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Abstract

As its analogue in the continuous framework, the digital fundamental group represents

a major information on the topology of discrete objects. However, the fundamental group

is an abstract information and cannot directly be encoded in a computer using its de�ni-

tion. A classical mathematical way to encode a discrete group is to �nd a presentation of

this group. In this paper, we construct a presentation for the fundamental group of any

subset of a digital surface. This presentation can be computed by an e�cient algorithm.

Key words: Pattern Recognition, Digital topology, Homotopy, Surfaces.

Introduction

As its analogue in the continuous framework, the digital fundamental group, originally intro-

duced by T. Y. Kong in [4] in the 3D case (see also [5]), represents a major information on the

topology of discrete objects. It is in particular related to the notion of a simple point in 3D

([1]), and an even closer relationship between the fundamental group and topology preservation

has been established within digital surfaces ([9]).

For these reasons, we would obtain a very powerfull tool for pattern recognition if we could

make the information of the fundamental group accessible to computers in the 3D case. An

even more di�cult problem is to �nd an algorithm to determine whether two given 3D discrete

objects have isomorphic fundamental groups. Such an algorithm would represent a signi�cant

step to determine whether two objects could be the same up to some �continuous deformation�.

The fundamental group contains strictly more information than the �rst homology group.

However, whereas the �rst homology group is always accessible to computers, it is somehow

di�cult to transform the abstract notion of the fundamental group into some data which can

be handled by computers. A classical way to encode certain types of discrete groups is to

�nd presentations of these groups. A presentation of a group is a model of the group up

to isomorphism, which is characterized by an integer and some words on an alphabet called

relators. Such a data can easily be encoded in a computer.

Since the problem of computing a presentation of the fundamental group seems di�cult

in the general case, we are lead to study it, at �rst, in simpler frameworks than the complete
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3D case. Though the practical motivation comes from the 3D case, the study of some easier

cases gives some ideas on how to proceed in the general case. In [7] (see also [8]), the author

studies the planar 2D case. In this case, the fundamental group is shown to be isomorphic to

a free group (i.e. there are no relators in this case). This is an ideal case since computations

in the free groups are easy to perform, and the type of the group up to isomorphism is easily

determined. In this paper, we study the case of digital surfaces.

Digital surfaces of three dimensional objects have proved to be a fruitful model for visu-

alization and analysis of the objects they represent ([2]), especially in the biomedical �eld.

E�cient algorithms for extracting surfaces from volumes, and computing shape characteristics

exist ([6]). Sometimes, the surface itself needs to be segmented since some particular points

are de�ned on it. Then we obtain a subset X of the set of the surfels of the surface. In [9],

we introduce two complementary notions of adjacency between surfels on a digital surface,

which can be used to study the topology of such subsets X of a digital surface, and we study

the problem of topology preservation. In particular, a relationship is established between the

fundamental group, and the relation between sets generated by sequential deletions of simple

surfels. Here we consider the same model for the fundamental group.

We apologize for the high number of de�nitions necessary to the statement of the results

of this paper. After having set these de�nitions, since the statement of the results is very

technical, we �rst give an intuitive and non formal idea of how to proceed in the continuous

case. Finally, we construct a presentation of the fundamental group of any connected subset

of a digital surface. Our proof is constructive and leads to an e�cient algorithm to compute

this presentation.

1 Basic De�nitions and Notations

1.1 Groups, Normal Subgroups

We consider a group (�; �) with 1

�

as unit element. Let h 2 �. A conjugate of h in � is an

element of � of the form: g � h � g

�1

with g 2 �. Now let H be a subgroup of �, we say that

H is normal in � if for any h 2 H, any conjugate of h in � belongs to H.

Given H a normal subgroup of �, we consider �

H

the relation on � de�ned by [g �

H

g

0

] () [g

0

� g

�1

2 H]. Since H is a normal subgroup of �, this is an equivalence relation.

We denote by �=H the set of equivalence classes of elements of � under the relation �

H

, and

by p

H

: � �! �=H the projection which to an element of � associates its equivalence class

under �

H

. Now, if g �

H

g

0

and g

1

�

H

g

0

1

, then since H is normal we have g � g

1

�

H

g

0

� g

0

1

.

Hence the product � de�nes an operation, which we also denote by �, on �=H. To p

H

(g) and

p

H

(g

0

), this operation associates p

H

(g � g

0

). Obviously, the element p

H

(1

�

) of �=H is a unit

element for the operation � on �=H. Furthermore, given g 2 �, the element p

H

(g

�1

) of �=H

is an inverse for p

H

(g). Therefore, (�=H; �) is a group which we call quotient group of � by

the normal subgroup H. Intuitively, all elements of H are collapsed with the unit element to

obtain the quotient group.

Now let P be any subset of �. We consider the subset H of � composed of all products of

conjugates of elements of P and inverses of elements of P . Then H is a normal subgroup of �
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which we call normal subgroup of � generated by P . The normal subgroup generated by P is

the smallest normal subgroup of � which contains P .

1.2 Free Group, Generators and Relations

Now, before to introduce groups given by generators and relations, we must introduce the

notion of the (non abelian) free group with m generators. Let fa

1

; : : : ; a

m

g [ fa

�1

1

; : : : ; a

�1

m

g

be an alphabet with 2m distinct letters, and let W

m

be the set of the all words over this

alphabet (i.e. �nite sequences of letters of the alphabet). We say that two words w 2 W

m

and w

0

2 W

m

are the same up to an elementary simpli�cation if, either w can be obtained

from w

0

by inserting in w

0

a sequence of the form a

i

a

�1

i

or a sequence of the form a

�1

i

a

i

with

i 2 f1; : : : ;mg, or w

0

can be obtained from w by inserting in w a sequence of the form a

i

a

�1

i

or a sequence of the form a

�1

i

a

i

with i 2 f1; : : : ;mg. Now, two words w 2 W

m

and w

0

2 W

m

are said to be free equivalent if there is a �nite sequence w = w

1

; : : : ; w

k

= w

0

of words

of W

m

such that for i = 2; : : : ; k the word w

i�1

and w

i

are the same up to an elementary

simpli�cation. This de�nes an equivalence relation on W

m

, and we denote by F

m

the set of

equivalence classes of this equivalence relation. If w 2 W

m

, we denote by w the class of w

under the free equivalence relation. The concatenation of words de�nes an operation on F

m

which provides F

m

with a group structure. The group thus de�ned is called the free group with

m generators.

We denote by 1

m

the unit element of F

m

, which is equal to w where w is the empty word.

The only result which we shall admit on the free group is the classical result that if a word

w 2 W

m

is such that w = 1

m

and w is not the empty word, then there exists in w two successive

letters a

i

a

�1

i

or a

�1

i

a

i

with i 2 f1; : : : ;mg. This remark leads to an immediate algorithm to

decide whether a word w 2 W

m

is such that w = 1

m

. If w = a

"

1

i

1

� � � a

"

p

i

p

is a word of W

m

, we

denote by w

�1

the word w

�1

= a

�"

p

i

p

� � � a

�"

1

i

1

. We have: (w)

�1

= w

�1

.

Now we introduce the groups given by generators and relations. We consider m 2 N

�

and

a �nite subset R of W

m

. In this context, we call elements of R relators. We want to de�ne

a group from the free group with m generators, in which the words of R represent the unit

element. This group, called the group with m generators and the relations of R, is the quotient

of the free group F

m

by the normal subgroup generated by the set of the equivalence classes in

F

m

of elements of R. Now, given � a group, �nding a presentation of � is �nding an (explicit)

isomorphism from � to a group given by generators and relations.

1.3 Connectedness in Digital Spaces

Let � be a �xed set and let X � �. We denote by card(X) the number of elements of X

and we denote X = � nX. In the following, we shall de�ne an adjacency relation � on X to

be an antire�exive symmetric binary relation on X. An �-path with a length p is a sequence

(x

0

; : : : ; x

p

) in which x

i�1

is �-adjacent or equal to x

i

for i = 1; : : : ; p. Such an �-path is

called closed if and only if x

0

= x

n

and is called simple if the points x

i

for i 2 f0 : : : pg are

pairwise distinct. Given an ��path c = (x

0

; : : : ; x

p

), we denote by c

�1

the reversed ��path

(x

p

; : : : ; x

0

). Two elements x and y are said to be �-connected in X if there exists an �-path

(x

0

; : : : ; x

p

) in X with x

0

= x and x

p

= y. The ��connectedness relation is an equivalence
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relation and we call ��connected components its equivalence classes. A set is ��adjacent

to an element x if at least one element of the set is ��adjacent to x. We also de�ne the

��neighborhood N

�

(x) of x by N

�

(x) = fy 2 � = y is � � adjacent to xg.

1.4 Structure of a Digital Jordan Surface

We describe here the model of surface we consider, and some local structures which can be

de�ned on such a surface. Afterwards, we do not consider anymore the volume from which the

surface is build, and we give some intrinsic de�nitions and results on subsets of a surface.

First we recall some de�nitions, which can be found for example in [3] or [10], restricted

to the three dimensional case. In the following, voxels may be seen as units cubes rather than

points of Z

3

. We consider two kinds of adjacency between voxels. Two voxels are said to be

18�adjacent if they share a face or an edge. They are said to be 6�adjacent if they share a

face. A surfel is a pair (c; d) of 6�adjacent voxels. It can be seen as a unit square shared by c

and d. A surface is a set of surfels.

Let O �Z

3

be a 6�connected or 18�connected set. We consider � the set of all surfels of

the form (x; y) with x 2 O and y 2 O: we call � the surface of O. it is possible to de�ne an

adjacency relation between surfels of �. Such a surfel has exactly 4 neighbors, one per edge

under this relation. We call this adjacency relation the e�adjacency relation on the surface of

O. Let s and s

0

be two e�adjacent surfels of �. The surfels s and s

0

share an edge. The pair

fs; s

0

g is called an edgel. The de�nition of the e�adjacency relation depends on whether we

consider O as 18�connected or 6�connected.

The kind of surface thus de�ned satis�es the Jordan property ([3]): an e�connected surface

separates the space into two parts, one of which is 6�connected, and the other one which is

18�connected. This kind of surface is widely used in image analysis and manipulation.

We de�ne a loop in � as an e�connected component of the set of the surfels of � which

share a vertex w. For example, in Figure 1.b, we see an object with three voxels. The vertex

w marked with a �lled circle de�nes two loops, one which can be seen on the �gure and

is composed of 3 surfels, and the other loop which is hidden and is composed of 6 surfels.

Considering loops is a way to duplicate formally such vertices. We can de�ne a unique cycle in

any loop l: from a pair (s

1

; s

2

) of e�adjacent surfels in l choose s

3

the unique surfel of l which

is e�adjacent to s

2

and which is distinct from s

1

. By repeating this process we obtain a unique

simple closed e�path of surfels which we call a parametrization of the loop l. The length of a

loop ranges between 3 and 7. All the surfels of a loop share a common vertex. For this reason,

we say that two surfels are v�adjacent (vertex adjacent) if they belong to a common loop.

Note that in the case of a planar surface orthogonal to one of the coordinate lines (i.e. in

the case when the object O is a half space), v�adjacency coincides with the classical 2D digital

image notion of 8�adjacency and e�adjacency to the classical 4�adjacency.

De�nition 1 (d�cell) We associate a dimension to surfels, edgels, and loops, which is equal

respectively to 2, 1, and 0. We can identify a surfel s with fsg. We call a surfel a 2-cell, an

edgel a 1-cell, and a loop a 0-cell.

This dimension is compatible with the continuous analog of the digital surface. If a surfel

is a member of a loop or of an edgel, we also say that it is incident to this loop or this edgel.
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(a) (b)

Figure 1: Counter example and example

Moreover, whenever an edgel is a subset of a loop, we also say that it is incident to this loop.

We see that each surfel is incident to 4 loops and 4 edgels, and each edgel is incident to 2 loops.

In the sequel, we take the assumption that each loop of the surface of our object O is a

topological disk. More precisely, we assume that any two v�adjacent surfels which are not

e�adjacent cannot both belong simultaneously to two given distinct loops. For instance, in

Figure 1, the object (a) does not satisfy this hypothesis: The two loops corresponding to the

vertices marked with �lled circles contain two non e�adjacent surfels in common. In opposite,

the object (b) satis�es our hypothesis. We can express this assumption on the object O the

surface of which we consider, saying that we assume that if O is considered as 18�connected

and x and y are two 18�adjacent voxels of O which are not 6�adjacent, one of the two following

properties is satis�ed:

1. The voxels x and y have an 18�neighbor (or 6�neighbor) in O in common;

2. The voxels x and y have two 26�neighbors in O in common which are themselves

26�adjacent.

We must have the same assumptions on O if O is considered as 6�connected.

In the sequel of this paper, we consider � a �xed e�connected component of a digital

surface, and n 2 fe; vg. We also denote by n the element of fe; vg such that fn; ng = fe; vg.

2 Fundamental Groups, Topology Preservation

2.1 Simple Surfels, Homotopy

Let x 2 �. As we have already said, we assume that any loop in � is a topological disk. How-

ever, the v�neighborhood of the surfel x is not always a topological disk (see the v�neighbor-

hood of the grey surfel of the surface of Figure 1.b for instance). If this is the case, we have to

de�ne a topology on N

v

(x)[ fxg under which it is a topological disk. Let us consider two sur-

fels y and y

0

in N

v

(x) [ fxg. We say that y and y

0

are e

x

�adjacent [respectively v

x

�adjacent ]

if they are e�adjacent [respectively v�adjacent] and are contained in a common loop which

contains x. We denote by G

e

(x;X) [respectively G

v

(x;X)] the graph whose vertices are the
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surfels of N

v

(x)\X and whose edges are pairs of e

x

�adjacent [respectively v

x

�adjacent] surfels

of N

v

(x) \ X. We denote by C

x

n

(G

n

(x;X)) the set of all connected components of G

n

(x;X)

which are n�adjacent to x. Note that C

x

n

(G

n

(x;X)) is a set of subsets of the set of all surfels

of � and not a set of surfels.

De�nition 2 We call x an n�isolated surfel if N

n

(x) \ X = ; and an n�interior surfel if

N

n

(x) \X = ;.

De�nition 3 (Simple surfel) A surfel x is called n�simple in X if and only if the number

card(C

x

n

(G

n

(x;X))) of connected components of G

n

(x;X) which are n�adjacent to x is equal

to 1, and if x is not interior to X.

De�nition 4 (homotopy) Let be Y � X � �. The set Y is said to be (lower) n�homotopic

to X if and only if Y can be obtained from X by sequential deletion of n�simple surfels.

2.2 The Digital Fundamental Group

First, if � and � are two n�paths such that the last surfel of � is n�adjacent of equal to the

�rst surfel of �, we denote by � � � the concatenation of the two n�paths � and �.

Now we need to introduce the n�homotopy relation between n�paths. Let us considerX �

�. First we introduce the notion of an elementary deformation. Two closed n�paths � and

�

0

in X having the same extremities are said to be the same up to an elementary deformation

(with �xed extremities) in X if they are of the form � = �

1

�  � �

2

and �

0

= �

1

� 

0

� �

2

, the

n�paths  and 

0

having the same extremities and being both contained in a common loop.

Now, the two n�paths � and �

0

are said to be n�homotopic (with �xed extremities) in X if

there exists a �nite sequence of n�paths � = �

0

; : : : ; �

m

= �

0

such that for i = 1; : : : ;m the

n�paths �

i�1

and �

i

are the same up to an elementary deformation (with �xed extremities).

Let B 2 X be a �xed surfel called the base surfel. We denote by A

n

B

(X) the set of all

closed n�paths � = (x

0

; : : : ; x

p

) which are contained in X and such that x

0

= x

p

= B. The

n�homotopy relation is an equivalence relation on A

n

B

(X), and we denote by �

n

1

(X) the set

of equivalence classes of this equivalence relation. If c 2 A

n

B

(X) is a closed n�path, we denote

by [c] 2 �

n

1

(X) the class of c for this relation.

The concatenation of closed n�paths is compatible with the n�homotopy relation, hence

it de�nes an operation on �

n

1

(X), which to the class of � and the class of � associates the

class of � � �. This operation provides �

n

1

(X) with a group structure. We call this group

the n�fundamental group of X. The n�fundamental group de�ned using a surfel B

0

as base

surfel is isomorphic to the n�fundamental group de�ned using a surfel B as base surfel if X is

n�connected.

Now we consider Y � X � � and B 2 Y a base surfel. A closed n�path in Y is a particular

case of a closed n�path in X. Furthermore, if two closed n�paths of Y are n�homotopic

(with �xed extremities) in Y , they are n�homotopic (with �xed extremities) in X. These

two properties enable us to de�ne a canonical morphism i

�

: �

n

1

(Y ) �! �

n

1

(X), which we call

the morphism induced by the inclusion map i : Y �! X. To the class of a closed n�path

� 2 A

n

B

(Y ) in �

n

1

(Y ) the morphism i

�

associates the class of the same n�path in �

n

1

(X).

The following is proved in [9]:

6



Theorem 1 Let Y � X � � be n�connected sets. Then the two following properties are

equivalent:

1. The set Y is lower n�homotopic to X.

2. The morphism i

�

: �

n

1

(Y ) �! �

n

1

(X) induced by the inclusion map i : Y �! X is an

isomorphism and each n�connected component of Y contains a surfel of X .

2.3 Homotopy in Subgraphs of n�adjacency Graphs

Let G be a subgraph of the n�adjacency graph of a set X � � with the same set of vertices.

Let � and �

0

be two paths in the graph G. We say that � and �

0

are homotopic in the subgraph

G if there exists a �nite sequence � = �

0

; : : : ; �

m

= �

0

of paths in G such that for i = 1; : : : ;m

the paths �

i�1

and �

i

, as n�paths, are the same up to an elementary deformation (with �xed

extremities). The subgraph G of the n�adjacency graph of X is called simply connected if any

path in G is homotopic in G to a constant path of the form (B;B) with B 2 X.

3 About the Continuous Case

Let us �rst recall some de�nitions about C

1

surfaces embedded in R

3

. We denote by D the

opened disk of R

2

with a unit radius and centered at (0; 0).

A continuous map ' : D �! R

3

is called C

1

if all the partial derivatives of ' exist at any

point (s; t) 2 D, and are continuous functions of (s; t).

Let ' : D �! R

3

be a C

1

map. We denote '(s; t) = ('

1

(s; t); '

2

(s; t); '

3

(s; t)) 2 R

3

.

The map ' is called regular if for any (s; t) 2 D the two vectors (

@'

1

@s

(s; t);

@'

2

@s

(s; t);

@'

3

@s

(s; t))

and (

@'

1

@t

(s; t);

@'

2

@t

(s; t);

@'

3

@t

(s; t)) are both non zero and are linearly independent in R

3

.

Given two metric spaces X and Y , a continuous map f : X �! Y is called a homeomor-

phism if it is one to one and its inverse map is continuous.

De�nition 5 (C

1

surfaces, local parametrization) A subset X of R

3

is called a C

1

sur-

face embedded in R

3

(or C

1

surface for short) if for any x 2 X the two following properties

are satis�ed :

1. There exists an opened neighborhood W

x

of x in R

3

(we denote by V

x

the neighborhood

W

x

\X of x in X) ;

2. There exists a homeomorphism '

x

: D �! V

x

which is C

1

and regular and with '

x

((0; 0)) =

x.

Such a map '

x

is called a local parametrization of X in the neighborhood of x.

We have to introduce the notion of an oriented surface. Under the notions of previous

De�nition 5, we �rst consider, for x; x

0

2 X such that V

x

\ V

x

0

6= ;, the map

�

g

xx

0

: '

�1

x

(V

x

\ V

x

0

) �! '

�1

x

0

(V

x

\ V

x

0

)

(s; t) 7�! '

�1

x

0

� '

x

(s; t)
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We also denote g

xx

0

(s; t) = (g

xx

0

1

(s; t); g

xx

0

2

(s; t)) 2 R

2

. Then the two vectors (

@g

xx

0

1

@s

(s; t);

@g

xx

0

2

@s

(s; t)) and (

@g

xx

0

1

@t

(s; t);

@g

xx

0

2

@t

(s; t)) of R

2

exist and form a basis of R

2

for any (s; t). An

oriented surface is a couple (X; ('

x

)

x2X

) satisfying all the above properties, and such that for

any x; x

0

2 X such that V

x

\ V

x

0

6= ; and for any (s; t) 2 '

�1

x

(V

x

\ V

x

0

), the basis

((

@g

xx

0

1

@s

(s; t);

@g

xx

0

2

@s

(s; t)); (

@g

xx

0

1

@t

(s; t);

@g

xx

0

2

@t

(s; t)))

of R

2

is direct (i.e. has a positive orientation). Such a structure exists for any C

1

surface X

embedded in R

3

.

Let X be a C

1

oriented surface. A path c in X is a continuous map c : [0; 1] �! X. Such

a path c is called closed if its two extremities c(0) and c(1) are equal. A C

1

curve is a path

which, as a map, admits a nowhere zero continuous derivative. A simple curve is a curve c

such that 8�; � 2 [0; 1] [c(�) = c(�)() � = �]. A simple closed curve is a curve c such that

8�; � 2 [0; 1] [c(�) = c(�)() (� = � or f�; �g = f0; 1g)].

Let us consider two curves c

1

and c

2

in X which have �nitely many intersections, and such

that the directions tangent to c

1

and c

2

are distinct at any of their intersections, and let � and

� in [0; 1] be such that c

1

(�) = c

2

(�) (in other words we consider an intersection between c

1

and c

2

). We denote x = c

1

(�) = c

2

(�) the intersection point. We consider the two following

vectors of R

2

: v =

d('

�1

x

�c

1

)

d�

(�) and w =

d('

�1

x

�c

2

)

d�

(�). We de�ne the orientation number of the

intersection (�; �) of c

1

and c

2

, and we denote by O(�; �; c

1

; c

2

), the number equal to 1 if the

basis (v;w) has a positive orientation in R

2

, and equal to �1 otherwise. This number depends

on the oriented surface (X; ('

x

)

x2X

) and not only on the C

1

surface X.

Now we introduce in an informal way the fundamental group of a connected subset X of R

3

.

We consider B 2 X a �xed point called the base point, and A

B

(X) the set of all closed paths c

in X such that c(0) = c(1) = B. We introduce on A

B

(X) an equivalence relation of homotopy

between paths which intuitively represents the relation of being continuously deformable one

into each other inside X (with �xed extremities). Then, similarly to the discrete case, we

denote by �

1

(X;B) the set of the equivalence classes of paths up to homotopy in A

B

(X),

and the concatenation of paths de�nes an operation on �

1

(X;B). This operation provides

�

1

(X;B) with a group structure, and this group is called the fundamental group of X. A set

X is called simply connected if its fundamental group reduces to a singleton (i.e. any path of

A

B

(X) can be continuously deformed to a point inside X.

Now we can explain how to construct a presentation of the fundamental group of an oriented

surface (X; ('

x

)

x2X

). First we have to construct a �nite set f�

1

; : : : ; �

m

g, where for any

i 2 f1; : : : ;mg the element �

i

is either a simple curve or a simple closed curve, satisfying all

the following properties :

(P

1

): 8i; j 2 f1; : : : ;mg with i 6= j and 8�; � 2]0; 1[ we have �

i

(�) 6= �

j

(�) (in other words

the curves �

i

can intersect only at their extremities) ;

(P

2

): Any curve �

i

which is not simple closed must intersect at least another of the �

j

's at

each of its extremities ;

(P

3

): The complementXnf�

i

(�) = i = 1; : : : ;m and � 2 [0; 1]g of the images of all the curves

�

i

is connected and simply connected.

8
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Figure 2: Example with a torus.
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Figure 3: An intersection point.
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ea

d

fbc

Figure 4: Example with a surface with a genus 2.

Let us consider for example the torus represented by Figure 2. We have represented two

(simple closed) curves �

1

= a, and �

2

= b. All the extremities of a and b are at the same point

x. The complement in the torus of these two curves is a topological disk.

Now let us consider the surface of genus 2 depicted by Figure 4. Here we have 6 curves

a; b; c; d; e and f . The curves c and e are simple closed and the other curves are not closed.

The complements of these 6 curves in the surface is a topological disk. There are three points

at which we have intersections of curves.

Now let us introduce the presentation we have for the fundamental group of X. We consider

a base point B in the complement of the images of the curves �

i

. We take m generators

fa

1

; : : : ; a

m

g, one for each of the curves �

i

. Let us describe the words we take as relators : For

any extremity �

i

(�) with � 2 f0; 1g of a curve �

i

with i 2 f1; : : : ;mg, we consider the word

R(�

i

(�)) in the a

j

's and a

�1

j

's corresponding to the curves �

j

which appear cyclically around

the extremity �

i

(�) (see Figure 3). The order in which the a

j

's and a

�1

j

's appear in the word

R(�

i

(�)) is precisely the cyclic order of the curves �

j

which meet at the point �

i

(�). Now,

whether we get in the word R(�

i

(�)) an a

j

or an a

�1

j

depends on the orientation of the curve

�

j

, i.e. depends on whether �

i

(�) = �

j

(0) or �

i

(�) = �

j

(1).

For the example of the torus depicted by Figure 2, we have two generators a and b. The

�

i

's all have the same extremity x, and the word R(x) is up to conjugacy the word aba

�1

b

�1

,

commutator of a and b.

For the example of the surface of genus 2 represented by Figure 4, we have three words

R(x

1

), R(x

2

) and R(x

3

), corresponding to the three intersection points x

1

, x

2

and x

3

from the

left to the right on the �gure. We have (up to conjugacy) R(x

1

) = acb

�1

c

�1

, R(x

2

) = da

�1

f

�1

b,

and R(x

3

) = ed

�1

e

�1

f .

Now we considerR the set of all words R(�

i

(�)) for i = 1; : : : ;m and � 2 f0; 1g. We denote

by � the group with m generators and the relations of R. The fact is that the fundamental

group of the C

1

surface X is isomorphic to �. Let us explain how the isomorphism is de�ned :

9



Let us consider a closed path c of A

B

(X). First we want to construct a word w in the

generators. To do this, we �rst chose a path c

0

, which is a curve, can be continuously deformed

into c inside X, and which has a �nite intersection with all the curves �

i

; i = 1; : : : ;m (such a

curve always exists). Moreover, we may assume that at each intersection between c

0

and some

�

i

, the tangent directions to c

0

and �

i

are not parallel at this intersection.

Then, to construct the desired word w(c

0

), we go over the curve c

0

, adding to the word we

construct a symbol a

O(�;�;�

i

;c

0

)

i

each time we have an intersection �

i

(�) = c

0

(�). The order in

which the symbols appear in the word w(c

0

) is the order in which the intersections with the

�

i

's appear along c

0

. Then we have :

Theorem 2 The projection of w(c

0

) 2 F

m

on the group � depends only on the class of the

path c in the fundamental group. We denote this class by W(c), which is an element of �.

Theorem 3 (Presentation of the fundamental group) If we denote by [c] the class of a

path c of A

B

(X) in the fundamental group, then the map [c] 7�! W(c) is well de�ned, and it

is a group isomorphism from �

1

(X;B) onto the group �.

For example, for the torus depicted by Figure 2, the fundamental group has two generators

a and b with the single relation aba

�1

b

�1

, and the fundamental group is therefore isomorphic

to the group (Z

2

;+). For the example of Figure 4, we have 6 generators and 3 relators as we

noticed above.

In fact, in the continuous case, it is always possible to construct the curves �

i

's in such a

way that all of their extremities are at the same point. In this case, the presentation we obtain

for the fundamental group has a single relation. We shall see that it does not work the same

in the discrete case.

4 The Discrete Case

4.1 Simple Curves on a Digital Surface

We remind the reader that we have de�ned a digital surface �, and n 2 fe; vg. In the sequel

we shall assume that n = e and n = v. In other words, we shall analyze a �xed e�connected

subset X of the set of the surfels of � with the e�connectivity relation, and the complement

X of X in � with the v�connectivity relation. Our purpose is to compute a presentation of

the e�fundamental group of X. We �rst want to de�ne a set f�

1

; : : : ; �

m

g of curves satisfying

properties analogous to the three properties (P

1

), (P

2

) and (P

3

) of the continuous case. The

kind of curves which are to be considered here have a thickness 0.

De�nition 6 (Discrete simple curve on a surface) A oriented simple curve on the sur-

face � is a sequence � = (e

1

; : : : ; e

q

), with q � 1, where e

s

= (r

s

; l

s

) is for s = 1; : : : ; q a couple

of surfels with r

s

e�adjacent to l

s

, satisfying the three following properties :

1. For s = 1; : : : ; q�1, the surfels r

s

; l

s

; r

s+1

and l

s+1

are all contained in a unique common

loop L

�

(s). For convenience, if q = 1 we chose L

�

(0) and L

�

(1) two distinct loops which

10



contain r

1

and l

1

. If q � 2 we denote by L

�

(0) the unique loop which contains r

1

and

l

1

and is distinct from L

�

(1), and we denote by L

�

(q) the unique loop which contains r

q

and l

q

and is distinct from L

�

(q � 1) ;

2. For s = 1; : : : ; q � 1, the surfels l

s

and l

s+1

are e�connected in L

�

(s)nfr

s

; r

s+1

g and the

surfels r

s

and r

s+1

are e�connected in L

�

(s)nfl

s

; l

s+1

g ;

3. The loops L

�

(s) for s = 0; : : : ; q are all distinct.

De�nition 7 (oriented simple closed curve) An oriented simple closed curve on � is a

sequence such as de�ned by the previous de�nition of oriented simple curves, but satisfying the

following property 3' instead of the property 3 :

3' For s; t 2 f0; : : : ; qg we have [L

�

(s) = L

�

(t)() (s = t or fs; tg = f0; qg)].

De�nition 8 Let � = (e

1

; : : : ; e

q

) and �

0

= (e

0

1

; : : : ; e

0

q

0

) be two oriented simple curves or

simple closed curves on �. We say that the curves � and �

0

have no interior intersection if

and only if for s 2 f0; : : : ; qg and for t 2 f0; : : : ; q

0

g with s 62 f0; qg or s

0

62 f0; q

0

g we have :

L

�

(s) 6= L

�

0

(t).

4.2 Construction of an Appropriate set of Curves

As we said before, we want to proceed in the discrete case as we did for the continuous case,

constructing a set f�

1

; : : : ; �

m

g of simple curves and simple closed curves satisfying properties

analogous to the properties (P

1

), (P

2

) and (P

3

) of the continuous case. However, in the discrete

case we shall not only compute a presentation of the fundamental group of �, but we shall do

it for any e�connected subset X of �. Hence, in the sequel of this paper, X denotes a set

of surfels of �, and B 2 X is a �xed base surfel. We want to construct a set f�

1

; : : : ; �

m

g

of simple curves and simple closed curves (we denote �

i

= (e

i

1

; : : : ; e

i

q

i

) for i = 1; : : : ;m and

e

i

s

= (r

i

s

; l

i

s

)), on � satisfying the following properties :

(P

1

): 8i; j 2 f1; : : : ;mg with i 6= j, the curves �

i

and �

j

have no interior intersection ;

(P

2

): For any i 2 f1; : : : ;mg and any s 2 f0; q

i

g, there exists j 2 f1; : : : ;mg and t 2 f0; q

j

g,

with i 6= j or s 6= t, such that L

�

i

(s) = L

�

j

(t) ;

(P

3

): The subgraph of the e�adjacency graph of X, obtained by removing in the e�adjacency

graph of X all the edges of the form fl

i

s

; r

i

s

g, is connected and simply connected.

To construct such a set of curves, we �rst construct a connected and simply connected

subgraph of the e�adjacency graph of X, having X as set of vertices. A way to do this is

to consider a covering tree G(X) in the e�adjacency graph of X. Such a covering tree is a

connected subgraph havingX as set of vertices, and with no cycle so that it is simply connected.

E�cient algorithms to construct covering trees in connected nonoriented graphs exist and can

be found in most of books on elementary algorithms.

We can consider the set A of the pairs fx

1

; x

2

g of e�adjacent surfels ofX, such that fx

1

; x

2

g

is not an edge of the subgraph G(X). As we shall see, from the data of the elements of A,
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we can construct a set of oriented curves satisfying the properties (P

1

) and (since G(X) is

connected and simply connected) (P

3

).

De�nition 9 Let A

0

be a set of pairs of e�adjacent surfels of X. An edge � 2 A

0

, such that

there is a loop l included in X which contains �, and such that for any �

0

2 A

0

with �

0

6= � we

have �

0

6� l, is called an extremity of A

0

.

Because of the existence of extremities in the set A, the set of oriented curves we can

construct from the data of A does not always satisfy the property (P

2

). What we can do

is remove iteratively extremities in A until we get a set which contains no more extremities.

More precisely, we set A

0

= A, we iteratively choose an extremity �

k

in the set A

k

and set

A

k+1

= A

k

nf�

k

g, until we get a set A

f

which contains no extremity. For k = 0; : : : ; f , we

denote by G

k

(X) the graph whose vertices are the surfels of X, an edge of G

k

(X) being either

an edge of G(X), or an edge of AnA

k

. The graph G

k

(X) is a subgraph of the e�adjacency

graph of X. We have the following lemma :

Lemma 1 For k = 0; : : : ; f , the graph G

k

(X) is connected and simply connected.

Proof: The graph G

k

(X) is connected since G(X) is a connected subgraph of G

k

(X) with

the same set of vertices. We prove that G

k

(X) is simply connected by induction. Since

G

0

(X) = G(X), as we noticed above, the result is true for k = 0. Now, let 0 � k < r be such

that G

k

(X) is simply connected. Let c = (x

0

; : : : ; x

p

) be a closed path in G

k+1

(X). Let us

prove that c is homotopic in G

k+1

(X) to a constant path. We shall show that c is homotopic in

G

k+1

(X) to a path c

0

which is a path in G

k

(X). Then it follows from our induction hypothesis

that c

0

is homotopic in G

k

(X) to a constant path, and therefore that c is homotopic in G

k+1

(X)

to a constant path. Let us now construct the path c

0

.

We consider �

k

= fx

1

; x

2

g the extremity of A

k

; the graph G

k+1

(X) is obtained from G

k

(X)

by adding the non oriented edge �

k

= fx

1

; x

2

g. Since �

k

is an extremity of A

k

, there exists a

loop l included in X, containing the edge �

k

and containing no other element of A

k

. Therefore,

the e�adjacency edges between surfels of l are all edges of the graph G

k

(X) except the edge

�

k

= fx

1

; x

2

g. Hence x

1

is connected to x

2

inside the loop l by a path of G

k

(X). Let � be

such a path from x

1

to x

2

, and � be such a path from x

2

to x

1

.

We consider c

0

the path of G

k

(X) obtained by inserting in c the path � between x

1

and x

2

each time the subsequence (x

1

; x

2

) appears in the path c, and inserting in c the path � between

x

2

and x

1

each time the subsequence (x

2

; x

1

) appears in the path c. Then, since � and � are

contained in the loop l, the path c is homotopic in G

k+1

(X) to the path c

0

of G

k

(X). 2

There remains to construct the oriented curves �

i

's from the data of A

f

. Let us con-

sider � = fr

1

; l

1

g an edge of A

f

. We denote e

1

= (r

1

; l

1

). Then the sequence (e

1

) with a

single term is a simple curve on �. Hence we can construct a set of simple curves and sim-

ple closed curves f�

1

; : : : ; �

m

g such that, denoting �

i

= (e

i

1

; : : : ; e

i

q

i

) for i = 1; : : : ;m and

e

i

s

= (r

i

s

; l

i

s

), the map � : (r

i

s

; l

i

s

) 7�! fr

i

s

; l

i

s

g is a one to one correspondence between the set

fe

i

s

= i = 1; : : : ;m and s = 1; : : : ; q

i

g and the set A

f

. We can for instance consider curves re-

duced to one edge, but it is also possible to consider longer curves, by extending the curves in

loops containing exactly two edges of A

f

, so that we get a lower value of m. By constructing
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the simple curves and the simple closed curves �

i

in this way, the �

i

's satisfy the property (P

1

).

Moreover, since, from its very construction, A

f

has no extremity, the �

i

's satisfy the property

(P

2

). At last, from Lemma 1, the �

i

's satisfy the property (P

3

).

4.3 Main Results

We consider f�

1

; : : : ; �

m

g a set of curves and simple closed curves satisfying the properties

(P

1

), (P

2

) and (P

3

) de�ned above. It follows from Subsection 4.2 that such a set of curves can

always be constructed. We denote �

i

= (e

i

1

; : : : ; e

i

q

i

) and e

i

s

= (r

i

s

; l

i

s

) for i = 1; : : : ;m and

s = 1; : : : ; q

i

.

As when we have de�ned the free group F

m

, we consider the alphabet

fa

1

; : : : ; a

m

; a

�1

1

; : : : ; a

�1

m

g

with 2m letters, and W

m

the set of all word on this alphabet.

Let c = (x

0

; : : : ; x

p

) be any e�path in X. We want to construct a word w(c) 2 W

m

associated with c.

De�nition 10 Let k 2 f0; : : : ; p � 1g, i 2 f1; : : : ;mg and s 2 f1; : : : ; q

i

g, be such that

fr

i

s

; l

i

s

g = fx

k

; x

k+1

g. The triple (k; i; s) is called an intersection of c and the �

j

's. We say that

this intersection is positive if (r

i

s

; l

i

s

) = (x

k

; x

k+1

), and negative if (l

i

s

; r

i

s

) = (x

k

; x

k+1

).

Notation 1 Given (k; i; s) an intersection of c and the �

j

's. We denote by O

c

(k; i; s) the

number equal to +1 if the intersection (k; i; s) is positive, and to �1 otherwise.

We de�ne w(c) as the word, containing one symbol a

O

c

(k;i;s)

i

for each intersection (k; i; s) of

c with the �

j

's, these symbols appearing in the word w(c) in the order of the increasing k (i.e.

the order in which the intersections appear along c). We denote by w(c) the class of w(c) up

to elementary simpli�cations (see the de�nition of the free group).

Now we can de�ne a group � given by generators and relations. Let us consider a loop

L

�

i

(s), with i 2 f1; : : : ;mg and s 2 f0; q

i

g (which is an extremity of the curve �

i

). we assume

that the loop L

�

i

(s) is contained in X. As we observed when de�ning loops, the loop L

�

i

(s)

admits a parametrization, which is a closed e�path covering L

�

i

(s). We denote by c(i; s) such

a parametrization. We denote by R(i; s) the word w(c(i; s)), and by R the set of all words

R(i; s) for all i 2 f1; : : : ;mg and s 2 f0; q

i

g such that the loop L

�

i

(s) is contained in X. Note

that, since the parametrization c(i; s) of the loop L

�

i

(s) is not exactly unique, but depends on

an initial surfel and the orientation of a rotation in L

�

i

(s), the word R(i; s) is only de�ned up

to cyclic permutation or inversion in the free group. The normal subgroup of F

m

generated by

R does not depend on this choice of the parametrization c(i; s) since two cyclic permutations

of the same word correspond to conjugate elements of F

m

.

We denote by H the normal subgroup of the free group F

m

generated by the words of R.

As in the de�nition of the quotient group, we denote by �

H

the relation of equality modulo

elements of H in F

m

. Finally, we denote � = F

m

=H the quotient group, and we denote by

p

H

: F

m

�! � the projection. The group � is the group with m generators and the relations

of R. We want to prove that the e�fundamental group of X is isomorphic to the group �.

More precisely, we have the two following results :
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Theorem 4 The map p

H

� w : A

e

B

(X) �! � is constant on each equivalence class of A

e

B

(X)

for the e�homotopy relation in X. Therefore, this map p

H

� w induces a map

�

' : �

e

1

(X) �! �

[c] 7�! p

H

(w(c))

Obviously, since concatenation of paths corresponds to concatenation of words, this map ' is

a group morphism.

Theorem 5 The map ' : �

e

1

(X) �! � is a group isomorphism.

The idea is that if we consider (k; i; s) with s 2 f0; q

i

g an intersection of an e�path c in

X and the �

j

's, and if c(i; s) denotes a parametrization of the loop L

�

i

(s), then the closed

e�path c(i; s), since contained in a loop, is e�homotopic in X with �xed extremities to a

path reduced to a single surfel. In other words, the element of the e�fundamental group

of X represented the closed e�path c(i; s) is the unit element of the e�fundamental group.

Through the isomorphism ' from �

e

1

(X) onto � = F

m

=H, this is translated into the fact that

the element of F

m

represented by the word R(i; s) = w(c(i; s)) is sent onto the unit element of

�. Therefore, R(i; s) must belong to H, but this is precisely the de�nition of H.

Proof of Theorem 4: It is su�cient to prove that if two closed e�path c and c

0

of A

e

B

(X)

are the same up to an elementary e�deformation, then p

H

(w(c)) = p

H

(w(c

0

)). We denote

c = 

1

�  � 

2

and c

0

= 

1

� 

0

� 

2

, the e�paths  and 

0

having the same extremities and

being contained in a common loop L. If the loop L is di�erent from L

�

i

(s) for i 2 f1; : : : ;mg

and for s 2 f0; : : : ; q

i

g, then a portion of c or c

0

contained in L does not a�ect the words w(c)

and w(c

0

), and therefore there is nothing to prove in this case. Otherwise, let i 2 f1; : : : ;mg

and s 2 f0; : : : ; q

i

g be such that L

�

i

(s) = L. We distinguish two case:

First case: If s 2 f1; : : : ; q

i

� 1g. In other words, the loop L

�

i

(s) is not an extremity of the

curve �

i

. Then the edges fr

i

s

; l

i

s

g and fr

i

s+1

; l

i

s+1

g separate the loop L into two parts I

1

and I

2

which are intervals of the loop L. For any e�path � contained in L, the word w(�) if formed of

a

i

and a

�1

i

which appear alternatively. Therefore, by elementary simpli�cations, we can reduce

w(�) either to an empty word, or to a word with a length one, depending on the parity of the

length of the word w(�). Now, this parity, and the letter (a

i

or a

�1

i

) remaining in the word

after simpli�cation, only depends on which of I

1

and I

2

the extremities of � belong to. Now,

this observation being in particular valid for � =  and for � = 

0

, since  and 

0

have the

same extremities, the words w() and w(

0

) can be reduced to the same word by elementary

simpli�cations. Therefore, the elements w(c) and w(c

0

) of F

m

represented by the words w(c)

and w(c

0

) are the same. A fortiori, the elements p

H

(w(c)) and p

H

(w(c

0

)) of � are equal.

Second case: If s 2 f0; q

i

g. We denote  = (x

0

; : : : ; x

p

) with p 2 N

�

. By iteratively

removing in  the surfels x

i

and x

i+1

each time we have x

i

= x

i+2

with i 2 f0; : : : p � 2g, we

obtain an e�path � = (y

0

; : : : ; y

v

) such that for i = 0; : : : v � 2 we have y

i

6= y

i+2

. We have

w() = w(�). Moreover, the e�path � just goes over the loop L a certain number of times,

and then ends at the surfel x

p

. Similarly, we can construct an e�path �

0

from 

0

as we have

obtained � from . If L

�

i

(s) 6� X, then we have � = �

0

so that w(c) = w(c

0

). Otherwise, by

inserting a certain number of times in � the closed parametrization c(i; s) of the loop L

�

i

(s),

14



or its reversed closed e�path, we get an e�path � with w(�) = w(�

0

). From the construction

of �, necessarily w(

1

� � � 

2

) �

H

w(

1

� � � 

2

) Now we have

w(

1

�  � 

2

) = w(

1

� � � 

2

) �

H

w(

1

� � � 

2

) = w(

1

� �

0

� 

2

) = w(

1

� 

0

� 

2

)

And therefore w(c) �

H

w(c

0

), so that p

H

(w(c)) = p

H

(w(c

0

)). 2

Before to prove Theorem 5, we set one notation and prove three lemmas. We denote by

G the subgraph of the e�adjacency graph of X obtained by removing all edges of the form

fl

i

s

; r

i

s

g with i 2 f1; : : : ;mg and s 2 f1; : : : ; q

i

g. Any path in G, as an e�path of X, has no

intersection with the �

j

's. Due to the property (P

3

) satis�ed by the �

j

's, the subgraph G of

the e�adjacency graph of X is connected and simply connected.

Lemma 2 Let c be an e�path in X which has a single intersection (k; i; s) with the �

j

's, and

let t 2 f1; : : : ; q

i

g. The c is e�homotopic with �xed extremities in X to an e�path c

0

, such

that w(c) = w(c

0

), and which has exactly one intersection with the �

0

j

s, this intersection being

of the form (k

0

; i; t).

Proof: If t = s, then we set c

0

= c. Otherwise, we assume for instance that t > s.

Since c has a single intersection with the �

j

's, we decompose c = c

1

� c

2

, where the e�paths

c

1

and c

2

are paths of G, and the last surfel �

1

of c

1

is e�adjacent to the �rst surfel �

2

of c

2

.

We have f�

1

; �

2

g = fr

j

s

; l

i

s

g. We assume for instance �

1

= r

i

s

and �

2

= l

i

s

.

From the de�nition of a simple curve or a simple closed curve, the surfel r

i

s

is linked to r

i

s+1

by an e�path � in L

�

i

(s)nfl

i

s

; l

i

s+1

g. Similarly, the surfel l

i

s+1

is linked to l

i

s

by an e�path � in

L

�

i

(s)nfr

i

s

; r

i

s+1

g.

The concatenation c

00

= c

1

� � � � � c

2

is well de�ned, we have w(c

00

) = w(c) and c

00

has

a single intersection with the �

j

's, which is of the form (k

00

; i; s + 1). Lemma 2 follows by

induction. 2

Lemma 3 Let c be an e�path in X and w 2 W

m

be a word such that w(c) = w in F

m

. Then

c is e�homotopic with �xed extremities in X to an e�path c

0

in X with w(c

0

) = w.

Proof: It is su�cient to prove Lemma 3 when w(c) and w are the same up to an elementary

simpli�cation. We distinguish two cases:

First case: If w is obtained by inserting in the word w(c) a sequence a

i

a

�1

i

or a

�1

i

a

i

(say

a

i

a

�1

i

). We decompose w(c) = w

1

w

2

and w = w

1

a

i

a

�1

i

w

2

. We also decompose c = c

1

� c

2

with

w(c

1

) = w

1

and w(c

2

) = w

2

. Let � be a path in the graph G from the last surfel of c

1

to the

surfel r

i

1

. Then the e�path c

0

= c

1

� � � (r

i

1

; l

i

1

; r

i

1

) � �

�1

� c

2

is clearly e�homotopic in X to

c = c

1

� c

2

, and we have w(c

0

) = w

1

� a

i

a

�1

i

w

2

= w.

Second case: If w is obtained by deleting in w(c) a subword of the form a

i

a

�1

i

or a

�1

i

a

i

(say

a

i

a

�1

i

). We denote w(c) = w

1

a

i

a

�1

i

w

2

and w = w

1

w

2

. We decompose c = c

1

� c

2

� c

3

� c

4

with

w(c

1

) = w

1

, w(c

2

) = a

i

, w(c

3

) = a

�1

i

and w(c

4

) = w

2

.

Let (k

2

; i; s

2

) be the unique intersection of c

2

with the �

j

's, and let (k

3

; i; s

3

) be the unique

intersection of c

3

with the �

j

's. Then, by applying Lemma 2 to the path c

2

, we get an e�path

c

0

2

, which is e�homotopic with �xed extremities in X to c

2

, and such that w(c

0

2

) = w(c

2

) = a

i

,

and having a unique intersection with the �

j

's which is of the form: (k

0

2

; i; s

3

).
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We denote c

0

2

= �

2

��

2

(resp. c

3

= �

3

��

3

), the e�paths �

2

and �

2

(resp. �

3

and �

3

) being

paths of G, the last surfel of �

2

(resp. of �

3

) and the �rst surfel of �

2

(resp. �

3

) being both

contained in fr

i

s

3

; l

i

s

3

g.

Since G is simply connected, the closed path �

2

� �

3

in G is homotopic in G (hence

e�homotopic in X) to a trivial path. Hence c, which is equal to c

1

� c

2

� c

3

� c

4

, is e�homotopic

in X to c

1

� c

0

2

� c

3

� c

4

= c

1

� �

2

� �

2

� �

3

� �

3

� c

4

, is e�homotopic in X to the e�path

c

0

= c

1

��

2

� �

3

� c

4

. Moreover, we have w(c

0

) = w(c

1

)w(c

4

) = w

1

w

2

= w since �

2

��

3

is a path

of G. 2

Lemma 4 Let c be an e�path in X such that w(c) = R(i; s) for some i 2 f1; : : : ;mg and

s 2 f0; q

i

g. Then c is e�homotopic with �xed extremities in X to an e�path c

0

such that w(c

0

)

is the empty word (in other words, c

0

has no intersection with the �

j

's).

Proof: We denote R(i; s) = a

"

1

i

1

� � � a

"

p

i

p

with i

l

2 f1; : : : ;mg and " 2 f�1; 1g for l = 1; : : : ; p.

We denote by (k

l

; i

l

; s

l

) the intersection of c with �

i

l

corresponding to the symbol a

"

l

i

l

in w(c) =

R(i; s). Finally, we decompose c = c

0

� � � � � c

p

where c

0

; : : : ; c

p

are paths in the graph G, and

we denote by y

l

and z

l

respectively the �rst surfel and the last surfel of c

l

for l = 0; : : : ; p.

Necessarily, for l = 1; : : : ; p we have: fz

l�1

; y

l

g = fr

i

l

s

l

; l

i

l

s

l

g.

Due to Lemma 2, we may assume, by replacing c by a path in the same e�homotopy class

in X if necessary, that s

l

2 f0; q

i

l

g, is such that fr

i

l

s

l

; l

i

l

s

l

g � L

�

i

(s).

Now, since G is simply connected, for l = 1; : : : ; p� 1 the e�path c

l

is e�homotopic in G

to a path c

0

l

of G which is an interval of the loop L

�

i

(s).

Hence c

1

� � � � � c

p�1

is e�homotopic with �xed extremities in X to c

0

1

� � � � � c

0

p�1

, which is

in turn e�homotopic in X to a path C of the graph G which is an interval of L�

i

(s). Hence c

is e�homotopic in X to the path c

0

= c

0

�C � c

p

, which is a path in G. Therefore, w(c

0

) is the

empty word. 2

Proof of Theorem 5: First we prove that the morphism ' is onto. To do this, it is su�cient

to prove that for i = 1; : : : ;m, there exists a closed e�path c of A

e

B

(X) such that w(c) = a

i

.

Let us consider an oriented edge (r

i

s

; l

i

s

) of the curve �

i

. Since the graph G is connected, there

exists a path c

1

in G from B to r

i

s

. Similarly, there exists a path c

2

in G from l

i

s

to B. Now,

the concatenation c = c

1

� c

2

an e�path in X and we have w(c) = a

i

. Hence, the morphism '

is onto.

There remains to prove that the morphism ' is one to one. To do this, we consider c a

closed e�path of A

n

B

(X) such that w(c) �

H

1

m

, and we have to prove that c is e�homotopic

in X to the trivial path (B;B).

We decompose c = c

1

� � � � � c

f

, where for k = 1; : : : ; f the e�path c

k

is a path in the graph

G, and for k = 1; : : : ; p � 1, the edge of the e�adjacency graph between the last surfel of c

k

and the �rst surfel of c

k+1

is an edge of the form fr

i

s

; l

i

s

g.

Our hypothesis is that w(c) is in the normal subgroup of F

m

generated by the R(i; s)'s.

Therefore, the word w(c) is free equivalent to a word

w =

g

Y

a=1

w

a

(R(i

a

; s

a

))

"

a

w

�1

a

with w

a

2 W

m

and "

a

2 f�1; 1g.
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From Lemma 3, the e�path c is e�homotopic in X to an e�path c

0

in X with w(c

0

) = w.

Let us decompose c

0

by setting c

0

= c

1

� c

2

� c

3

� c

4

, with w(c

1

) =

g�1

Y

a=1

w

a

(R(i

a

; s

a

))

"

a

w

�1

a

,

w(c

2

) = w

g

, w(c

3

) = (R(i

g

; s

g

))

"

g

and w(c

4

) = w

�1

g

.

From Lemma 4 follows that c

3

is e�homotopic in X with �xed extremities to an e�path

c

0

3

which has no intersection with the �

j

's, so that w(c

0

3

) is the empty word.

Now, c

0

is e�homotopic in X to the e�path c

00

= c

1

� c

2

� c

0

3

� c

4

, and w(c

00

) = w(c

1

)w

g

w

�1

g

.

Due to Lemma 3, the e�path c

00

is e�homotopic to an e�path c

000

with w(c

000

) = w(c

1

) =

g�1

Y

a=1

w

a

(R(i

a

; s

a

))

"

a

w

�1

a

.

It follows by induction that c is e�homotopic in X to an e�path C such that w(C) is

the empty word. This means that C is a path in G and, since G is simply connected, C is

homotopic in G to a trivial path. Therefore, c is e�homotopic in X to the trivial path (B;B).

2

Conclusion

We can compute a presentation for the fundamental group of any subset of a digital surface.

Some principles presented here can be reused to study the complete 3D case. However, the

ideas of this paper must be widely modi�ed to be used in the 3D case. Mainly, it seems that,

in the 3D case, the curves �

i

's which we construct must be surfaces in the 3D space. Of course,

the junctions between surfaces are much more di�cult to characterize than intersections of

curves on a surface. For this reason, the 3D case seems more di�cult than the case of surfaces.
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