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Abstract

As its analogue in the continuous framework, the digital fundamental group represents
a major information on the topology of discrete objects. However, the fundamental
group is an abstract information and cannot directly be encoded in a computer using
its definition. A classical mathematical way to encode a discrete group is to find a
presentation of this group. In this paper, we construct a presentation for the fundamental
group of an arbitrary graph, and a finite presentation (hence encodable in the memory
of a computer) of any subset of Z3. This presentation can be computed by an efficient
algorithm.
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Introduction

As its analogue in the continuous framework, the digital fundamental group, originally intro-
duced by T. Y. Kong in [4] in the 3D case (see also [5]), represents a major information on the
topology of discrete objects. It is in particular related to the notion of a simple point in 3D
([2], see also [1]), and an even closer relationship between the fundamental group and topology
preservation has been established within digital surfaces ([10] and [3]).

For these reasons, we would obtain a very powerfull tool for pattern recognition if we could
make the information of the fundamental group accessible to computers in the 3D case. An
even more difficult problem is to find an algorithm to determine whether two given 3D discrete
objects have isomorphic fundamental groups. Such an algorithm would represent a significant
step to determine whether two objects could be the same up to some “continuous deformation”.

The fundamental group contains strictly more information than the first homology group.
However, whereas the first homology group is always accessible to computers, it is somehow
difficult to transform the abstract notion of the fundamental group into some data which can
be handled by computers. A classical way to encode certain types of discrete groups is to
find presentations of these groups. A presentation of a group is a model of the group up
to isomorphism, which is characterized by an integer and some words on an alphabet called
relators. Such a data can easily be encoded in a computer.



In [8], the author studies the planar 2D case. In this case, the fundamental group is shown
to be isomorphic to a free group (i.e. there are no relators in this case). This is an ideal
case since computations in the free groups are easy to perform, and the type of the group
up to isomorphism is easily determined. In [9], the case of digital surfaces is treated. In
this paper, we introduce the digital fundamental group in a very general fromework of graph,
and we construct a presentation of the fundamental group in this field. Then we solve the
general 3D case, for which there are interesting potential applications to pattern recognition,
by constructively providing a finite presentation of fundamental groups of 3D digital object.

The paper is organized as follows. First we recall some basic algebraic preliminaries about
groups, quotient groups, free groups, and groups given by generators and relations. Afterwards,
we define the fundamental group for an arbitrary graph, with respect to an arbitrary set of null
loops, and we construct a presentation for this group. Then we set the required definitions of
3D digital topology (adjacencies, paths, connectivity, and the digital fundamental group), and
we show how a presentation of the fundamental group of any connected subset of Z* can be
obtained as a particular case of a graph fundamental group. The word connected for a subset
of Z3 can be understood according to any of the couples of adjacency relations (26, 6), (18, 6),
(6,26), (6,18), Finaly we explain how to reduce the number of generators and relators of the
obtained presentation. Our proof is constructive and leads to an efficient algorithm to compute
a presentation of 3D fundamental groups.

1 Basic Definitions and Notations

1.1 Groups, Normal Subgroups

We consider a group (T, *) with 1r as unit element. Let h € T'. A conjugate of h in T is an
element of I' of the form: g* h x g~ with ¢ € I'. Now let H be a subgroup of I', we say that
H is normal in T if for any A € H, any conjugate of h in I' belongs to H.

Given H a normal subgroup of T', we consider =g the relation on I' defined by [¢g =g
gl < [¢' * g7' € H]. Since H is a normal subgroup of I', this is an equivalence relation.
We denote by I'/H the set of equivalence classes of elements of I' under the relation =y, and
by py : T — T'/H the projection which to an element of T' associates its equivalence class
under =g. Now, if ¢ =5 ¢’ and g; =g ¢/, then since H is normal we have g x g1 =g ¢’ * ¢}.
Hence the product * defines an operation, which we also denote by %, on I'/H. To py(g) and
pr(g'), this operation associates py(g * ¢'). Obviously, the element py(1r) of T'/H is a unit
element for the operation * on I'/H. Furthermore, given g € T, the element py(g~') of I'/H
is an inverse for py(g). Therefore, (I'/H,*) is a group which we call quotient group of T by
the normal subgroup H. Intuitively, all elements of H are collapsed with the unit element to
obtain the quotient group.

Now let P be any subset of I'. We consider the subset H of I' composed of all products of
conjugates of elements of P and inverses of elements of P. Then H is a normal subgroup of I'
which we call normal subgroup of I' generated by P. The normal subgroup generated by P is
the smallest normal subgroup of I" which contains P.



1.2 Free Group, Generators and Relations

Now, before to introduce groups given by generators and relations, we must introduce the
notion of the (non abelian) free group with m generators. Let {ay,...,an}yU{a7",...,a;'} be
an alphabet with 2m distinct letters, and let W,,, be the set of the all words over this alphabet
(i.e. finite sequences of letters of the alphabet). We say that two words w € W,,, and w' € W,
are the same up to an elementary simplification if, either w can be obtained from w’ by inserting
in w' a sequence of the form a;a;' or a sequence of the form a;'a; with i € {1,...,m}, or
w' can be obtained from w by inserting in w a sequence of the form a;a;" or a sequence of
the form a; 'a; with i € {1,...,m}. Now, two words w € W,, and w' € W, are said to be
free equivalent if there is a finite sequence w = wy,...,w; = w' of words of W,, such that
for i = 2,...,k the word w;_; and w; are the same up to an elementary simplification. This
defines an equivalence relation on W,,, and we denote by F,, the set of equivalence classes of
this equivalence relation. If w € W,,, we denote by w the class of w under the free equivalence
relation. The concatenation of words defines an operation on F,, which provides F,, with a
group structure. The group thus defined is called the free group with m generators.

We denote by 1,, the unit element of F,,, which is equal to w where w is the empty word.
The only result which we shall admit on the free group is the classical result that if a word
w € W, is such that w = 1,, and w is not the empty word, then there exists in w two successive
letters a;a; ' or a; 'a; with i € {1,...,m}. This remark leads to an immediate algorithm to

decide whether a word w € W,, is such that w = 1,,,. If w = afll -+ a” is a word of W,,, we
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denote by w™" the word w™" =a; " --- a;"'. We have: (0)™' = w".
Now we introduce the groups given by generators and relations. We consider m € N* and
a finite subset R of W,,. In this context, we call elements of R relators. We want to define
a group from the free group with m generators, in which the words of R represent the unit
element. This group, called the group with m generators and the relations of R, is the quotient
of the free group F,, by the normal subgroup generated by the set of the equivalence classes in
Fm of elements of R. Now, given IT a group, finding a presentation of 11 is finding an (explicit)

isomorphism from II to a group given by generators and relations.

1.3 Fundamental Groups in Graphs

Let G = (V, E) be an antireflexive undirected graph, where V' is a set of vertices and FE is a
set of pairs {z,y}, with x € V and y € V, called edges. Two vertices x,y € V of G are called
adjacent in G if {z,y} € E.

A path ¢ in the graph G is a sequence ¢ = (zo,...,z,) of vertices of G such that for
it =1,...,p the vertex z; is adjacent in G to the vertex x;_;. The vertex z, is called the origin
of ¢, and the vertex z, is called the end of c. A path ¢ in G is called a loop if its origin is equal
to its end.

Given two paths ¢ and ¢’ in G such that the end of ¢ is adjacent or equal to the origin
of ¢, we denote by ¢ * ¢ the concatenation of ¢ and ¢, which is also a path of G. Given
¢ = (xg,...,x,) a path in G, we denote by ¢™" the reversed path ¢! = (z,,...,7). A path of
the form ¢ x ¢™!, where c is a path of G, is called a back and forth in G.

Now we can define fundamental groups in G. Let £ be any set of loops of G containing all



back and forths of G. The elements of £ are called null loops. Given ¢ and ¢’ two paths of G,
we say that ¢ and ¢ are the same up to an elementary £—deformation if ¢ and ¢ are of the
form ¢ = m %y« m and ¢ = m %' * 7y, where v x4 ! belongs to L.

Two paths ¢ and ¢’ in G are called £L—homotopic in G if there exists a sequence ag, ..., qy
of paths of G such that ap = ¢, o, = ¢/, and for i = 1,...,¢ the paths o; and a;_; are the
same up to an elementary £—deformation.

Let B be a fixed vertex in G, called the base vertex. We denote by Ag(G) the set of all
loops having B as origin and end vertices. The £L—homotopy relation is an equivalence relation
on Ap(G), and we denote by IT¥ (G, B) the set of the equivalence classes of this relation. Given
c € Ap(G), we denote by [c] the equivalence class of ¢ under the L—homotopy equivalence
relation, which is an element of IT1¥(G, B).

The concatenation of loops is compatible with the L—homotopy relation: if [a] = [¢/] and
[B] = [#], then we must have [« x 5] = [@/ % /]. Due to this property, the concatenation of
loops defines an operation on IT¥(G, B), and this operation provides I1¥(G, B) with a group
structure. We call this group the £—fundamental group of G. Note that IT¢ (G, B) is isomorphic
(as a group) to IT¥(G, B') provided that B and B’ lie in the same connected component of G.
The graph G is called L—simply connected if any path in G is L—homotopic to a trivial path
reduced to a single vertex, or equivalently if TI¥ (G, B) is reduced to a single element.

2 Presentation of Fundamental Groups in Graphs

In the sequel of this section, G = (V, E) is a undirected antireflexive graph, and L is a set of
loops in G containing all back and forths of GG, and elements of £ are called null loops. Our
purpose is to construct a presentation of the £L—fundamental group of G.

Let G' = (V,E'), with E' C FE be a spanning subgraph of G which is connected and
L' —simply connected, where £ is the set of all elements of £ which are paths of G'. Such a
subgraph G’ can always be constructed, for instance by considering G’ a covering tree of G.

Let us chose an arbitrary orientation on each edge of G which is not an edge of G’ :
We consider A = {(ly,r1),. .., (lm,Tm)}, where E\E" = {{l1,7},...,{lm,m}} and E\E' has
cardinality m.

Let {ai,...,am,a;",...,a;'} be an alphabet as considered in the definition of the free
group, let W,,, be the set of all words on this alphabet, and let F;, be the free group with the
m generators ay,. .., Q.

First we associate a word w(c) of W, to each path c¢in G. Let ¢ = (zo,...,x,) be a path
of G.

Definition 1 Let i € {1,...,m} and k € {0,...,p — 1} be such that {l;,r;} = {zk, Tp1}-
The couple (k,i) is called an intersection of ¢ and A. If (r;,l;) = (g, xpy1), we say that
the intersection (k,i) is positive. If (I;,r;) = (g, Try1), we say that the intersection (k,i) is
negative.

Notation 1 Given (k,i) an intersection of ¢ with A, we denote by O, (k, i) the number equal
to +1 if the intersection (k, 1) is positive, and to —1 if the intersection (k,) is negative.



Now, we define w(c) as the word, containing one symbol a?c(k’i) for each intersection (k,1)
of ¢ and A, these symbols appearing in the word w(c) in the order of the increasing k (i.e. the
order in which the intersections appear along ¢). We denote by w(c) the class of w(c) up to
elementary simplifications (see the definition of the free group). For the sake of simplicity, we
shall often write w(c) instead of w(c).

In order to define a group with generators and relations, let R = {w(c) / ¢ € L} we the set
of all words associated to loops of £. The set R will be the set of our relators.

Let H be the normal subgroup of F,,, generated by all the words of R. Finally, let " = F,,,/H
be the group with m generators and the relations of R. We shall prove that the n—fundamental
group I1£(G, B) of G is isomorphic to the group I', which provides a presentation of IT€(G, B).

We denote by =g the relation of equality modulo H in F,,, and by pyg : F,, — [ the
projection (see the definition of the quotient group). Given ¢ a path of Ag(G), we denote by

¢(c) the element py(w(c)) of T.

Theorem 1 If ¢ and ¢ are two L—homotopic paths of G, then p(c) = ¢(c'). In other words,
the map ¢ : Ag(G) — T induces a map

{a; M4(G,B) — r
[} — @) = ()

Moreover, the map ¢ is clearly a group morphism.

Proof: It is sufficient to prove Theorem 1 in the case when ¢ and ¢ are the same up to
an elementary L£—deformation. So, suppose ¢ and ¢ are of the form ¢ = m; * v *x m and
d=m v *m.

Since v %'~ € L, the word w(y * 7' ~") belongs to R (from the very definition of R), so
that

=
=
=

) wt) s ulm)
w(m)  w(y* "1 * w(y') xw(m)
=p w(m)*xw(y')* w(mrs)

().

Finally, w(c) =g w(c') so that p(c) = ¢(c'). O

I
g

The following result is the main result of this section :
Theorem 2 The map ¢ : 1¥(G, B) — T is a group isomorphism.

In order to prove Theorem 2, we should first show two lemmas.

Lemma 1 Let ¢ be a path in G and let w € W, be a word such that w(c) = w in the free
group F,,. Then c is L—homotopic in G to a path ¢’ such that w(c') = w.

Proof of Lemma 1: Tt is sufficient to prove the result when w(c) and w are the same up to
an elementary simplification. We distinguish two cases:



First case: If w is obtained by inserting in the word w(c) a sequence aza; ' or a; ‘a; (say
a;a;"). We decompose w(c) = wywy and w = wia;a; 'ws. We also decompose ¢ = ¢; * ¢, with
w(ey) = wy and w(cy) = we. Let a be a path in the connected and simply connected graph G’
from the last vertex of ¢; to the vertex r;. Then the path ¢ = ¢; * a * (1, [;,7;) * @™ * ¢y is
clearly £L—homotopic in G to ¢ = ¢ * ¢y, and we have w(c') = wy * aiai’lwg = w.

Second case: If w is obtained by deleting in w(c) a subword of the form a;a; ' or a; *a; (say
a;a;"). We denote w(c) = wya;a; 'wy and w = wiw,. We decompose ¢ = ¢; * ¢y * c3 % ¢4 with
w(er) = wy, wcy) = az, w(cs) = a; " and w(cs) = wy.

Let (kz,7) be the unique intersection of ¢ with A, and let (k3,4) be the unique intersection
of c3 with A.

We denote c; = aip * f2 and c3 = a3 * 3, the last point of ay and the first point of 5 being
equal to r;, and the first point of 5, and the last point of a3 being equal to [;.

Since G’ is simply connected, the closed path 35 * a3 in G’ is £L'—homotopic in G’ (hence
L—homotopic in ) to the trivial path reduced to (I;,[;). Hence ¢, which is equal to ¢;*coxez*cey,
is equal to to ¢y *qax Pakaz* B3%cy, so that it is L—homotopic in G to the path ¢ = ¢ *xao*3%cy.
Moreover, since s * 33 is a path of G', we have w(c) = w(c;)w(eq) = wywy = w. O

Lemma 2 Let ¢ be a path in G such that w(c) = w(a) for a a null loop (i.e. o € L). Then
¢ is L—homotopic in G to a path ¢ with w(c') equal to the empty word (in other words, ¢ has
no intersection with A).
Proof: We denote w(a) = afll---af;’ with 4, € {1,...,m} and ¢, € {—1,+1} for u €
{1,...,p}. For u € {1,...,p}, we denote by (k,,i,) the u’" intersection of ¢ with A, cor-
responding to the symbol a;* in w(c) = w(a). Finally, we decompose ¢ = co * -+ *x cp,
where ¢y, ...,c, are paths of the graph G’, and we denote y, and z, respectively the first
point and the last point of ¢, for u € {0,...,p}. Necessarily, for v € {1,...,p}, we have:
{Zu—la yu} = {Tiu’ ltu}

Since G’ is simply connected, for u = 1,...,p — 1, the path ¢, of G' is £'—homotopic in G’
to a path ¢, of G' which is the portion of the path o between y, and z,. The path ¢; *---%¢, 4
is L—homotopic in G to the path ¢} *---*c, ;, which is £'—homotopic to a path C' of G' from
Y1 to 2,1 (namely, C is the portion of a ! between the first vertex of ¢; to the last vertex of
Cp—1-

Hence, ¢ is L—homotopic in G to the path ¢ = ¢y * C * ¢,, which is a path of G, so that
w(c') is the empty word. O

Proof of Theorem 2: First we prove that the morphism ¢ is onto. To do this, it is sufficient
to prove that for i = 1,...,m, there exists a loop ¢ of Ag(G) such that w(c) = a;. Let us
consider (l;,r;) € A. Since the graph G’ is connected, there exists a path ¢; in G’ from B to
r;. Similarly, there exists a path ¢, in G' from [; to B. Now, the concatenation ¢ = ¢; x ¢5 is a
path in G and we have w(c) = a;. Hence, the morphism ¢ is onto.

There remains to prove that the morphism ¢ is one to one. To do this, we consider ¢ a loop
of Ap(G) such that ¢([c]) = 1in I', and we have to prove that ¢ is L—homotopic in G to the
trivial path (B, B).



We decompose ¢ = ¢y * - -+ x ¢y, where for £ = 1, ..., f the path ¢ is a path in the graph
G',and for k =1,...,p — 1, the edge of G between the last surfel of ¢, and the first surfel of
Ck+1 is an edge of the form {r;, [;}.

Our hypothesis is that w(c) is in the normal subgroup H of F,, generated by the elements
of R. Therefore, the word w(c) is free equivalent to a word

w—Hwa Q) Ea*wa’l

with for a = 1,...¢9, w, € Wy, €4 € { 1,1}, and «, is a loop of £, From Lemma 1, the
path ¢ is L—homotopic in G to a path c With w(c) = w. Let us decompose ¢ by setting

-1

¢ = ¢y * g x 3 % ¢q, with w(c) Hwa ) xw, , wler) = wy, w(ez) = (w(ay))® and

w(cy) = w, '

From Lemma 2 follows that c3 is £—homotopic in G with fixed extremities to a path ¢
which has no intersection with A, so that w(cj) is the empty word.

Now, ¢ is L—homotopic in G to the path ¢ = ¢, x cp * ¢4 * ¢4, and w(c") = w(er)wywy,

Due to Lemma, 1, the path ¢” is £— homotopic to a path ¢” with

w(d") = w(e) Hwa R(ia, 84))% * w .

It follows by induction that ¢ is £L— homotopm in G to a path /3 such that w(f) is the empty
word. This means that § is a path in G' and, since G’ is simply connected, [ is homotopic in
G’ to a trivial path. Therefore, ¢ is L—homotopic in G to the trivial path (B, B). O

1

3 Fundamental Groups in 3D

The 3D case is certainly the most important concerning applications in pattern recognition
of algebraic invariants computation. As we shall see, the 3D digital fundamental group, as
considered for example in [4], [5], [2] and [1], can be defined as a particular case of graphs
fundamental groups as defined in Section 1.3. In this section, after having recalled basic notions
and notations of 3D digital topology, we explain how to reduce the number of generators and
relations obtained for the presentation of the 3D fundamental group given by Theorem 2, first
by considering subgraphs of the classical adjacency graphs which have the same fundamental
group, and then by simplifying the sets of generators and relations we obtain.

3.1 Basic Notions of 3D Digital Topology

Let x = (i,5,k) € Z*, and o' = (V' j', k') € Z>.

The points = and z’ are called 26— adjacent if and only if max(|i" —i|, |j" — j|, |k’ — k|) = 1.
The points z and 2’ are said to be 6—adjacent if and only if |i' —i| + |j' — j| + | — k| = 1,
i.e. if they are 26—adjacent and have two of their coordinates in common. The points = and
x' are called 18—adjacent if and only if they are 26—adjacent and have at least one of their
coordinates in common. Let n € {6,18,26}, and X C Z3. Given z € Z*, we denote by N, (z)
the set of all y € Z3 which are n—adjacent to .
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Let X C Z3 be a subset of Z3. We denote by G, (X) the graph whose vertices are elements
of X, two vertices of G, (X) being adjacent in G, (X) if and only if they are n—adjacent (as
points of Z?).

An n—path in X is a path in the graph G, (X). An n—path c is called closed if, as a path
of G\,(X), the path ¢ is a loop. A closed path ¢ = (zo,...,x,) is called simple closed if for
i,j € {0,...,p} with ¢ # j (mod p) we have z; # ;. The set X is called n—connected iff
G, (X) is connected, and n—connected components of X are defined as connected components
of G, (X).

For X C Z? we denote by X the complement Z*\X of X. As usual in digital topol-
ogy ([6]), when we analyze an object with an adjacency relation n € {6,18,26}, we have
to consider another 7 adjacency relation for X. We introduce here a difference between the
6—adjacency relation when associated with the 26—adjacency relation, and when associated
with the 18—adjacency relation. We must also introduce a distinct notation for these two
things since several notions, as far as the fundamental group is concerned, will be differ-
ent for these two adjacencies. We denote by 67 the 6—adjacency relation when associated
with the 18 —adjacency relation. Being 6T —adjacent, 67 —connected is just being 6—adjacent,
6—connected but, as we already said, several definitions will be different for the 6 and the 6*
notions.

3.2 The Digital Fundamental Group

In this section, we introduce the (digital) n—fundamental group of an object X. This group,
which has been introduced in digital topology by T. Y. Kong ([4] and [5]), represents intuitively
the “holes” in X. A hole is detected when some closed n—path in X can not be deformed to a
single point. For instance, in a hollow torus there are two “independant” such closed n—paths,
and the fundamental group of a hollow torus is, as a group, isomorphic to (Z? +). The notion
of the fundamental group can be formalized as follows:

Let X C Z3. Let us consider a fixed point B € X called the base point. We denote by
AL (X)) the set of all closed n—paths m = (o, ..., x,) which are included in X and such that
Ty =z, = B.

To introduce the fundamental group, we first introduce a set £,,(X) of loops, which depends
on the considered adjacency relation n.

If n € {26,18,6"}, then £, (X) is the set of all closed n—paths of X which are either back
and forths, or contained in a 2 X 2 x 2 cube of 8 points.

If n =6, then £,,(X) is the set of all closed n—paths of X which are either back and forths,
or contained in a 2 x 2 square of 4 points

Then, two n—paths are called n—homotopic in X if they are £, (X)—homotopic in the
graph G,(X) ; we denote by II"(X, B), and we call the n—fundamental group of X, the
L, (X)-fundamental group of G, (X).

It is easily seen that this definition is equivalent to another one which is commonly used and
can be described as follows. First we introduce the notion of an elementary n—deformation.
Two n—paths 7 and 7" in X are said to be the same up to an elementary n—deformation (with
fized extremities) if they are of the form m = 1 x v % my and 7’ = my % ' x 1y, the n—paths ~
and +' having the same extremities and being both included in a common 2 x 2 square of 4



points if n = 6, and in a common 2 x 2 x 2 cube of 8 points if n = 6™, 18 or 26.

Now, two n—paths 7 and 7" in X are n—homotopic in X if there exists a finite sequence of
n—paths T =7, ..., T, = 7' in X such that for i = 1,..., m the n—paths m,_; and 7; are the
same up to an elementary deformation (with fixed extremities).

The n—homotopy relation defines an equivalence relation on A% (X), which coincides with
the £,,(X)—homotopy relation, and therefore I17 (X, B) is the set of equivalence classes of this
equivalence relation.

Clearly, since the 3D n—fundamental group of X has been characterized as the L—fundamental
group for a given set £ of loops in a graph (namely the graph G, (X)), then Theorem 2 provides
a way to compute a presentation for T17(X). However, the number of generators and relations
directly obtained by this method is quite huge. In the sequel of this paper, we provide some
ways to reduce the size of the presentation of the fundamental group in 3D.

4 Computing 3D Fundamental Groups

In the sequel of this paper, n is an adjacency relation in {6,6", 18,26}, and X denotes an
n—connected subset of Z3.

4.1 Finite Presentation

Definition 2 Let x and y be two elements of X.

1. The two points x and y are called dg—adjacent or dg+—adjacent in X if they are 6—adjacent ;

2. The two points x and y are called dig—adjacent in X if either they are dg—adjacent, or
they are 18—adjacent and have no common 6—neighbor in X ;

3. The two points x and y are called dyg—adjacent in X if either they are dig—adjacent, or
they are 26—adjacent and have no common 18—neighbor in X.

From the notion of d,, —adjacency defined above, we can define a graph D,,(X) having X as
set of vertices, two elements of X being adjacent in D, (X) if and only if they are d,—adjacent.
Then we define from the graph D,,(X) the notion of a d,—path in X, and a d,—connected
component in X as we have defined an n—path and an n—connected component from G, (X).

Lemma 3 Let ¢ be an n—path in X. Then ¢ is n—homotopic to a d,—path ¢ in X.

Proof: If n = 6 or n = 67, then obviously we can take ¢’ = ¢. Now suppose n = 18. By
an elementary n—deformation, we can add to ¢ a common 6—neighbor between two successive
points of ¢ which are not d;g—adjacent in X. By doing this for all couples of successive points of
¢ which are not dig—adjacent, we obtained the desired d;g—path ¢'. Finally, suppose n = 26. By
an elementary n—deformation, we can add to ¢ a common 18 —neighbor between two successive
points of ¢ which are not dys—adjacent and not 18—adjacent in X. By doing this for all couples
of successive points of ¢ which are not dys—adjacent and not 18 —adjacent, we obtain a 26—path
in which any two successive points which are not 18 —adjacent are dog—adjacent. Then we can



add to this 26—path a common 6—neighbor between two successive points of ¢ which are
18—adjacent and not dig—adjacent in X. By doing this for all couples of successive points
which are not d;g—adjacent, we obtained the desired dog—path ¢’. O

Remark 1 Let Y C Z3. Then, due to Lemma 3, the d, —connected components of Y coincide
with the n—connected components of Y.

Definition 3 A d,—path ¢ constructed from an n—path c as in the proof of Lemma 3 is called
d,—path of X associated to c. Note that a d,—path of X associated to ¢ is not necessarily
unique because some choices are made during its construction.

Now, in order to define the d,,—fundamental group of X, we must define a set D,,(X) of loops
in the graph D, (X), as the elements of £,(X) which are d,,—paths.

Definition 4 Let ¢; and ¢y be two d,—paths in X. We say that ¢y and ¢y are d,—homotopic
(with fixed extremities) iff they are D, (X)—homotopic in D,(X). Equivalently, the d,—paths
c1 and ¢y are d,—homotopic iff there exists a sequence (o, ...,a,) of d,—paths of X, with
o = c¢; and oy = co, such that fori=1,...,q — 1 the d,—paths o; and o, are, as n—paths,
the same up to an elementary n—deformation.

Now we want to prove that the D, (X)—fundamental group of D,(X) is isomorphic to
the n—fundamental group of X, which shows that we can work on the fundamental group by
considering only d,—paths. First we should prove one lemma and one remark.

Lemma 4 Let X C Z* and let ¢y, cy be two n—paths which are n—homotopic. Let ¢} and c
be d,—paths of X respectively associated to ¢ and cs. Then the two d,—paths ¢| and c, are
d,,—homotopic.

Proof: We distinguish three cases:

First case : If ¢; = ¢y (only ¢ differs from ¢},). Between two successive points z; and x;,; of
¢1, possibly some points have been inserted to obtain ¢}, and similarly for c,. All these points
lie in a 2 x 2 square if x; is 18—adjacent to x; 1, and in a 2 X 2 X 2 cube otherwise. The result
then follows directly from the definition of an elementary n—deformation.

Second case : If ¢; and ¢y are the same up to an elementary n—deformation. Let S be a
2 x 2 square if n = 6, and a 2 x 2 X 2 cube if n € {67,18,26}, and let ¢; = 71 * v x 5 and
Co = 1 %7 %7, the two n—paths v and 4’ having the same extremities an being both contained
in S. We observe that all the points of any d,,—path associated to v or 4/ is contained in S.
Therefore, any d,—path associated to v is the same up to an elementary n—deformation as
any d,—path associated to 4'. The end of the proof in the second case follows from the first
case applied to the n—paths ~;, and then to the n—path ~s.

Third case : General case. This case follows directly from the two first cases and the
definition of n—homotopy between c¢; and ¢,. O

Remark 2 Let ¢; and ¢y be two n—paths such that the d,,—paths associated to ¢; and ¢, are
d,—homotopic in X. Then ¢; and ¢y are n—homotopic in X.
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Remark 2 follows directly from the definition of the d,—paths associated to ¢; and ¢y, and
from the fact that being d,—homotopic is a particular case of being n—homotopic.

Theorem 3 The D, (X)—fundamental group H?"(X)(Dn(X),B) of Dyp(X) is isomorphic to
the n—fundamental group TIT(X, B) of X.

Proof: Let us consider the map f which to an n—path ¢ of X associates a d,—paths
f(c) associated with c¢. Then, Lemma 4 implies that f induces a map f e (X, B) —
HID"(X)(Dn(X), B). Clearly, the map f preserves the concatenation of paths, and fvis therefore
a group morphism. Since for any d,—path ¢ we have f(c) = ¢, the map f, and therefore the
map fis onto. Now, from Remark 2, the map }"vis one to one. Hence, the map fis a group

isomorphism. O

From Theorem 3 follows that, in order to compute a presentation of the n—fundamental
group of X, we can equivalently compute a presentation of the D, (X)—fundamental group of
D, (X). If we compute the presentations using the method described in Section 2, the number
of generators of the obtained presentation is much lower if we consider the graph D,,(X) rather
than the n—adjacency graph. Indeed, the number of edges of a covering tree is equal to
card(X) — 1 for both graphs, so that the number of generators obtained is the number of edges
of the graph minus card(X) plus 1. Now, the number of edges of D,(X) is generally lower
than the number of edges of the n—adjacency graph. For instance, a point x € X such that
Nys(x) C X (z is an interior point) has 6 dyg—neighbors and 26 26—neighbors. Now, in order
to reduce the number of relators of the obtained presentation, we show that the set of null
loops used to define the D, (X)—fundamental group can be reduced to simple closed d,,—paths
of D, (X).

Lemma 5 Let ¢ be a closed d,—path in X. Then ¢ can be obtained from a d,—path (z,x)
(reduced to a single point) by inserting iteratively simple closed d,,—paths.

Proof of Lemma 5: Let ¢ = (zo,...,1,). If ¢ is simple, there is nothing to prove. Otherwise,
let ¢ be the smallest integer such that there exists j # ¢ with x; = x;, and let j be the smallest
integer distinct from ¢ such that z; = x;.

The closed d,—path s = (z;,...,x;) is simple, and ¢ is obtained from the d,—path ¢; =
(o, ..., %, Tj41,...,Tp) by inserting the simple closed d,—path s.

If ¢; is simple closed, there is nothing else to prove. Otherwise, we construct a closed
d,—path ¢y from c¢; as we have constructed ¢; from ¢, and we iterate the process. Since
the length of the d,,—paths decreases at each step, we obtain by this process a simple closed
d,—path ¢;. O

Now let M,,(X) be the set of loops of D,,(X) which are simple closed.

Lemma 6 Let ¢; and ¢y be two closed d,—paths. Then ¢y and co are d,—homotopic in X if
and only if they are M,,(X)—homotopic in Dy (X).

11



Proof: Clearly, since M, (X) C D,(X), if ¢; and ¢ are M,,(X)—homotopic in D, (X),
they are also d,—homotopic in X. Conversely, we can assume without loss of generality that
¢1 =y %y %y and ¢y = m %9 * 7o, the d,—path v % 7'~ ! being a loop of D, (X). Then ¢ is
M., (X')—homotopic to the d,—path ¢}, = m; * v % A"t % 4" % my. Now, from Lemma 5 and the
definition of M, the d,—path v x~'~" is M,,(X)—homotopic to a trivial path reduced to a
single point. Therefore, the path ¢ isin turn M,,(X)—homotopic to the d,, —path m xy *my = ¢y
|

Corollary 1 The M, —fundamental group of D,(X) is equal to the D,(X)—fundamental
group of Dyp(X).

Therefore, in order to compute a presentation of the n—fundamental group of X, we can
compute a presentation of the M, —fundamental group of D,,(X). So, the number of relators we
have to consider in the presentation is the cardinality of M,,(X), which is the number of simple
closed d,—paths in X which are contained in a 2 x 2 X 2 cube of 8 points if n € {6*,18,26},
and contained in a 2 X 2 square of 4 points if n = 6. In particular, the presentation obtained
in so doing is finite.

4.2 Reducing the Number of Generators and Relators

First we explain how to reduce the number of generators. The idea is simple: if one of the
relators is of the form a;'a?, with 4, j € {1,...,m}, with i # j and &;,¢; € {—1,+1}, then we
can express the generator a; using the generator a;, so that the system obtained by removing
the generator a; is still a system of generators. We then simply change each occurrence of a;
by its expression using a; in each relator. Note that the same principle applies if one of the
relators contains exactly one occurrence of a symbol a;, but this increases the length of the
relators.

Now we explain how to reduce the number of relators. Let us first recall that the set R of
all defined relators is the set of all words w(«), where « is any simple closed d,,—path contained
in X NS, where S is any 2 x 2 square if n = 6, and any 2 x 2 X 2 cube if n € {26,18,61}.

Now, for a fixed S, the closed d,—paths contained in X NS are not all independent. First, if
a closed d,—path « is a cyclic permutation of another d,,—path /3, then so are the words w(«)
and w(f). Since words being the same up to a cyclic permutation of symbols correspond to
conjugate elements of F,,, then removing, say, S from the set R does not affect the generated
normal subgroup H, and therefore the group I'. Finally, note that if one closed d,—path «
in X NS is obtained form the concatenation of two or more closed d,—paths of D NS by
removing points which have their predecessor and their successor equal, then the relator w(«)
is a consequence of all other relators and therefore it can be removed from R. Note that the set
of the relators to be considered for X NS depends only of the set X NS, and can be computed
once for all for all of the 2% subsets of a 2 x 2 x 2 cube.
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Conclusion

We can compute a presentation for the fundamental group of an arbitrary graph with an
arbitrary set of null loops, and a finite presentation of the fundamental group of any subset
of Z3, for any chosen adjacency relation n € {26,18,6,67}. The presentation obtained in 3D
satisfies some special properties (for example, the length of all the relators is less than or equal
to 8).

Some computation problems in groups such as the word problem (determining if a given
word is equal to 1 in a group I" given by generators and relations), and the isomorphism problem
(determining if two groups given by generators and relations are isomorphic) are not decidable
in the general case. It would be interesting to see if these problems are decidable for the
particular presentations of groups we obtain in 3D, due to their specific properties. Indeed, a
solution to these problems could enable us to decide if a given closed path can be continuously
deformed into another path, and if two given objects have isomorphic fundamental groups,
which is a central question of pattern recognition.
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