group. The word 
onne
ted for a subset

of Z

3


an be understood a

ording to any of the 
ouples of adja
en
y relations (26; 6), (18; 6),

(6; 26), (6; 18), Finaly we explain how to redu
e the number of generators and relators of the

obtained presentation. Our proof is 
onstru
tive and leads to an eÆ
ient algorithm to 
ompute

a presentation of 3D fundamental groups.

1 Basi
 De�nitions and Notations

1.1 Groups, Normal Subgroups

We 
onsider a group (�; �) with 1

�

as unit element. Let h 2 �. A 
onjugate of h in � is an

element of � of the form: g � h � g

�1

with g 2 �. Now let H be a subgroup of �, we say that

H is normal in � if for any h 2 H, any 
onjugate of h in � belongs to H.

Given H a normal subgroup of �, we 
onsider �

H

the relation on � de�ned by [g �

H

g

0

℄ () [g

0

� g

�1

2 H℄. Sin
e H is a normal subgroup of �, this is an equivalen
e relation.

We denote by �=H the set of equivalen
e 
lasses of elements of � under the relation �

H

, and

by p

H

: � �! �=H the proje
tion whi
h to an element of � asso
iates its equivalen
e 
lass

under �

H

. Now, if g �

H

g

0

and g

1

�

H

g

0

1

, then sin
e H is normal we have g � g

1

�

H

g

0

� g

0

1

.

Hen
e the produ
t � de�nes an operation, whi
h we also denote by �, on �=H. To p

H

(g) and

p

H

(g

0

), this operation asso
iates p

H

(g � g

0

). Obviously, the element p

H

(1

�

) of �=H is a unit

element for the operation � on �=H. Furthermore, given g 2 �, the element p

H

(g

�1

) of �=H

is an inverse for p

H

(g). Therefore, (�=H; �) is a group whi
h we 
all quotient group of � by

the normal subgroup H. Intuitively, all elements of H are 
ollapsed with the unit element to

obtain the quotient group.

Now let P be any subset of �. We 
onsider the subset H of � 
omposed of all produ
ts of


onjugates of elements of P and inverses of elements of P . Then H is a normal subgroup of �

whi
h we 
all normal subgroup of � generated by P . The normal subgroup generated by P is

the smallest normal subgroup of � whi
h 
ontains P .
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1.2 Free Group, Generators and Relations

Now, before to introdu
e groups given by generators and relations, we must introdu
e the

notion of the (non abelian) free group with m generators. Let fa

1

; : : : ; a

m

g[fa

�1

1

; : : : ; a

�1

m

g be

an alphabet with 2m distin
t letters, and letW

m

be the set of the all words over this alphabet

(i.e. �nite sequen
es of letters of the alphabet). We say that two words w 2 W

m

and w

0

2 W

m

are the same up to an elementary simpli�
ation if, either w 
an be obtained from w

0

by inserting

in w

0

a sequen
e of the form a

i

a

�1

i

or a sequen
e of the form a

�1

i

a

i

with i 2 f1; : : : ; mg, or

w

0


an be obtained from w by inserting in w a sequen
e of the form a

i

a

�1

i

or a sequen
e of

the form a

�1

i

a

i

with i 2 f1; : : : ; mg. Now, two words w 2 W

m

and w

0

2 W

m

are said to be

free equivalent if there is a �nite sequen
e w = w

1

; : : : ; w

k

= w

0

of words of W

m

su
h that

for i = 2; : : : ; k the word w

i�1

and w

i

are the same up to an elementary simpli�
ation. This

de�nes an equivalen
e relation on W

m

, and we denote by F

m

the set of equivalen
e 
lasses of

this equivalen
e relation. If w 2 W

m

, we denote by w the 
lass of w under the free equivalen
e

relation. The 
on
atenation of words de�nes an operation on F

m

whi
h provides F

m

with a

group stru
ture. The group thus de�ned is 
alled the free group with m generators.

We denote by 1

m

the unit element of F

m

, whi
h is equal to w where w is the empty word.

The only result whi
h we shall admit on the free group is the 
lassi
al result that if a word

w 2 W

m

is su
h that w = 1

m

and w is not the empty word, then there exists in w two su

essive

letters a

i

a

�1

i

or a

�1

i

a

i

with i 2 f1; : : : ; mg. This remark leads to an immediate algorithm to

de
ide whether a word w 2 W

m

is su
h that w = 1

m

. If w = a

"

1

i

1

� � � a

"

p

i

p

is a word of W

m

, we

denote by w

�1

the word w

�1

= a

�"

p

i

p

� � � a

�"

1

i

1

. We have: (w)

�1

= w

�1

.

Now we introdu
e the groups given by generators and relations. We 
onsider m 2 N

�

and

a �nite subset R of W

m

. In this 
ontext, we 
all elements of R relators. We want to de�ne

a group from the free group with m generators, in whi
h the words of R represent the unit

element. This group, 
alled the group with m generators and the relations of R, is the quotient

of the free group F

m

by the normal subgroup generated by the set of the equivalen
e 
lasses in

F

m

of elements of R. Now, given � a group, �nding a presentation of � is �nding an (expli
it)

isomorphism from � to a group given by generators and relations.

1.3 Fundamental Groups in Graphs

Let G = (V;E) be an antire
exive undire
ted graph, where V is a set of verti
es and E is a

set of pairs fx; yg, with x 2 V and y 2 V , 
alled edges. Two verti
es x; y 2 V of G are 
alled

adja
ent in G if fx; yg 2 E.

A path 
 in the graph G is a sequen
e 
 = (x

0

; : : : ; x

p

) of verti
es of G su
h that for

i = 1; : : : ; p the vertex x

i

is adja
ent in G to the vertex x

i�1

. The vertex x

0

is 
alled the origin

of 
, and the vertex x

p

is 
alled the end of 
. A path 
 in G is 
alled a loop if its origin is equal

to its end.

Given two paths 
 and 


0

in G su
h that the end of 
 is adja
ent or equal to the origin

of 


0

, we denote by 
 � 


0

the 
on
atenation of 
 and 


0

, whi
h is also a path of G. Given


 = (x

0

; : : : ; x

p

) a path in G, we denote by 


�1

the reversed path 


�1

= (x

p

; : : : ; x

0

). A path of

the form 
 � 


�1

, where 
 is a path of G, is 
alled a ba
k and forth in G.

Now we 
an de�ne fundamental groups in G. Let L be any set of loops of G 
ontaining all
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ba
k and forths of G. The elements of L are 
alled null loops. Given 
 and 


0

two paths of G,

we say that 
 and 


0

are the same up to an elementary L�deformation if 
 and 


0

are of the

form 
 = �

1

� 
 � �

2

and 


0

= �

1

� 


0

� �

2

, where 
 � 


0

�1

belongs to L.

Two paths 
 and 


0

in G are 
alled L�homotopi
 in G if there exists a sequen
e �

0

; : : : ; �

q

of paths of G su
h that �

0

= 
, �

q

= 


0

, and for i = 1; : : : ; q the paths �

i

and �

i�1

are the

same up to an elementary L�deformation.

Let B be a �xed vertex in G, 
alled the base vertex. We denote by A

B

(G) the set of all

loops having B as origin and end verti
es. The L�homotopy relation is an equivalen
e relation

on A

B

(G), and we denote by �

L

1

(G;B) the set of the equivalen
e 
lasses of this relation. Given


 2 A

B

(G), we denote by [
℄ the equivalen
e 
lass of 
 under the L�homotopy equivalen
e

relation, whi
h is an element of �

L

1

(G;B).

The 
on
atenation of loops is 
ompatible with the L�homotopy relation: if [�℄ = [�

0

℄ and

[�℄ = [�

0

℄, then we must have [� � �℄ = [�

0

� �

0

℄. Due to this property, the 
on
atenation of

loops de�nes an operation on �

L

1

(G;B), and this operation provides �

L

1

(G;B) with a group

stru
ture. We 
all this group the L�fundamental group of G. Note that �

L

1

(G;B) is isomorphi


(as a group) to �

L

1

(G;B

0

) provided that B and B

0

lie in the same 
onne
ted 
omponent of G.

The graph G is 
alled L�simply 
onne
ted if any path in G is L�homotopi
 to a trivial path

redu
ed to a single vertex, or equivalently if �

L

1

(G;B) is redu
ed to a single element.

2 Presentation of Fundamental Groups in Graphs

In the sequel of this se
tion, G = (V;E) is a undire
ted antire
exive graph, and L is a set of

loops in G 
ontaining all ba
k and forths of G, and elements of L are 
alled null loops. Our

purpose is to 
onstru
t a presentation of the L�fundamental group of G.

Let G

0

= (V;E

0

), with E

0

� E be a spanning subgraph of G whi
h is 
onne
ted and

L

0

�simply 
onne
ted, where L

0

is the set of all elements of L whi
h are paths of G

0

. Su
h a

subgraph G

0


an always be 
onstru
ted, for instan
e by 
onsidering G

0

a 
overing tree of G.

Let us 
hose an arbitrary orientation on ea
h edge of G whi
h is not an edge of G

0

:

We 
onsider A = f(l

1

; r

1

); : : : ; (l

m

; r

m

)g, where EnE

0

= ffl

1

; r

1

g; : : : ; fl

m

; r

m

gg and EnE

0

has


ardinality m.

Let fa

1

; : : : ; a

m

; a

�1

1

; : : : ; a

�1

m

g be an alphabet as 
onsidered in the de�nition of the free

group, let W

m

be the set of all words on this alphabet, and let F

m

be the free group with the

m generators a

1

; : : : ; a

m

.

First we asso
iate a word w(
) of W

m

to ea
h path 
 in G. Let 
 = (x

0

; : : : ; x

p

) be a path

of G.

De�nition 1 Let i 2 f1; : : : ; mg and k 2 f0; : : : ; p � 1g be su
h that fl

i

; r

i

g = fx

k

; x

k+1

g.

The 
ouple (k; i) is 
alled an interse
tion of 
 and A. If (r

i

; l

i

) = (x

k

; x

k+1

), we say that

the interse
tion (k; i) is positive. If (l

i

; r

i

) = (x

k

; x

k+1

), we say that the interse
tion (k; i) is

negative.

Notation 1 Given (k; i) an interse
tion of 
 with A, we denote by O




(k; i) the number equal

to +1 if the interse
tion (k; i) is positive, and to �1 if the interse
tion (k; i) is negative.
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Now, we de�ne w(
) as the word, 
ontaining one symbol a

O




(k;i)

i

for ea
h interse
tion (k; i)

of 
 and A, these symbols appearing in the word w(
) in the order of the in
reasing k (i.e. the

order in whi
h the interse
tions appear along 
). We denote by w(
) the 
lass of w(
) up to

elementary simpli�
ations (see the de�nition of the free group). For the sake of simpli
ity, we

shall often write w(
) instead of w(
).

In order to de�ne a group with generators and relations, let R = fw(
) = 
 2 Lg we the set

of all words asso
iated to loops of L. The set R will be the set of our relators.

LetH be the normal subgroup of F

m

generated by all the words ofR. Finally, let � = F

m

=H

be the group withm generators and the relations ofR. We shall prove that the n�fundamental

group �

L

1

(G;B) of G is isomorphi
 to the group �, whi
h provides a presentation of �

L

1

(G;B).

We denote by �

H

the relation of equality modulo H in F

m

, and by p

H

: F

m

�! � the

proje
tion (see the de�nition of the quotient group). Given 
 a path of A

B

(G), we denote by

'(
) the element p

H

(w(
)) of �.

Theorem 1 If 
 and 


0

are two L�homotopi
 paths of G, then '(
) = '(


0

). In other words,

the map ' : A

B

(G) �! � indu
es a map

�

e' : �

L

1

(G;B) �! �

[
℄ 7�! e'([
℄) = '(
)

Moreover, the map e' is 
learly a group morphism.

Proof: It is suÆ
ient to prove Theorem 1 in the 
ase when 
 and 


0

are the same up to

an elementary L�deformation. So, suppose 
 and 


0

are of the form 
 = �

1

� 
 � �

2

and




0

= �

1

� 


0

� �

2

.

Sin
e 
 � 


0

�1

2 L, the word w(
 � 


0

�1

) belongs to R (from the very de�nition of R), so

that

w(
) = w(�

1

) � w(
) � w(�

2

)

= w(�

1

) � w(
 � 


0

�1

) � w(


0

) � w(�

2

)

�

H

w(�

1

) � w(


0

) � w(�

2

)

= w(


0

):

Finally, w(
) �

H

w(


0

) so that '(
) = '(


0

). 2

The following result is the main result of this se
tion :

Theorem 2 The map e' : �

L

1

(G;B) �! � is a group isomorphism.

In order to prove Theorem 2, we should �rst show two lemmas.

Lemma 1 Let 
 be a path in G and let w 2 W

m

be a word su
h that w(
) = w in the free

group F

m

. Then 
 is L�homotopi
 in G to a path 


0

su
h that w(


0

) = w.

Proof of Lemma 1: It is suÆ
ient to prove the result when w(
) and w are the same up to

an elementary simpli�
ation. We distinguish two 
ases:
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First 
ase: If w is obtained by inserting in the word w(
) a sequen
e a

i

a

�1

i

or a

�1

i

a

i

(say

a

i

a

�1

i

). We de
ompose w(
) = w

1

w

2

and w = w

1

a

i

a

�1

i

w

2

. We also de
ompose 
 = 


1

� 


2

with

w(


1

) = w

1

and w(


2

) = w

2

. Let � be a path in the 
onne
ted and simply 
onne
ted graph G

0

from the last vertex of 


1

to the vertex r

i

. Then the path 


0

= 


1

� � � (r

i

; l

i

; r

i

) � �

�1

� 


2

is


learly L�homotopi
 in G to 
 = 


1

� 


2

, and we have w(


0

) = w

1

� a

i

a

�1

i

w

2

= w.

Se
ond 
ase: If w is obtained by deleting in w(
) a subword of the form a

i

a

�1

i

or a

�1

i

a

i

(say

a

i

a

�1

i

). We denote w(
) = w

1

a

i

a

�1

i

w

2

and w = w

1

w

2

. We de
ompose 
 = 


1

� 


2

� 


3

� 


4

with

w(


1

) = w

1

, w(


2

) = a

i

, w(


3

) = a

�1

i

and w(


4

) = w

2

.

Let (k

2

; i) be the unique interse
tion of 


2

with A, and let (k

3

; i) be the unique interse
tion

of 


3

with A.

We denote 


2

= �

2

� �

2

and 


3

= �

3

� �

3

, the last point of �

2

and the �rst point of �

3

being

equal to r

i

, and the �rst point of �

2

and the last point of �

3

being equal to l

i

.

Sin
e G

0

is simply 
onne
ted, the 
losed path �

2

� �

3

in G

0

is L

0

�homotopi
 in G

0

(hen
e

L�homotopi
 inG) to the trivial path redu
ed to (l

i

; l

i

). Hen
e 
, whi
h is equal to 


1

�


2

�


3

�


4

,

is equal to to 


1

��

2

��

2

��

3

��

3

�


4

, so that it is L�homotopi
 inG to the path 


0

= 


1

��

2

��

3

�


4

.

Moreover, sin
e �

2

� �

3

is a path of G

0

, we have w(


0

) = w(


1

)w(


4

) = w

1

w

2

= w. 2

Lemma 2 Let 
 be a path in G su
h that w(
) = w(�) for � a null loop (i.e. � 2 L). Then


 is L�homotopi
 in G to a path 


0

with w(


0

) equal to the empty word (in other words, 


0

has

no interse
tion with A).

Proof: We denote w(�) = a

"

1

i

1

� � �a

"

p

i

p

with i

u

2 f1; : : : ; mg and "

u

2 f�1;+1g for u 2

f1; : : : ; pg. For u 2 f1; : : : ; pg, we denote by (k

u

; i

u

) the u

th

interse
tion of 
 with A, 
or-

responding to the symbol a

"

u

i

u

in w(
) = w(�). Finally, we de
ompose 
 = 


0

� � � � � 


p

,

where 


0

; : : : ; 


p

are paths of the graph G

0

, and we denote y

u

and z

u

respe
tively the �rst

point and the last point of 


u

for u 2 f0; : : : ; pg. Ne
essarily, for u 2 f1; : : : ; pg, we have:

fz

u�1

; y

u

g = fr

i

u

; l

i

u

g.

Sin
e G

0

is simply 
onne
ted, for u = 1; : : : ; p� 1, the path 


u

of G

0

is L

0

�homotopi
 in G

0

to a path 


0

u

of G

0

whi
h is the portion of the path � between y

u

and z

u

. The path 


1

� � � �� 


p�1

is L�homotopi
 in G to the path 


0

1

� � � � � 


0

p�1

, whi
h is L

0

�homotopi
 to a path C of G

0

from

y

1

to z

p�1

(namely, C is the portion of �

�1

between the �rst vertex of 


1

to the last vertex of




p�1

.

Hen
e, 
 is L�homotopi
 in G to the path 


0

= 


0

� C � 


p

, whi
h is a path of G

0

, so that

w(


0

) is the empty word. 2

Proof of Theorem 2: First we prove that the morphism e' is onto. To do this, it is suÆ
ient

to prove that for i = 1; : : : ; m, there exists a loop 
 of A

B

(G) su
h that w(
) = a

i

. Let us


onsider (l

i

; r

i

) 2 A. Sin
e the graph G

0

is 
onne
ted, there exists a path 


1

in G

0

from B to

r

i

. Similarly, there exists a path 


2

in G

0

from l

i

to B. Now, the 
on
atenation 
 = 


1

� 


2

is a

path in G and we have w(
) = a

i

. Hen
e, the morphism e' is onto.

There remains to prove that the morphism e' is one to one. To do this, we 
onsider 
 a loop

of A

B

(G) su
h that e'([
℄) = 1 in �, and we have to prove that 
 is L�homotopi
 in G to the

trivial path (B;B).
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We de
ompose 
 = 


1

� � � � � 


f

, where for k = 1; : : : ; f the path 


k

is a path in the graph

G

0

, and for k = 1; : : : ; p� 1, the edge of G between the last surfel of 


k

and the �rst surfel of




k+1

is an edge of the form fr

i

; l

i

g.

Our hypothesis is that w(
) is in the normal subgroup H of F

m

generated by the elements

of R. Therefore, the word w(
) is free equivalent to a word

w =

g

Y

a=1

w

a

� (w(�

a

))

"

a

� w

�1

a

with for a = 1; : : : g, w

a

2 W

m

, "

a

2 f�1; 1g, and �

a

is a loop of L, From Lemma 1, the

path 
 is L�homotopi
 in G to a path 


0

with w(


0

) = w. Let us de
ompose 


0

by setting




0

= 


1

� 


2

� 


3

� 


4

, with w(


1

) =

g�1

Y

a=1

w

a

� (w(�

a

))

"

a

� w

�1

a

, w(


2

) = w

g

, w(


3

) = (w(�

g

))

"

g

and

w(


4

) = w

�1

g

.

From Lemma 2 follows that 


3

is L�homotopi
 in G with �xed extremities to a path 


0

3

whi
h has no interse
tion with A, so that w(


0

3

) is the empty word.

Now, 


0

is L�homotopi
 in G to the path 


00

= 


1

� 


2

� 


0

3

� 


4

, and w(


00

) = w(


1

)w

g

w

�1

g

.

Due to Lemma 1, the path 


00

is L�homotopi
 to a path 


000

with

w(


000

) = w(


1

) =

g�1

Y

a=1

w

a

� (R(i

a

; s

a

))

"

a

� w

�1

a

.

It follows by indu
tion that 
 is L�homotopi
 in G to a path � su
h that w(�) is the empty

word. This means that � is a path in G

0

and, sin
e G

0

is simply 
onne
ted, � is homotopi
 in

G

0

to a trivial path. Therefore, 
 is L�homotopi
 in G to the trivial path (B;B). 2

3 Fundamental Groups in 3D

The 3D 
ase is 
ertainly the most important 
on
erning appli
ations in pattern re
ognition

of algebrai
 invariants 
omputation. As we shall see, the 3D digital fundamental group, as


onsidered for example in [4℄, [5℄, [2℄ and [1℄, 
an be de�ned as a parti
ular 
ase of graphs

fundamental groups as de�ned in Se
tion 1.3. In this se
tion, after having re
alled basi
 notions

and notations of 3D digital topology, we explain how to redu
e the number of generators and

relations obtained for the presentation of the 3D fundamental group given by Theorem 2, �rst

by 
onsidering subgraphs of the 
lassi
al adja
en
y graphs whi
h have the same fundamental

group, and then by simplifying the sets of generators and relations we obtain.

3.1 Basi
 Notions of 3D Digital Topology

Let x = (i; j; k) 2 Z

3

, and x

0

= (i

0

; j

0

; k

0

) 2 Z

3

.

The points x and x

0

are 
alled 26�adja
ent if and only if max(ji

0

� ij; jj

0

� jj; jk

0

� kj) = 1.

The points x and x

0

are said to be 6�adja
ent if and only if ji

0

� ij + jj

0

� jj + jk

0

� kj = 1,

i.e. if they are 26�adja
ent and have two of their 
oordinates in 
ommon. The points x and

x

0

are 
alled 18�adja
ent if and only if they are 26�adja
ent and have at least one of their


oordinates in 
ommon. Let n 2 f6; 18; 26g, and X � Z

3

. Given x 2 Z

3

, we denote by N

n

(x)

the set of all y 2 Z

3

whi
h are n�adja
ent to x.

7



Let X � Z

3

be a subset of Z

3

. We denote by G

n

(X) the graph whose verti
es are elements

of X, two verti
es of G

n

(X) being adja
ent in G

n

(X) if and only if they are n�adja
ent (as

points of Z

3

).

An n�path in X is a path in the graph G

n

(X). An n�path 
 is 
alled 
losed if, as a path

of G

n

(X), the path 
 is a loop. A 
losed path 
 = (x

0

; : : : ; x

p

) is 
alled simple 
losed if for

i; j 2 f0; : : : ; pg with i 6= j (mod p) we have x

i

6= x

j

. The set X is 
alled n�
onne
ted i�

G

n

(X) is 
onne
ted, and n�
onne
ted 
omponents of X are de�ned as 
onne
ted 
omponents

of G

n

(X).

For X � Z

3

we denote by X the 
omplement Z

3

nX of X. As usual in digital topol-

ogy ([6℄), when we analyze an obje
t with an adja
en
y relation n 2 f6; 18; 26g, we have

to 
onsider another n adja
en
y relation for X. We introdu
e here a di�eren
e between the

6�adja
en
y relation when asso
iated with the 26�adja
en
y relation, and when asso
iated

with the 18�adja
en
y relation. We must also introdu
e a distin
t notation for these two

things sin
e several notions, as far as the fundamental group is 
on
erned, will be di�er-

ent for these two adja
en
ies. We denote by 6

+

the 6�adja
en
y relation when asso
iated

with the 18�adja
en
y relation. Being 6

+

�adja
ent, 6

+

�
onne
ted is just being 6�adja
ent,

6�
onne
ted but, as we already said, several de�nitions will be di�erent for the 6 and the 6

+

notions.

3.2 The Digital Fundamental Group

In this se
tion, we introdu
e the (digital) n�fundamental group of an obje
t X. This group,

whi
h has been introdu
ed in digital topology by T. Y. Kong ([4℄ and [5℄), represents intuitively

the \holes" in X. A hole is dete
ted when some 
losed n�path in X 
an not be deformed to a

single point. For instan
e, in a hollow torus there are two \independant" su
h 
losed n�paths,

and the fundamental group of a hollow torus is, as a group, isomorphi
 to (Z

2

;+). The notion

of the fundamental group 
an be formalized as follows:

Let X � Z

3

. Let us 
onsider a �xed point B 2 X 
alled the base point. We denote by

A

n

B

(X) the set of all 
losed n�paths � = (x

0

; : : : ; x

p

) whi
h are in
luded in X and su
h that

x

0

= x

p

= B.

To introdu
e the fundamental group, we �rst introdu
e a set L

n

(X) of loops, whi
h depends

on the 
onsidered adja
en
y relation n.

If n 2 f26; 18; 6

+

g, then L

n

(X) is the set of all 
losed n�paths of X whi
h are either ba
k

and forths, or 
ontained in a 2� 2� 2 
ube of 8 points.

If n = 6, then L

n

(X) is the set of all 
losed n�paths of X whi
h are either ba
k and forths,

or 
ontained in a 2� 2 square of 4 points

Then, two n�paths are 
alled n�homotopi
 in X if they are L

n

(X)�homotopi
 in the

graph G

n

(X) ; we denote by �

n

1

(X;B), and we 
all the n�fundamental group of X, the

L

n

(X)-fundamental group of G

n

(X).

It is easily seen that this de�nition is equivalent to another one whi
h is 
ommonly used and


an be des
ribed as follows. First we introdu
e the notion of an elementary n�deformation.

Two n�paths � and �

0

in X are said to be the same up to an elementary n�deformation (with

�xed extremities) if they are of the form � = �

1

� 
 � �

2

and �

0

= �

1

� 


0

� �

2

, the n�paths 


and 


0

having the same extremities and being both in
luded in a 
ommon 2 � 2 square of 4

8



points if n = 6, and in a 
ommon 2� 2� 2 
ube of 8 points if n = 6

+

; 18 or 26.

Now, two n�paths � and �

0

in X are n�homotopi
 in X if there exists a �nite sequen
e of

n�paths � = �

0

; : : : ; �

m

= �

0

in X su
h that for i = 1; : : : ; m the n�paths �

i�1

and �

i

are the

same up to an elementary deformation (with �xed extremities).

The n�homotopy relation de�nes an equivalen
e relation on A

n

B

(X), whi
h 
oin
ides with

the L

n

(X)�homotopy relation, and therefore �

n

1

(X;B) is the set of equivalen
e 
lasses of this

equivalen
e relation.

Clearly, sin
e the 3D n�fundamental group ofX has been 
hara
terized as the L�fundamental

group for a given set L of loops in a graph (namely the graph G

n

(X)), then Theorem 2 provides

a way to 
ompute a presentation for �

n

1

(X). However, the number of generators and relations

dire
tly obtained by this method is quite huge. In the sequel of this paper, we provide some

ways to redu
e the size of the presentation of the fundamental group in 3D.

4 Computing 3D Fundamental Groups

In the sequel of this paper, n is an adja
en
y relation in f6; 6

+

; 18; 26g, and X denotes an

n�
onne
ted subset of Z

3

.

4.1 Finite Presentation

De�nition 2 Let x and y be two elements of X.

1. The two points x and y are 
alled d

6

�adja
ent or d

6

+

�adja
ent inX if they are 6�adja
ent ;

2. The two points x and y are 
alled d

18

�adja
ent in X if either they are d

6

�adja
ent, or

they are 18�adja
ent and have no 
ommon 6�neighbor in X ;

3. The two points x and y are 
alled d

26

�adja
ent in X if either they are d

18

�adja
ent, or

they are 26�adja
ent and have no 
ommon 18�neighbor in X.

From the notion of d

n

�adja
en
y de�ned above, we 
an de�ne a graph D

n

(X) having X as

set of verti
es, two elements of X being adja
ent in D

n

(X) if and only if they are d

n

�adja
ent.

Then we de�ne from the graph D

n

(X) the notion of a d

n

�path in X, and a d

n

�
onne
ted


omponent in X as we have de�ned an n�path and an n�
onne
ted 
omponent from G

n

(X).

Lemma 3 Let 
 be an n�path in X. Then 
 is n�homotopi
 to a d

n

�path 


0

in X.

Proof: If n = 6 or n = 6

+

, then obviously we 
an take 


0

= 
. Now suppose n = 18. By

an elementary n�deformation, we 
an add to 
 a 
ommon 6�neighbor between two su

essive

points of 
 whi
h are not d

18

�adja
ent inX. By doing this for all 
ouples of su

essive points of


 whi
h are not d

18

�adja
ent, we obtained the desired d

18

�path 


0

. Finally, suppose n = 26. By

an elementary n�deformation, we 
an add to 
 a 
ommon 18�neighbor between two su

essive

points of 
 whi
h are not d

26

�adja
ent and not 18�adja
ent in X. By doing this for all 
ouples

of su

essive points of 
 whi
h are not d

26

�adja
ent and not 18�adja
ent, we obtain a 26�path

in whi
h any two su

essive points whi
h are not 18�adja
ent are d

26

�adja
ent. Then we 
an

9



add to this 26�path a 
ommon 6�neighbor between two su

essive points of 
 whi
h are

18�adja
ent and not d

18

�adja
ent in X. By doing this for all 
ouples of su

essive points

whi
h are not d

18

�adja
ent, we obtained the desired d

26

�path 


0

. 2

Remark 1 Let Y � Z

3

. Then, due to Lemma 3, the d

n

�
onne
ted 
omponents of Y 
oin
ide

with the n�
onne
ted 
omponents of Y .

De�nition 3 A d

n

�path 


0


onstru
ted from an n�path 
 as in the proof of Lemma 3 is 
alled

d

n

�path of X asso
iated to 
. Note that a d

n

�path of X asso
iated to 
 is not ne
essarily

unique be
ause some 
hoi
es are made during its 
onstru
tion.

Now, in order to de�ne the d

n

�fundamental group of X, we must de�ne a set D

n

(X) of loops

in the graph D

n

(X), as the elements of L

n

(X) whi
h are d

n

�paths.

De�nition 4 Let 


1

and 


2

be two d

n

�paths in X. We say that 


1

and 


2

are d

n

�homotopi


(with �xed extremities) i� they are D

n

(X)�homotopi
 in D

n

(X). Equivalently, the d

n

�paths




1

and 


2

are d

n

�homotopi
 i� there exists a sequen
e (�

1

; : : : ; �

q

) of d

n

�paths of X, with

�

1

= 


1

and �

q

= 


2

, su
h that for i = 1; : : : ; q � 1 the d

n

�paths �

i

and �

i+1

are, as n�paths,

the same up to an elementary n�deformation.

Now we want to prove that the D

n

(X)�fundamental group of D

n

(X) is isomorphi
 to

the n�fundamental group of X, whi
h shows that we 
an work on the fundamental group by


onsidering only d

n

�paths. First we should prove one lemma and one remark.

Lemma 4 Let X � Z

3

and let 


1

; 


2

be two n�paths whi
h are n�homotopi
. Let 


0

1

and 


0

2

be d

n

�paths of X respe
tively asso
iated to 


1

and 


2

. Then the two d

n

�paths 


0

1

and 


0

2

are

d

n

�homotopi
.

Proof: We distinguish three 
ases:

First 
ase : If 


1

= 


2

(only 


0

1

di�ers from 


0

2

). Between two su

essive points x

i

and x

i+1

of




1

, possibly some points have been inserted to obtain 


0

1

, and similarly for 


2

. All these points

lie in a 2� 2 square if x

i

is 18�adja
ent to x

i+1

, and in a 2� 2� 2 
ube otherwise. The result

then follows dire
tly from the de�nition of an elementary n�deformation.

Se
ond 
ase : If 


1

and 


2

are the same up to an elementary n�deformation. Let S be a

2 � 2 square if n = 6, and a 2 � 2 � 2 
ube if n 2 f6

+

; 18; 26g, and let 


1

= 


1

� 
 � 


2

and




2

= 


1

�


0

�


2

, the two n�paths 
 and 


0

having the same extremities an being both 
ontained

in S. We observe that all the points of any d

n

�path asso
iated to 
 or 


0

is 
ontained in S.

Therefore, any d

n

�path asso
iated to 
 is the same up to an elementary n�deformation as

any d

n

�path asso
iated to 


0

. The end of the proof in the se
ond 
ase follows from the �rst


ase applied to the n�paths 


1

, and then to the n�path 


2

.

Third 
ase : General 
ase. This 
ase follows dire
tly from the two �rst 
ases and the

de�nition of n�homotopy between 


1

and 


2

. 2

Remark 2 Let 


1

and 


2

be two n�paths su
h that the d

n

�paths asso
iated to 


1

and 


2

are

d

n

�homotopi
 in X. Then 


1

and 


2

are n�homotopi
 in X.
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Remark 2 follows dire
tly from the de�nition of the d

n

�paths asso
iated to 


1

and 


2

, and

from the fa
t that being d

n

�homotopi
 is a parti
ular 
ase of being n�homotopi
.

Theorem 3 The D

n

(X)�fundamental group �

D

n

(X)

1

(D

n

(X); B) of D

n

(X) is isomorphi
 to

the n�fundamental group �

n

1

(X;B) of X.

Proof: Let us 
onsider the map f whi
h to an n�path 
 of X asso
iates a d

n

�paths

f(
) asso
iated with 
. Then, Lemma 4 implies that f indu
es a map

e

f : �

n

1

(X;B) 7�!

�

D

n

(X)

1

(D

n

(X); B). Clearly, the map f preserves the 
on
atenation of paths, and

e

f is therefore

a group morphism. Sin
e for any d

n

�path 
 we have f(
) = 
, the map f , and therefore the

map

e

f is onto. Now, from Remark 2, the map

e

f is one to one. Hen
e, the map

e

f is a group

isomorphism. 2

From Theorem 3 follows that, in order to 
ompute a presentation of the n�fundamental

group of X, we 
an equivalently 
ompute a presentation of the D

n

(X)�fundamental group of

D

n

(X). If we 
ompute the presentations using the method des
ribed in Se
tion 2, the number

of generators of the obtained presentation is mu
h lower if we 
onsider the graph D

n

(X) rather

than the n�adja
en
y graph. Indeed, the number of edges of a 
overing tree is equal to


ard(X)�1 for both graphs, so that the number of generators obtained is the number of edges

of the graph minus 
ard(X) plus 1. Now, the number of edges of D

n

(X) is generally lower

than the number of edges of the n�adja
en
y graph. For instan
e, a point x 2 X su
h that

N

26

(x) � X (x is an interior point) has 6 d

26

�neighbors and 26 26�neighbors. Now, in order

to redu
e the number of relators of the obtained presentation, we show that the set of null

loops used to de�ne the D

n

(X)�fundamental group 
an be redu
ed to simple 
losed d

n

�paths

of D

n

(X).

Lemma 5 Let 
 be a 
losed d

n

�path in X. Then 
 
an be obtained from a d

n

�path (x; x)

(redu
ed to a single point) by inserting iteratively simple 
losed d

n

�paths.

Proof of Lemma 5: Let 
 = (x

0

; : : : ; x

p

). If 
 is simple, there is nothing to prove. Otherwise,

let i be the smallest integer su
h that there exists j 6= i with x

i

= x

j

, and let j be the smallest

integer distin
t from i su
h that x

i

= x

j

.

The 
losed d

n

�path s = (x

i

; : : : ; x

j

) is simple, and 
 is obtained from the d

n

�path 


1

=

(x

0

; : : : ; x

i

; x

j+1

; : : : ; x

p

) by inserting the simple 
losed d

n

�path s.

If 


1

is simple 
losed, there is nothing else to prove. Otherwise, we 
onstru
t a 
losed

d

n

�path 


2

from 


1

as we have 
onstru
ted 


1

from 
, and we iterate the pro
ess. Sin
e

the length of the d

n

�paths de
reases at ea
h step, we obtain by this pro
ess a simple 
losed

d

n

�path 


i

. 2

Now let M

n

(X) be the set of loops of D

n

(X) whi
h are simple 
losed.

Lemma 6 Let 


1

and 


2

be two 
losed d

n

�paths. Then 


1

and 


2

are d

n

�homotopi
 in X if

and only if they are M

n

(X)�homotopi
 in D

n

(X).
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Proof: Clearly, sin
e M

n

(X) � D

n

(X), if 


1

and 


2

are M

n

(X)�homotopi
 in D

n

(X),

they are also d

n

�homotopi
 in X. Conversely, we 
an assume without loss of generality that




1

= �

1

� 
 � �

2

and 


2

= �

1

� 


0

� �

2

, the d

n

�path 
 � 


0

�1

being a loop of D

n

(X). Then 


1

is

M

n

(X)�homotopi
 to the d

n

�path 


0

1

= �

1

� 
 � 


0

�1

� 


0

� �

2

. Now, from Lemma 5 and the

de�nition of M

n

, the d

n

�path 
 � 


0

�1

is M

n

(X)�homotopi
 to a trivial path redu
ed to a

single point. Therefore, the path 


0

1

is in turnM

n

(X)�homotopi
 to the d

n

�path �

1

�


0

��

2

= 


2

2

Corollary 1 The M

n

�fundamental group of D

n

(X) is equal to the D

n

(X)�fundamental

group of D

n

(X).

Therefore, in order to 
ompute a presentation of the n�fundamental group of X, we 
an


ompute a presentation of theM

n

�fundamental group ofD

n

(X). So, the number of relators we

have to 
onsider in the presentation is the 
ardinality ofM

n

(X), whi
h is the number of simple


losed d

n

�paths in X whi
h are 
ontained in a 2� 2� 2 
ube of 8 points if n 2 f6

+

; 18; 26g,

and 
ontained in a 2� 2 square of 4 points if n = 6. In parti
ular, the presentation obtained

in so doing is �nite.

4.2 Redu
ing the Number of Generators and Relators

First we explain how to redu
e the number of generators. The idea is simple: if one of the

relators is of the form a

"

1

i

a

"

2

j

, with i; j 2 f1; : : : ; mg, with i 6= j and "

i

; "

j

2 f�1;+1g, then we


an express the generator a

j

using the generator a

i

, so that the system obtained by removing

the generator a

j

is still a system of generators. We then simply 
hange ea
h o

urren
e of a

j

by its expression using a

i

in ea
h relator. Note that the same prin
iple applies if one of the

relators 
ontains exa
tly one o

urren
e of a symbol a

i

, but this in
reases the length of the

relators.

Now we explain how to redu
e the number of relators. Let us �rst re
all that the set R of

all de�ned relators is the set of all words w(�), where � is any simple 
losed d

n

�path 
ontained

in X \ S, where S is any 2� 2 square if n = 6, and any 2� 2� 2 
ube if n 2 f26; 18; 6

+

g.

Now, for a �xed S, the 
losed d

n

�paths 
ontained in X\S are not all independent. First, if

a 
losed d

n

�path � is a 
y
li
 permutation of another d

n

�path �, then so are the words w(�)

and w(�). Sin
e words being the same up to a 
y
li
 permutation of symbols 
orrespond to


onjugate elements of F

m

, then removing, say, � from the set R does not a�e
t the generated

normal subgroup H, and therefore the group �. Finally, note that if one 
losed d

n

�path �

in X \ S is obtained form the 
on
atenation of two or more 
losed d

n

�paths of D \ S by

removing points whi
h have their prede
essor and their su

essor equal, then the relator w(�)

is a 
onsequen
e of all other relators and therefore it 
an be removed from R. Note that the set

of the relators to be 
onsidered for X \S depends only of the set X \S, and 
an be 
omputed

on
e for all for all of the 2

8

subsets of a 2� 2� 2 
ube.
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Con
lusion

We 
an 
ompute a presentation for the fundamental group of an arbitrary graph with an

arbitrary set of null loops, and a �nite presentation of the fundamental group of any subset

of Z

3

, for any 
hosen adja
en
y relation n 2 f26; 18; 6; 6

+

g. The presentation obtained in 3D

satis�es some spe
ial properties (for example, the length of all the relators is less than or equal

to 8).

Some 
omputation problems in groups su
h as the word problem (determining if a given

word is equal to 1 in a group � given by generators and relations), and the isomorphism problem

(determining if two groups given by generators and relations are isomorphi
) are not de
idable

in the general 
ase. It would be interesting to see if these problems are de
idable for the

parti
ular presentations of groups we obtain in 3D, due to their spe
i�
 properties. Indeed, a

solution to these problems 
ould enable us to de
ide if a given 
losed path 
an be 
ontinuously

deformed into another path, and if two given obje
ts have isomorphi
 fundamental groups,

whi
h is a 
entral question of pattern re
ognition.
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