R My Malgouyres 
email: malgouyres@greyc.ismra.fr
  
Presentation of the Fundamental Group in Digital Surfaces

Keywords: Pattern Recognition, Digital topology, Homotopy, Surfaces

As its analogue in the continuous framework, the digital fundamental group represents a major information on the topology of discrete objects. However, the fundamental group is an abstract information and cannot directly be encoded in a computer using its de nition. A classical mathematical way to encode a discrete group is to nd a presentation of this group. In this paper, we construct a presentation for the fundamental group of any subset of a digital surface. This presentation can be computed by an e cient algorithm.

Introduction

As its analogue in the continuous framework, the digital fundamental group, originally introduced by T. Y. Kong in 4] in the 3D case (see also 5]), represents a major information on the topology of discrete objects. It is in particular related to the notion of a simple point in 3D

( 1]), and an even closer relationship between the fundamental group and topology preservation has been established within digital surfaces [START_REF] Malgouyres | Homotopy in 2-dimensional Digital Images[END_REF]).

For these reasons, we would obtain a very powerfull tool for pattern recognition if we could make the information of the fundamental group accessible to computers in the 3D case. An even more di cult problem is to nd an algorithm to determine whether two given 3D discrete objects have isomorphic fundamental groups. Such an algorithm would represent a signi cant step to determine whether two objects could be the same up to some continuous deformation .

The fundamental group contains strictly more information than the rst homology group. However, whereas the rst homology group is always accessible to computers, it is somehow di cult to transform the abstract notion of the fundamental group into some data which can be handled by computers. A classical way to encode certain types of discrete groups is to nd presentations of these groups. A presentation of a group is a model of the group up to isomorphism, which is characterized by an integer and some words on an alphabet called relators. Such a data can easily be encoded in a computer.

Since the problem of computing a presentation of the fundamental group seems di cult in the general case, we are lead to study it, at rst, in simpler frameworks than the complete 1 3D case. Though the practical motivation comes from the 3D case, the study of some easier cases gives some ideas on how to proceed in the general case. [START_REF] Lenoir | Fast Estimation of Mean Curvature on the Surface of a 3D Discrete Object[END_REF] (see also 8]), the author studies the planar 2D case. In this case, the fundamental group is shown to be isomorphic to a free group (i.e. there are no relators in this case). This is an ideal case since computations in the free groups are easy to perform, and the type of the group up to isomorphism is easily determined. In this paper, we study the case of digital surfaces.

Digital surfaces of three dimensional objects have proved to be a fruitful model for visualization and analysis of the objects they represent ( 2]), especially in the biomedical eld. E cient algorithms for extracting surfaces from volumes, and computing shape characteristics exist [START_REF] Kong | Polyhedral Analogs of Locally Finite Topological Spaces[END_REF]). Sometimes, the surface itself needs to be segmented since some particular points are de ned on it. Then we obtain a subset X of the set of the surfels of the surface. In 9], we introduce two complementary notions of adjacency between surfels on a digital surface, which can be used to study the topology of such subsets X of a digital surface, and we study the problem of topology preservation. In particular, a relationship is established between the fundamental group, and the relation between sets generated by sequential deletions of simple surfels. Here we consider the same model for the fundamental group.

We apologize for the high number of de nitions necessary to the statement of the results of this paper. After having set these de nitions, since the statement of the results is very technical, we rst give an intuitive and non formal idea of how to proceed in the continuous case. Finally, we construct a presentation of the fundamental group of any connected subset of a digital surface. Our proof is constructive and leads to an e cient algorithm to compute this presentation.

1 Basic De nitions and Notations

Groups, Normal Subgroups

We consider a group ( ; ) with 1 as unit element. Let h 2 . A conjugate of h in is an element of of the form: g h g 1 with g 2 . Now let H be a subgroup of , we say that H is normal in if for any h 2 H, any conjugate of h in belongs to H. Given H a normal subgroup of , we consider H the relation on de ned by g H g 0 ] () g 0 g 1 2 H]. Since H is a normal subgroup of , this is an equivalence relation.

We denote by =H the set of equivalence classes of elements of under the relation H , and by p H : ! =H the projection which to an element of associates its equivalence class under H . Now, if g H g 0 and g 1 H g 0 1 , then since H is normal we have g g 1 H g 0 g 0 1 . Hence the product de nes an operation, which we also denote by , on =H. To p H (g) and p H (g 0 ), this operation associates p H (g g 0 ). Obviously, the element p H (1 ) of =H is a unit element for the operation on =H. Furthermore, given g 2 , the element p H (g 1 ) of =H is an inverse for p H (g). Therefore, ( =H; ) is a group which we call quotient group of by the normal subgroup H. Intuitively, all elements of H are collapsed with the unit element to obtain the quotient group. Now let P be any subset of . We consider the subset H of composed of all products of conjugates of elements of P and inverses of elements of P. Then H is a normal subgroup of which we call normal subgroup of generated by P. The normal subgroup generated by P is the smallest normal subgroup of which contains P.

Free Group, Generators and Relations

Now, before to introduce groups given by generators and relations, we must introduce the notion of the (non abelian) free group with m generators. Let fa 1 ; : : : ; a m g fa 1 1 ; : : : ; a 1 m g be an alphabet with 2m distinct letters, and let W m be the set of the all words over this alphabet (i.e. nite sequences of letters of the alphabet). We say that two words w 2 W m and w 0 2 W m are the same up to an elementary simpli cation if, either w can be obtained from w 0 by inserting in w 0 a sequence of the form a i a 1 i or a sequence of the form a 1 i a i with i 2 f1; : : : ; mg, or w 0 can be obtained from w by inserting in w a sequence of the form a i a 1 i or a sequence of the form a 1 i a i with i 2 f1; : : : ; mg. Now, two words w 2 W m and w 0 2 W m are said to be free equivalent if there is a nite sequence w = w 1 ; : : : ; w k = w 0 of words of W m such that for i = 2; : : : ; k the word w i 1 and w i are the same up to an elementary simpli cation. This de nes an equivalence relation on W m , and we denote by F m the set of equivalence classes of this equivalence relation. If w 2 W m , we denote by w the class of w under the free equivalence relation. The concatenation of words de nes an operation on F m which provides F m with a group structure. The group thus de ned is called the free group with m generators.

We denote by 1 m the unit element of F m , which is equal to w where w is the empty word.

The only result which we shall admit on the free group is the classical result that if a word w 2 W m is such that w = 1 m and w is not the empty word, then there exists in w two successive letters a i a 1 i or a 1 i a i with i 2 f1; : : : ; mg. This remark leads to an immediate algorithm to decide whether a word w 2 W m is such that w = 1 m . If w = a " 1 i 1 a "p ip is a word of W m , we denote by w 1 the word w 1 = a "p ip a " 1 i 1 . We have: (w) 1 = w 1 . Now we introduce the groups given by generators and relations. We consider m 2 N and a nite subset R of W m . In this context, we call elements of R relators. We want to de ne a group from the free group with m generators, in which the words of R represent the unit element. This group, called the group with m generators and the relations of R, is the quotient of the free group F m by the normal subgroup generated by the set of the equivalence classes in F m of elements of R. Now, given a group, nding a presentation of is nding an (explicit) isomorphism from to a group given by generators and relations.

Connectedness in Digital Spaces

Let be a xed set and let X . We denote by card(X) the number of elements of X and we denote X = n X. In the following, we shall de ne an adjacency relation on X to be an antire exive symmetric binary relation on X. An -path with a length p is a sequence (x 0 ; : : : ; x p ) in which x i 1 is -adjacent or equal to x i for i = 1; : : : ; p. Such an -path is called closed if and only if x 0 = x n and is called simple if the points x i for i 2 f0 : : : pg are pairwise distinct. Given an path c = (x 0 ; : : : ; x p ), we denote by c 1 the reversed path (x p ; : : : ; x 0 ). Two elements x and y are said to be -connected in X if there exists an -path (x 0 ; : : : ; x p ) in X with x 0 = x and x p = y. The connectedness relation is an equivalence relation and we call connected components its equivalence classes. A set is adjacent to an element x if at least one element of the set is adjacent to x. We also de ne the neighborhood N (x) of x by N (x) = fy 2 = y is adjacent to xg.

Structure of a Digital Jordan Surface

We describe here the model of surface we consider, and some local structures which can be de ned on such a surface. Afterwards, we do not consider anymore the volume from which the surface is build, and we give some intrinsic de nitions and results on subsets of a surface. First we recall some de nitions, which can be found for example in 3] or 10], restricted to the three dimensional case. In the following, voxels may be seen as units cubes rather than points of Z 3 . We consider two kinds of adjacency between voxels. Two voxels are said to be 18 adjacent if they share a face or an edge. They are said to be 6 adjacent if they share a face. A surfel is a pair (c; d) of 6 adjacent voxels. It can be seen as a unit square shared by c and d. A surface is a set of surfels.

Let O Z 3 be a 6 connected or 18 connected set. We consider the set of all surfels of the form (x; y) with x 2 O and y 2 O: we call the surface of O. it is possible to de ne an adjacency relation between surfels of . Such a surfel has exactly 4 neighbors, one per edge under this relation. We call this adjacency relation the e adjacency relation on the surface of O. Let s and s 0 be two e adjacent surfels of . The surfels s and s 0 share an edge. The pair fs; s 0 g is called an edgel. The de nition of the e adjacency relation depends on whether we consider O as 18 connected or 6 connected. The kind of surface thus de ned satis es the Jordan property [START_REF] Fan | Recognising 3d Objects using Surface Descriptions[END_REF]): an e connected surface separates the space into two parts, one of which is 6 connected, and the other one which is 18 connected. This kind of surface is widely used in image analysis and manipulation.

We de ne a loop in as an e connected component of the set of the surfels of which share a vertex w. For example, in Figure 1.b, we see an object with three voxels. The vertex w marked with a lled circle de nes two loops, one which can be seen on the gure and is composed of 3 surfels, and the other loop which is hidden and is composed of 6 surfels. Considering loops is a way to duplicate formally such vertices. We can de ne a unique cycle in any loop l: from a pair (s 1 ; s 2 ) of e adjacent surfels in l choose s 3 the unique surfel of l which is e adjacent to s 2 and which is distinct from s 1 . By repeating this process we obtain a unique simple closed e path of surfels which we call a parametrization of the loop l. The length of a loop ranges between 3 and 7. All the surfels of a loop share a common vertex. For this reason, we say that two surfels are v adjacent (vertex adjacent) if they belong to a common loop.

Note that in the case of a planar surface orthogonal to one of the coordinate lines (i.e. in the case when the object O is a half space), v adjacency coincides with the classical 2D digital image notion of 8 adjacency and e adjacency to the classical 4 adjacency.

De nition 1 (d cell)

We associate a dimension to surfels, edgels, and loops, which is equal respectively to 2, 1, and 0. We can identify a surfel s with fsg. We call a surfel a 2-cell, an edgel a 1-cell, and a loop a 0-cell. This dimension is compatible with the continuous analog of the digital surface. If a surfel is a member of a loop or of an edgel, we also say that it is incident to this loop or this edgel. Moreover, whenever an edgel is a subset of a loop, we also say that it is incident to this loop. We see that each surfel is incident to 4 loops and 4 edgels, and each edgel is incident to 2 loops.

In the sequel, we take the assumption that each loop of the surface of our object O is a topological disk. More precisely, we assume that any two v adjacent surfels which are not e adjacent cannot both belong simultaneously to two given distinct loops. For instance, in Figure 1, the object (a) does not satisfy this hypothesis: The two loops corresponding to the vertices marked with lled circles contain two non e adjacent surfels in common. In opposite, the object (b) satis es our hypothesis. We can express this assumption on the object O the surface of which we consider, saying that we assume that if O is considered as 18 connected and x and y are two 18 adjacent voxels of O which are not 6 adjacent, one of the two following properties is satis ed:

1. The voxels x and y have an 18 neighbor (or 6 neighbor) in O in common; 2. The voxels x and y have two 26 neighbors in O in common which are themselves 26 adjacent.

We must have the same assumptions on O if O is considered as 6 connected.

In the sequel of this paper, we consider a xed e connected component of a digital surface, and n 2 fe; vg. We also denote by n the element of fe; vg such that fn; ng = fe; vg.

2 Fundamental Groups, Topology Preservation

Simple Surfels, Homotopy

Let x 2 . As we have already said, we assume that any loop in is a topological disk. However, the v neighborhood of the surfel x is not always a topological disk (see the v neighborhood of the grey surfel of the surface of Figure 1.b for instance). If this is the case, we have to de ne a topology on N v (x) fxg under which it is a topological disk. Let us consider two surfels y and y 0 in N v (x) fxg. We say that y and y 0 are e x adjacent respectively v x adjacent] if they are e adjacent respectively v adjacent] and are contained in a common loop which contains x. We denote by G e (x; X) respectively G v (x; X)] the graph whose vertices are the surfels of N v (x)\X and whose edges are pairs of e x adjacent respectively v x adjacent] surfels of N v (x) \ X. We denote by C x n (G n (x; X)) the set of all connected components of G n (x; X) which are n adjacent to x. Note that C x n (G n (x; X)) is a set of subsets of the set of all surfels of and not a set of surfels.

De nition 2 We call x an n isolated surfel if N n (x) \ X = ; and an n interior surfel if N n (x) \ X = ;. De nition 3 (Simple surfel) A surfel x is called n simple in X if and only if the number card(C x n (G n (x; X))) of connected components of G n (x; X) which are n adjacent to x is equal to 1, and if x is not interior to X.

De nition 4 (homotopy) Let be Y X . The set Y is said to be (lower) n homotopic to X if and only if Y can be obtained from X by sequential deletion of n simple surfels.

The Digital Fundamental Group

First, if and are two n paths such that the last surfel of is n adjacent of equal to the rst surfel of , we denote by the concatenation of the two n paths and . Now we need to introduce the n homotopy relation between n paths. Let us consider X . First we introduce the notion of an elementary deformation. Two closed n paths and 0 in X having the same extremities are said to be the same up to an elementary deformation (with xed extremities) in X if they are of the form = 1 2 and 0 = 1 0 2 , the n paths and 0 having the same extremities and being both contained in a common loop. Now, the two n paths and 0 are said to be n homotopic (with xed extremities) in X if there exists a nite sequence of n paths = 0 ; : : : ; m = 0 such that for i = 1; : : : ; m the n paths i 1 and i are the same up to an elementary deformation (with xed extremities).

Let B 2 X be a xed surfel called the base surfel. We denote by A n B (X) the set of all closed n paths = (x 0 ; : : : ; x p ) which are contained in X and such that x 0 = x p = B. The n homotopy relation is an equivalence relation on A n B (X), and we denote by n 1 (X) the set of equivalence classes of this equivalence relation. If c 2 A n B (X) is a closed n path, we denote by c] 2 n 1 (X) the class of c for this relation.

The concatenation of closed n paths is compatible with the n homotopy relation, hence it de nes an operation on n 1 (X), which to the class of and the class of associates the class of . This operation provides n 1 (X) with a group structure. We call this group the n fundamental group of X. The n fundamental group de ned using a surfel B 0 as base surfel is isomorphic to the n fundamental group de ned using a surfel B as base surfel if X is n connected. Now we consider Y X and B 2 Y a base surfel. A closed n path in Y is a particular case of a closed n path in X. Furthermore, if two closed n paths of Y are n homotopic (with xed extremities) in Y , they are n homotopic (with xed extremities) in X. These two properties enable us to de ne a canonical morphism i : n 1 (Y ) ! n 1 (X), which we call the morphism induced by the inclusion map i : Y ! X. To the class of a closed n path 2 A n B (Y ) in n 1 (Y ) the morphism i associates the class of the same n path in n 1 (X).

The following is proved in 9]:

Theorem 1 Let Y X be n connected sets. Then the two following properties are equivalent:

1. The set Y is lower n homotopic to X.

2. The morphism i : n 1 (Y ) ! n 1 (X) induced by the inclusion map i : Y ! X is an isomorphism and each n connected component of Y contains a surfel of X.

Homotopy in Subgraphs of n adjacency Graphs

Let G be a subgraph of the n adjacency graph of a set X with the same set of vertices. Let and 0 be two paths in the graph G. We say that and 0 are homotopic in the subgraph G if there exists a nite sequence = 0 ; : : : ; m = 0 of paths in G such that for i = 1; : : : ; m the paths i 1 and i , as n paths, are the same up to an elementary deformation (with xed extremities). The subgraph G of the n adjacency graph of X is called simply connected if any path in G is homotopic in G to a constant path of the form (B; B) with B 2 X.

About the Continuous Case

Let us rst recall some de nitions about C 1 surfaces embedded in R 3 . We denote by D the opened disk of R 2 with a unit radius and centered at (0; 0). A continuous map ' : D ! R 3 is called C 1 if all the partial derivatives of ' exist at any point (s; t) 2 D, and are continuous functions of (s; t).

Let ' : D ! R 3 be a C 1 map. We denote '(s; t) = (' 1 (s; t); ' 2 (s; t); ' 3 (s; t)) 2 R 3 . The map ' is called regular if for any (s; t) 2 D the two vectors ( @' 1 @s (s; t); @' 2 @s (s; t); @' 3 @s (s; t)) and ( @' 1 @t (s; t); @' 2 @t (s; t); @' 3 @t (s; t)) are both non zero and are linearly independent in R 3 .

Given two metric spaces X and Y , a continuous map f : X ! Y is called a homeomorphism if it is one to one and its inverse map is continuous.

De nition 5 (C 1 surfaces, local parametrization) A subset X of R 3 is called a C 1 surface embedded in R 3 (or C 1 surface for short) if for any x 2 X the two following properties are satis ed :

1. There exists an opened neighborhood W x of x in R 3 (we denote by V x the neighborhood W x \ X of x in X) ; 2. There exists a homeomorphism ' x : D ! V x which is C 1 and regular and with ' x ((0; 0)) =

x. Such a map ' x is called a local parametrization of X in the neighborhood of x.

We have to introduce the notion of an oriented surface. Under the notions of previous De nition 5, we rst consider, for x; x 0 2 X such that V x \ V x 0 6 = ;, the map

g xx 0 : ' 1 x (V x \ V x 0) ! ' 1 x 0 (V x \ V x 0 ) (s; t) 7 ! ' 1 x 0 ' x (s; t)
We also denote g xx 0 (s; t) = (g xx 0 1 (s; t); g xx 0 2 (s; t)) 2 R 2 . Then the two vectors ( @g xx 0 1 @s (s; t); @g xx 0 2 @s (s; t)) and ( @g xx 0 1 @t (s; t); @g xx 0 2 @t (s; t)) of R 2 exist and form a basis of R 2 for any (s; t). An oriented surface is a couple (X; (' x ) x2X ) satisfying all the above properties, and such that for any x; x 0 2 X such that V x \ V x 0 6 = ; and for any (s; t) 2 ' 1

x (V x \ V x 0), the basis (( @g xx 0 1 @s (s; t); @g xx 0 2 @s (s; t)); ( @g xx 0 1 @t (s; t); @g xx 0 2 @t (s; t))) of R 2 is direct (i.e. has a positive orientation). Such a structure exists for any C 1 surface X embedded in R 3 .

Let X be a C 1 oriented surface. A path c in X is a continuous map c : 0; 1] ! X. Such a path c is called closed if its two extremities c(0) and c(1) are equal. A C 1 curve is a path which, as a map, admits a nowhere zero continuous derivative. A simple curve is a curve c such that 8 ; 2 0

; 1] c( ) = c( ) () = ]. A simple closed curve is a curve c such that 8 ; 2 0; 1] c( ) = c( ) () ( = or f ; g = f0; 1g)].
Let us consider two curves c 1 and c 2 in X which have nitely many intersections, and such that the directions tangent to c 1 and c 2 are distinct at any of their intersections, and let and in 0; 1] be such that c 1 ( ) = c 2 ( ) (in other words we consider an intersection between c 1 and c 2 ). We denote x = c 1 ( ) = c 2 ( ) the intersection point. We consider the two following vectors of R 2 : v = d(' 1 x c 1 ) d ( ) and w = d(' 1 x c 2 ) d ( ). We de ne the orientation number of the intersection ( ; ) of c 1 and c 2 , and we denote by O( ; ; c 1 ; c 2 ), the number equal to 1 if the basis (v; w) has a positive orientation in R 2 , and equal to 1 otherwise. This number depends on the oriented surface (X; (' x ) x2X ) and not only on the C 1 surface X. Now we introduce in an informal way the fundamental group of a connected subset X of R 3 .

We consider B 2 X a xed point called the base point, and A B (X) the set of all closed paths c in X such that c(0) = c(1) = B. We introduce on A B (X) an equivalence relation of homotopy between paths which intuitively represents the relation of being continuously deformable one into each other inside X (with xed extremities). Then, similarly to the discrete case, we denote by 1 (X; B) the set of the equivalence classes of paths up to homotopy in A B (X), and the concatenation of paths de nes an operation on 1 (X; B). This operation provides 1 (X; B) with a group structure, and this group is called the fundamental group of X. A set X is called simply connected if its fundamental group reduces to a singleton (i.e. any path of A B (X) can be continuously deformed to a point inside X. Now we can explain how to construct a presentation of the fundamental group of an oriented surface (X; (' x ) x2X ). First we have to construct a nite set f 1 ; : : : ; m g, where for any i 2 f1; : : : ; mg the element i is either a simple curve or a simple closed curve, satisfying all the following properties :

(P 1 ): 8i; j 2 f1; : : : ; mg with i 6 = j and 8 ; 2]0; 1 we have i ( ) 6 = j ( ) (in other words the curves i can intersect only at their extremities) ;

(P 2 ): Any curve i which is not simple closed must intersect at least another of the j 's at each of its extremities ;

(P 3 ): The complement Xnf i ( ) = i = 1; : : : ; m and 2 0; 1]g of the images of all the curves i is connected and simply connected. The complements of these 6 curves in the surface is a topological disk. There are three points at which we intersections of curves. Now let us introduce the presentation we have for the fundamental group of X. We consider a base point B in the complement of the images of the curves i . We take m generators fa 1 ; : : : ; a m g, one for each of the curves i . Let us describe the words we take as relators : For any extremity i ( ) with 2 f0; 1g of a curve i with i 2 f1; : : : ; mg, we consider the word R( i ( )) in the a j 's and a 1 j 's corresponding to the curves j which appear cyclically around the extremity i ( ) (see Figure 3). The order in which the a j 's and a 1 j 's appear in the word R( i ( )) is precisely the cyclic order of the curves j which meet at the point i ( ). Now, whether we get in the word R( i ( )) an a j or an a 1 j depends on the orientation of the curve j , i.e. depends on whether i ( ) = j (0) or i ( ) = j (1).

For the example of the torus depicted by Figure 2, we have two generators a and b. The i 's all have the same extremity x, and the word R(x) is up to conjugacy the word aba 1 b 1 , commutator of a and b.

For the example of the surface of genus 2 represented by Figure 4, we have three words R(x 1 ), R(x 2 ) and R(x 3 ), corresponding to the three intersection points x 1 , x 2 and x 3 from the left to the right on the gure. We have (up to conjugacy) R(x 1 ) = acb 1 c 1 , R(x 2 ) = da 1 f 1 b, and R(x 3 ) = ed 1 e 1 f. Now we consider R the set of all words R( i ( )) for i = 1; : : : ; m and 2 f0; 1g. We denote by the group with m generators and the relations of R. The fact is that the fundamental group of the C 1 surface X is isomorphic to . Let us explain how the isomorphism is de ned :

Let us consider a closed path c of A B (X). First we want to construct a word w in the generators. To do this, we rst chose a path c 0 , which is a curve, can be continuously deformed into c inside X, and which has a nite intersection with all the curves i ; i = 1; : : : ; m (such a curve always exists). Moreover, we may assume that at each intersection between c 0 and some i , the tangent directions to c 0 and i are not parallel at this intersection. Then, to construct the desired word w(c 0 ), we go over the curve c 0 , adding to the word we construct a symbol a O( ; ; i ;c 0 ) i each time we have an intersection i ( ) = c 0 ( ). The order in which the symbols appear in the word w(c 0 ) is the order in which the intersections with the i 's appear along c 0 . Then we have :

Theorem 2 The projection of w(c 0 ) 2 F m on the group depends only on the class of the path c in the fundamental group. We denote this class by W(c), which is an element of . Theorem 3 (Presentation of the fundamental group) If we denote by c] the class of a path c of A B (X) in the fundamental group, then the map c] 7 ! W(c) is well de ned, and it is a group isomorphism from 1 (X; B) onto the group .

For example, for the torus depicted by Figure 2, the fundamental group has two generators a and b with the single relation aba 1 b 1 , and the fundamental group is therefore isomorphic to the group (Z 2 ; +). For the example of Figure 4, we have 6 generators and 3 relators as we noticed above.

In fact, in the continuous case, it is always possible to construct the curves i 's in such a way that all of their extremities are at the same point. In this case, the presentation we obtain for the fundamental group has a single relation. We shall see that it does not work the same in the discrete case. [START_REF] Herman | Discrete Multidimensional Jordan Surfaces[END_REF] The Discrete Case

Simple Curves on a Digital Surface

We remind the reader that we have de ned a digital surface , and n 2 fe; vg. In the sequel we shall assume that n = e and n = v. In other words, we shall analyze a xed e connected subset X of the set of the surfels of with the e connectivity relation, and the complement X of X in with the v connectivity relation. Our purpose is to compute a presentation of the e fundamental group of X. We rst want to de ne a set f 1 ; : : : ; m g of curves satisfying properties analogous to the three properties (P 1 ), (P 2 ) and (P 3 ) of the continuous case. The kind of curves which are to be considered here have a thickness 0.

De nition 6 (Discrete simple curve on a surface) A oriented simple curve on the surface is a sequence = (e 1 ; : : : ; e q ), with q 1, where e s = (r s ; l s ) is for s = 1; : : : ; q a couple of surfels with r s e adjacent to l s , satisfying the three following properties : 1. For s = 1; : : : ; q 1, the surfels r s ; l s ; r s+1 and l s+1 are all contained in a unique common loop L (s). For convenience, if q = 1 we chose L (0) and L (1) two distinct loops which contain r 1 and l 1 . If q 2 we denote by L (0) the unique loop which contains r 1 and l 1 and is distinct from L (1), and we denote by L (q) the unique loop which contains r q and l q and is distinct from L (q 1) ; 2. For s = 1; : : : ; q 1, the surfels l s and l s+1 are e connected in L (s)nfr s ; r s+1 g and the surfels r s and r s+1 are e connected in L (s)nfl s ; l s+1 g ; 3. The loops L (s) for s = 0; : : : ; q are all distinct.

De nition 7 (oriented simple closed curve) An oriented simple closed curve on is a sequence such as de ned by the previous de nition of oriented simple curves, but satisfying the following property 3' instead of the property 3 : De nition 8 Let = (e 1 ; : : : ; e q ) and 0 = (e 0 1 ; : : : ; e 0 q 0) be two oriented simple curves or simple closed curves on . We say that the curves and 0 have no interior intersection if and only if for s 2 f0; : : : ; qg and for t 2 f0; : : : ; q 0 g with s 6 2 f0; qg or s 0 6 2 f0; q 0 g we have : L (s) 6 = L 0 (t).

Construction of an Appropriate set of Curves

As we said before, we want to proceed in the discrete case as we did for the continuous case, constructing a set f 1 ; : : : ; m g of simple curves and simple closed curves satisfying properties analogous to the properties (P 1 ), (P 2 ) and (P 3 ) of the continuous case. However, in the discrete case we shall not only compute a presentation of the fundamental group of , but we shall do it for any e connected subset X of . Hence, in the sequel of this paper, X denotes a set of surfels of , and B 2 X is a xed base surfel. We want to construct a set f 1 ; : : : ; m g of simple curves and simple closed curves (we denote i = (e i 1 ; : : : ; e i q i ) for i = 1; : : : ; m and e i s = (r i s ; l i s )), on satisfying the following properties :

(P 1 ): 8i; j 2 f1; : : : ; mg with i 6 = j, the curves i and j have no interior intersection ; (P 2 ): For any i 2 f1; : : : ; mg and any s 2 f0; q i g, there exists j 2 f1; : : : ; mg and t 2 f0; q j g, with i 6 = j or s 6 = t, such that L i (s) = L j (t) ;

(P 3 ): The subgraph of the e adjacency graph of X, obtained by removing in the e adjacency graph of X all the edges of the form fl i s ; r i s g, is connected and simply connected.

To construct such a set of curves, we rst construct a connected and simply connected subgraph of the e adjacency graph of X, having X as set of vertices. A way to do this is to consider a covering tree G(X) in the e adjacency graph of X. Such a covering tree is a connected subgraph having X as set of vertices, and with no cycle so that it is simply connected. E cient algorithms to construct covering trees in connected nonoriented graphs exist and can be found in most of books on elementary algorithms. We can consider the set A of the pairs fx 1 ; x 2 g of e adjacent surfels of X, such that fx 1 ; x 2 g is not an edge of the subgraph G(X). As we shall see, from the data of the elements of A, we can construct a set of oriented curves satisfying the properties (P 1 ) and (since G(X) is connected and simply connected) (P 3 ).

De nition 9 Let A 0 be a set of pairs of e adjacent surfels of X. An edge 2 A 0 , such that there is a loop l included in X which contains , and such that for any 0 2 A 0 with 0 6 = we have 0 6 l, is called an extremity of A 0 .

Because of the existence of extremities in the set A, the set of oriented curves we can construct from the data of A does not always satisfy the property (P 2 ). What we can do is remove iteratively extremities in A until we get a set which contains no more extremities. More precisely, we set A 0 = A, we iteratively choose an extremity k in the set A k and set A k+1 = A k nf k g, until we get a set A f which contains no extremity. For k = 0; : : : ; f, we denote by G k (X) the graph whose vertices are the surfels of X, an edge of G k (X) being either an edge of G(X), or an edge of AnA k . The graph G k (X) is a subgraph of the e adjacency graph of X. We have the following lemma :

Lemma 1 For k = 0; : : : ; f, the graph G k (X) is connected and simply connected. Proof: The graph G k (X) is connected since G(X) is a connected subgraph of G k (X) with the same set of vertices. We prove that G k (X) is simply connected by induction. Since G 0 (X) = G(X), as we noticed above, the result is true for k = 0. Now, let 0 k < r be such that G k (X) is simply connected. Let c = (x 0 ; : : : ; x p ) be a closed path in G k+1 (X). Let us prove that c is homotopic in G k+1 (X) to a constant path. We shall show that c is homotopic in G k+1 (X) to a path c 0 which is a path in G k (X). Then it follows from our induction hypothesis that c 0 is homotopic in G k (X) to a constant path, and therefore that c is homotopic in G k+1 (X) to a constant path. Let us now construct the path c 0 .

We consider k = fx 1 ; x 2 g the extremity of A k ; the graph G k+1 (X) is obtained from G k (X) by adding the non oriented edge k = fx 1 ; x 2 g. Since k is an extremity of A k , there exists a loop l included in X, containing the edge k and containing no other element of A k . Therefore, the e adjacency edges between surfels of l are all edges of the graph G k (X) except the edge k = fx 1 ; x 2 g. Hence x 1 is connected to x 2 inside the loop l by a path of G k (X). Let be such a path from x 1 to x 2 , and be such a path from x 2 to x 1 .

We consider c 0 the path of G k (X) obtained by inserting in c the path between x 1 and x 2 each time the subsequence (x 1 ; x 2 ) appears in the path c, and inserting in c the path between x 2 and x 1 each time the subsequence (x 2 ; x 1 ) appears in the path c. Then, since and are contained in the loop l, the path c is homotopic in G k+1 (X) to the path c 0 of G k (X). 2

There remains to construct the oriented curves i 's from the data of A f . Let us consider = fr 1 ; l 1 g an edge of A f . We denote e 1 = (r 1 ; l 1 ). Then the sequence (e 1 ) with a single term is a simple curve on . Hence we can construct a set of simple curves and simple closed curves f 1 ; : : : ; m g such that, denoting i = (e i 1 ; : : : ; e i q i ) for i = 1; : : : ; m and e i s = (r i s ; l i s ), the map : (r i s ; l i s ) 7 ! fr i s ; l i s g is a one to one correspondence between the set fe i s = i = 1; : : : ; m and s = 1; : : : ; q i g and the set A f . We can for instance consider curves reduced to one edge, but it is also possible to consider longer curves, by extending the curves in loops containing exactly two edges of A f , so that we get a lower value of m. By constructing the simple curves and the simple closed curves i in this way, the i 's satisfy the property (P 1 ). Moreover, since, from its very construction, A f has no extremity, the i 's satisfy the property (P 2 ). At last, from Lemma 1, the i 's satisfy the property (P 3 ).

Main Results

We consider f 1 ; : : : ; m g a set of curves and simple closed curves satisfying the properties (P 1 ), (P 2 ) and (P 3 ) de ned above. It follows from Subsection 4.2 that such a set of curves can always be constructed. We denote i = (e i 1 ; : : : ; e i q i ) and e i s = (r i s ; l i s ) for i = 1; : : : ; m and s = 1; : : : ; q i . As when we have de ned the free group F m , we consider the alphabet fa 1 ; : : : ; a m ; a 1 1 ; : : : ; a 1 m g with 2m letters, and W m the set of all word on this alphabet.

Let c = (x 0 ; : : : ; x p ) be any e path in X. We want to construct a word w(c) 2 W m associated with c.

De nition 10 Let k 2 f0; : : : ; p 1g, i 2 f1; : : : ; mg and s 2 f1; : : : ; q i g, be such that fr i s ; l i s g = fx k ; x k+1 g. The triple (k; i; s) is called an intersection of c and the j 's. We say that this intersection is positive if (r i s ; l i s ) = (x k ; x k+1 ), negative if (l i s ; r i s ) = (x k ; x k+1 ).

Notation 1 Given (k; i; s) an intersection of c and the j 's. We denote by O c (k; i; s) the number equal to +1 if the intersection (k; i; s) is positive, and to 1 otherwise.

We de ne w(c) as the word, containing one symbol a Oc(k;i;s) i for each intersection (k; i; s) of c with the j 's, these symbols appearing in the word w(c) in the order of the increasing k (i.e. the order in which the intersections appear along c). We denote by w(c) the class of w(c) up to elementary simpli cations (see the de nition of the free group). Now we can de ne a group given by generators and relations. Let us consider a loop L i (s), with i 2 f1; : : : ; mg and s 2 f0; q i g (which is an extremity of the curve i ). we assume that the loop L i (s) is contained in X. As we observed when de ning loops, the loop L i (s) admits a parametrization, which is a closed e path covering L i (s). We denote by c(i; s) such a parametrization. We denote by R(i; s) the word w(c(i; s)), and by R the set of all words R(i; s) for all i 2 f1; : : : ; mg and s 2 f0; q i g such that the loop L i (s) is contained in X. Note that, since the parametrization c(i; s) of the loop L i (s) is not exactly unique, but depends on an initial surfel and the orientation of a rotation in L i (s), the word R(i; s) is only de ned up to cyclic permutation or inversion in the free group. The normal subgroup of F m generated by R does not depend on this choice of the parametrization c(i; s) since two cyclic permutations of the same word correspond to conjugate elements of F m . We denote by H the normal subgroup of the free group F m generated by the words of R.

As in the de nition of the quotient group, we denote by H the relation of equality modulo elements of H in F m . Finally, we denote = F m =H the quotient group, and we denote by p H : F m ! the projection. The group is the group with m generators and the relations of R. We want to prove that the e fundamental group of X is isomorphic to the group .

More precisely, we have the two following results : Theorem 4 The map p H w : A e B (X) ! is constant on each equivalence class of A e B (X)

for the e homotopy relation in X. Therefore, this map p H w induces a map ' : e 1 (X) ! c] 7 ! p H (w(c))

Obviously, since concatenation of paths corresponds to concatenation of words, this map ' is a group morphism.

Theorem 5 The map ' : e 1 (X) ! is a group isomorphism.

The idea is that if we consider (k; i; s) with s 2 f0; q i g an intersection of an e path c in X and the j 's, and if c(i; s) denotes a parametrization of the loop L i (s), then the closed e path c(i; s), since contained in a loop, is e homotopic in X with xed extremities to a path reduced to single surfel. In other words, the element of the e fundamental group of X represented the closed e path c(i; s) is the unit element of the e fundamental group.

Through the isomorphism ' from e 1 (X) onto = F m =H, this is translated into the fact that the element of F m represented by the word R(i; s) = w(c(i; s)) is sent onto the unit element of . Therefore, R(i; s) must belong to H, but this is precisely the de nition of H.

Proof of Theorem 4: It is su cient to prove that if two closed e path c and c 0 of A e B (X) are the same up to an elementary e deformation, then p H (w(c)) = p H (w(c 0 )). We denote c = 1 2 and c 0 = 1 0 2 , the e paths and 0 having the same extremities and being contained in a common loop L. If the loop L is di erent from L i (s) for i 2 f1; : : : ; mg and for s 2 f0; : : : ; q i g, then a portion of c or c 0 contained in L does not a ect the words w(c) and w(c 0 ), and therefore there is nothing to prove in this case. Otherwise, let i 2 f1; : : : ; mg and s 2 f0; : : : ; q i g be such that L i (s) = L. We distinguish two case: First case: If s 2 f1; : : : ; q i 1g. In other words, the loop L i (s) is not an extremity of the curve i . Then the edges fr i s ; l i s g and fr i s+1 ; l i s+1 g separate the loop L into two parts I 1 and I 2 which are intervals of the loop L. For any e path contained in L, the word w( ) if formed of a i and a 1 i which appear alternatively. Therefore, by elementary simpli cations, we can reduce w( ) either to an empty word, or to a word with a length one, depending on the parity of the length of the word w( ). Now, this parity, and the letter (a i or a 1 i ) remaining in the word after simpli cation, only depends on which of I 1 and I 2 the extremities of belong to. Now, this observation being in particular valid for = and for = 0 , since and 0 have the same extremities, the words w( ) and w( 0 ) can be reduced to the same word by elementary simpli cations. Therefore, the elements w(c) and w(c 0 ) of F m represented by the words w(c) and w(c 0 ) are the same. A fortiori, the elements p H (w(c)) and p H (w(c 0 )) of are equal.

Second case: If s 2 f0; q i g. We denote = (x 0 ; : : : ; x p ) with p 2 N . By iteratively removing in the surfels x i and x i+1 each time we have x i = x i+2 with i 2 f0; : : : p 2g, we obtain an e path = (y 0 ; : : : ; y v ) such that for i = 0; : : : v 2 we have y i 6 = y i+2 . We have w( ) = w( ). Moreover, the e path just goes over the loop L a certain number of times, and then ends at the surfel x p . Similarly, we can construct an e path 0 from 0 as we have obtained from . If L i (s) 6 X, then we have = 0 so that w(c) = w(c 0 ). Otherwise, by inserting a certain number of times in the closed parametrization c(i; s) of the loop L i (s), or its reversed closed e path, we get an e path with w( ) = w( 0 ). From the construction of , necessarily w( 12 ) H w( 1 2 ) Now we have w( 1 2 ) = w( 1 2 ) H w( 1 2 ) = w( 1 0 2 ) = w( 1 0 2 ) And therefore w(c) H w(c 0 ), so that p H (w(c)) = p H (w(c 0 )). 2 Before to prove Theorem 5, we set one notation and prove three lemmas. We denote by G the subgraph of the e adjacency graph of X obtained by removing all edges of the form fl i s ; r i s g with i 2 f1; : : : ; mg and s 2 f1; : : : ; q i g. Any path in G, as an e path of X, has no intersection with the j 's. Due to the property (P 3 ) satis ed by the j 's, the subgraph G of the e adjacency graph of X is connected and simply connected.

Lemma 2 Let c be an e path in X which has a single intersection (k; i; s) with the j 's, and let t 2 f1; : : : ; q i g. The c is e homotopic with xed extremities in X to an e path c 0 , such that w(c) = w(c 0 ), and which has exactly one intersection with the 0 j s, this intersection being of the form (k 0 ; i; t).

Proof: If t = s, then we set c 0 = c. Otherwise, we assume for instance that t > s.

Since c has a single intersection with the j 's, we decompose c = c 1 c 2 , where the e paths c 1 and c 2 are paths of G, and the last surfel 1 of c 1 is e adjacent to the rst surfel 2 of c 2 .

We have f 1 ; 2 g = fr j s ; l i s g. We assume for instance 1 = r i s and 2 = l i s . From the de nition of a simple curve or a simple closed curve, the surfel r i s is linked to r i s+1 by an e path in L i (s)nfl i s ; l i s+1 g. Similarly, the surfel l i s+1 is linked to l i s by an e path in L i (s)nfr i s ; r i s+1 g.

The concatenation c 00 = c 1 c 2 is well de ned, we have w(c 00 ) = w(c) and c 00 has a single intersection with the j 's, which is of the form (k 00 ; i; s + 1). Lemma 2 follows by induction. 2 Lemma 3 Let c be an e path in X and w 2 W m be a word such that w(c) = w in F m . Then c is e homotopic with xed extremities in X to an e path c 0 in X with w(c 0 ) = w.

Proof: It is su cient to prove Lemma 3 when w(c) and w are the same up to an elementary simpli cation. We distinguish two cases:

First case: If w is obtained by inserting in the word w(c) a sequence a i a 1 i or a 1 i a i (say a i a 1 i ). We decompose w(c) = w 1 w 2 and w = w 1 a i a 1 i w 2 . We also decompose c = c 1 c 2 with w(c 1 ) = w 1 and w(c 2 ) = w 2 . Let be a path in the graph G from the last surfel of c 1 to the surfel r i 1 . Then the e path c 0 = c 1 (r i 1 ; l i 1 ; r i 1 )

1 c 2 is clearly e homotopic in X to c = c 1 c 2 , and we have w(c 0 ) = w 1 a i a 1 i w 2 = w. Second case: If w is obtained by deleting in w(c) a subword of the form a i a 1 i or a 1 i a i (say a i a 1 i ). We denote w(c) = w 1 a i a 1 i w 2 and w = w 1 w 2 . We decompose c = c 1 c 2 c 3 c 4 with w(c 1 ) = w 1 , w(c 2 ) = a i , w(c 3 ) = a 1 i and w(c 4 ) = w 2 . Let (k 2 ; i; s 2 ) be the unique intersection of c 2 with the j 's, and let (k 3 ; i; s 3 ) be the unique intersection of c 3 with the j 's. Then, by applying Lemma 2 to the path c 2 , we get an e path c 0 2 , which is e homotopic with xed extremities in X to c 2 , and such that w(c 0 2 ) = w(c 2 ) = a i , and having a unique intersection with the j 's which is of the form: (k 0 2 ; i; s 3 ).

We denote c 0 2 = 2 2 (resp. c 3 = 3 3 ), the e paths 2 and 2 (resp. 3 and 3 ) being paths of G, the last surfel of 2 (resp. of 3 ) and the rst surfel of 2 (resp. 3 ) being both contained in fr i s 3 ; l i s 3 g. Since G is simply connected, the closed path 2 3 in G is homotopic in G (hence e homotopic in X) to a trivial path. Hence c, which is equal to c 1 c 2 c 3 c 4 , is e homotopic in X to c 1 c 0 2 c 3 c 4 = c 1 2 2 3 3 c 4 , is e homotopic in X to the e path c 0 = c 1 2 3 c 4 . Moreover, we have w(c 0 ) = w(c 1 )w(c 4 ) = w 1 w 2 = w since 2 3 is a path of G. 2 Lemma 4 Let c be an e path in X such that w(c) = R(i; s) for some i 2 f1; : : : ; mg and s 2 f0; q i g. Then c is e homotopic with xed extremities in X to an e path c 0 such that w(c 0 ) is the empty word (in other words, c 0 has no intersection with the j 's).

Proof: We denote R(i; s) = a " 1 i 1 a "p ip with i l 2 f1; : : : ; mg and " 2 f 1; 1g for l = 1; : : : ; p.

We denote by (k l ; i l ; s l ) the intersection of c with i l corresponding to the symbol a " l i l in w(c) = R(i; s). Finally, we decompose c = c 0 c p where c 0 ; : : : ; c p are paths in the graph G, and we denote by y l and z l respectively the rst surfel and the last surfel of c l for l = 0; : : : ; p.

Necessarily, for l = 1; : : : ; p we have: fz l 1 ; y l g = fr i l s l ; l i l s l g.

Due to Lemma 2, we may assume, by replacing c by a path in the same e homotopy class in X if necessary, that s l 2 f0; q i l g, is such that fr i l s l ; l i l s l g L i (s). Now, since G is simply connected, for l = 1; : : : ; p 1 the e path c l is e homotopic in G to a path c 0 l of G which is an interval of the loop L i (s).

Hence c 1 c p 1 is e homotopic with xed extremities in X to c 0 1 c 0 p 1 , which is in turn e homotopic in X to a path C of the graph G which is an interval of L i (s). Hence c is e homotopic in X to the path c 0 = c 0 C c p , which is a path in G. Therefore, w(c 0 ) is the empty word. 2 Proof of Theorem 5: First we prove that the morphism ' is onto. To do this, it is su cient to prove that for i = 1; : : : ; m, there exists a closed e path c of A e B (X) such that w(c) = a i . Let us consider an oriented edge (r i s ; l i s ) of the curve i . Since the graph G is connected, there exists a path c 1 in G from B to r i s . Similarly, there exists a path c 2 in G from l i s to B. Now, the concatenation c = c 1 c 2 an e path in X and we have w(c) = a i . Hence, the morphism ' is onto.

There remains to prove that the morphism ' is one to one. To do this, we consider c a closed e path of A n B (X) such that w(c) H 1 m , and we have to prove that c is e homotopic in X to the trivial path (B; B).

We decompose c = c 1 c f , where for k = 1; : : : ; f the e path c k is a path in the graph G, and for k = 1; : : : ; p 1, the edge of the e adjacency graph between the last surfel of c k and the rst surfel of c k+1 is an edge of the form fr i s ; l i s g. Our hypothesis is that w(c) is in the normal subgroup of F m generated by the R(i; s)'s.

Therefore, the word w(c) is free equivalent to a word w = g Y a=1 w a (R(i a ; s a )) "a w 1 a with w a 2 W m and " a 2 f 1; 1g.

From Lemma 3, the e path c is e homotopic in X to an e path c 0 in X with w(c 0 ) = w.

Let us decompose c 0 by setting c 0 = c 1 c 2 c 3 c 4 , with w(c 1 ) = g 1 Y a=1 w a (R(i a ; s a )) "a w 1 a , w(c 2 ) = w g , w(c 3 ) = (R(i g ; s g )) "g and w(c 4 ) = w 1 g . From Lemma 4 follows that c 3 is e homotopic in X with xed extremities to an e path c 0 3 which has no intersection with the j 's, so that w(c 0 3 ) is the empty word. Now, c 0 is e homotopic in X to the e path c 00 = c 1 c 2 c 0 3 c 4 , and w(c 00 ) = w(c 1 )w g w 1 g . Due to Lemma 3, the e path c 00 is e homotopic to an e path c 000 with w(c 000 ) = w(c 1 ) = g 1 Y a=1 w a (R(i a ; s a )) "a w 1 a . It follows by induction that c is e homotopic in X to an e path C such that w(C) is the empty word. This means that C is a path in G and, since G is simply connected, C is homotopic in G to a trivial path. Therefore, c is e homotopic in X to the trivial path (B; B). 2

Conclusion

We can compute a presentation for the fundamental group of any subset of a digital surface. Some principles presented here can be reused to study the complete 3D case. However, the ideas of this paper must be widely modi ed to be used in the 3D case. Mainly, it seems that, in the 3D case, the curves i 's which we construct must be surfaces in the 3D space. Of course, the junctions between surfaces are much more di cult to characterize than intersections of curves on a surface. For this reason, the 3D case seems more di cult than the case of surfaces.
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