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MULTIPLIERS BETWEEN MODEL SPACES

EMMANUEL FRICAIN, ANDREAS HARTMANN, AND WILLIAM T. ROSS

Abstract. In this paper we examine the multipliers from one model
space to another.

1. Introduction

For an inner function Θ, let KΘ := H2∩ (ΘH2)⊥ denote the model space

of the open unit disk D corresponding to Θ. In this paper, we explore, for

a pair of inner functions u and v, the multipliers

M (u, v) := {ϕ ∈ Hol(D) : ϕKu ⊆ Kv}

between Ku and Kv.

One motivation for this paper comes from the work of Crofoot [8] who

considered a more restricted version of M (u, v) namely {ϕ ∈ Hol(D) :

ϕKu = Kv}, in other words, the multipliers from Ku onto Kv (see also [3,

Def. 3.7]). As it turns out, these onto multipliers are unique up to multi-

plicative constants and are outer functions. Another motivation comes from

examining pre-orders on partial isometries [12, 23].

The Crofoot discussion becomes quite different if we relax the (onto)

multiplier condition ϕKu = Kv to just ϕKu ⊆ Kv. For one, as we shall see

below, these (into but not necessarily onto) multipliers need not be outer

functions. Secondly, unlike the onto multipliers, the into multipliers need

not be unique. In fact, we give an example of when M (u, v) is infinite

dimensional and contains unbounded functions.

After a few initial observations about M (u, v) we will reformulate the

description of M (u, v) in terms of Carleson measures of model spaces and

kernels of Toeplitz operators. Along the way, we will describe M (u, v) when

v is an inner multiple of u. We will then relate M (u, v) to the boundary

spectra of u and v along with their sub-level sets.

2010 Mathematics Subject Classification. 30J05, 30H10, 46E22.
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2 FRICAIN, HARTMANN, AND ROSS

We also consider multipliers for the model spaces of the upper half

plane. In this setting we discuss a particular entire function introduced by

Lyubarskii and Seip which allows us to deduce the existence of unbounded

onto multipliers connecting to a question raised by Crofoot. As discussed

earlier, the onto multipliers are unique (up to multiplicative constants) and

thus the multipliers algebra in this case is one dimensional. In the spirit of

the Lyubarskii and Seip construction above, we produce u and v such that

M (u, v) = Cϕ, yet ϕ is not an onto multiplier.

Acknowledgement. We would like to thank Cristina Câmara for some

insightful discussions along with the anonymous referee for some suggested

improvements (especially Theorem 3.1, Theorem 6.6, Proposition 6.16, and

suggesting the problem we answered in Theorem 6.14).

2. Notation, observations, and simplifications

We assume the reader is familiar with the Hardy space H2 [10, 14] and

model spaces Ku [13, 18]. In this paper, D is the open unit disk, T the unit

circle, m normalized Lebesgue measure on T, and L2 the standard Lebesgue

space L2 := L2(T, m) with norm ‖f‖ and inner product 〈·, ·〉. The bounded
analytic functions on D are denoted by H∞. Recall that H2 is a reproducing

kernel Hilbert space with kernel kλ(z) = (1− λz)−1.

We begin with some useful observations. First notice that M (u, v) ⊆ H2.

Indeed, if

kuλ(z) =
1− u(λ)u(z)

1− λz
, λ, z ∈ D,

denotes the reproducing kernel for Ku, then ku0 = 1 − u(0)u ∈ Ku is an

invertible element of H∞. Thus if ϕ ∈ M (u, v) then ϕku0 ∈ Kv ⊆ H2 from

which the result follows.

Furthermore, when ϕ ∈ M (u, v), the closed graph theorem says that

Mϕf = ϕf is a bounded operator from Ku to Kv and standard arguments

show that M∗
ϕk

v
λ = ϕ(λ)kuλ. Since

‖kuλ‖2 =
1− |u(λ)|2
1− |λ|2 ,

it follows that

(2.1) |ϕ(λ)|2(1− |u(λ)|2) . (1− |v(λ)|2), λ ∈ D.
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Though this inequality will be used later on, it does not prove that ϕ is

always bounded. The following Proposition summarizes some basic facts

which follow, or can be gleaned, from Crofoot’s paper [8].

Proposition 2.2. Let u and v be inner functions.

(i) M (u, u) = C.

(ii) If ϕKu = Kv then ϕ is outer.

(iii) C ⊆ M (u, v) if and only if u divides v.

(iv) Suppose u divides v and u is not a constant multiple of v. Then

M (v, u) = {0}.

(v) If ϕ ∈ M (u, v) and F is the outer factor of ϕ, then F ∈ M (u, v).

(vi) If a ∈ D and ua :=
u−a
1−au

, then
1

1− au
Ku = Kua.

The map f 7→ (1 − au)−1f from Ku onto Kua is a constant multiple of

the unitary Crofoot transform. Using operator theory techniques, Crofoot [8,

Theorem 14] showed that when the space of onto multipliers is non-empty,

then σ(u) = σ(v), where

σ(u) :=
{
ξ ∈ T : lim

z→ξ

|u(z)| = 0
}

is the boundary spectrum of an inner function. The following result is the

M (u, v) analogue of this where our proof uses function theory.

Proposition 2.3. If M (u, v) 6= {0} then σ(u) ⊆ σ(v).

Proof. Without loss of generality, we can use Proposition 2.2 (vi) and as-

sume that u(0) = 0 (the Crofoot transform preserves the regular points in

T). Then 1 ∈ Ku and so ϕKu ⊆ Kv =⇒ ϕ ∈ Kv. Pick ζ ∈ T \ σ(v) (a

regular point for v). Then [13, p. 153] every function in Kv has an analytic

continuation to a two-dimensional open neighborhood Ω of ζ . In particular,

ϕ ∈ Kv enjoys this property. For every f ∈ Ku, g := ϕf ∈ Kv has an ana-

lytic continuation to Ω and so f = g/ϕ is either analytic on Ω or has a pole

of order at least 1 at ζ . But this second case is not possible since f ∈ H2

must be square integrable on T. Hence f extends analytically to Ω and thus

ζ ∈ T \ σ(u). �
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3. A useful reformulation

In this section we reformulate the description of M (u, v) in terms of

kernels of Toeplitz operators and Carleson measures for model spaces.

Theorem 3.1. For inner u and v and ϕ ∈ H2, the following are equivalent:

(i) ϕ ∈ M (u, v);

(ii) ϕS∗u ∈ Kv and |ϕ|2dm is a Carleson measure for Ku, i.e.,
∫

T

|f |2|ϕ|2dm . ‖f‖2, f ∈ Ku;

(iii) ϕ ∈ Ker Tzvu and |ϕ|2dm is a Carleson measure for Ku, where

Tzvuf = P+(zvuf) is the standard Toeplitz operator on H2.

Furthermore, the following are equivalent:

(iv) ϕ ∈ M (u, v) ∩H∞;

(v) ϕS∗u ∈ Kv ∩H∞.

(vi) ϕ ∈ Ker Tzvu ∩H∞.

Proof. Recall that Ker Tu = Ku [13, p. 108] and that Tfg = TfTg if either

f ∈ H∞ or g ∈ H∞ [13, p. 97]. Also observe that Tz = S∗ and that T1−u(0)u

is invertible. Using these facts, along with the identity (on T),

(3.2) ϕS∗u = ϕz(u− u(0)) = ϕzu(1− u(0)u),

it follows that ϕS∗u ∈ Kv ⇐⇒ ϕ ∈ Ker Tzvu. This yields (ii) ⇐⇒ (iii)

and (vi) =⇒ (v). The implication (v) =⇒ (vi) needs an additional argu-

ment. Indeed, suppose that ϕS∗u ∈ Kv ∩H∞. Then the above equivalences

yield ϕ ∈ Ker Tzvu, and we just have to check that ϕ is bounded. We already

know that ϕ ∈ H2. Thus in order to verify ϕ ∈ H∞, it suffices to prove that

ϕ|T ∈ L∞ (Smirnov’s theorem [10, p. 28]). By assumption, ϕS∗u = g ∈ H∞

and (3.2) shows that ϕ|T ∈ L∞.

The implications (i) =⇒ (ii) and (iv) =⇒ (v) are automatic. The

implication (v) =⇒ (iv) becomes automatic once we have shown (ii) =⇒
(i). So it remains to prove (ii) =⇒ (i). Observe that f ∈ Kv if and only

if vzf ∈ Kv (see [13, p. 105]). We know that ϕS∗u ∈ Kv which means,

via (3.2) that vuϕ ∈ H2. Since |ϕ|2dm is a Carleson measure for Ku (i.e.,

ϕ ∈ M (Ku, H
2)) it suffices to show that ϕg ∈ Kv for all g ∈ Ku ∩ H∞
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(which is dense in Ku). Indeed,

vzϕg = vuϕ · uzg ∈ H2 ·H∞ ⊆ H2. �

Corollary 3.3. Ker Tzvu ∩H∞ = M (u, v) ∩H∞ ⊆ M (u, v) ⊆ Ker Tzvu.

We will see in Example 3.6 below that, in general, M (u, v) ( KerTzvu.

Corollary 3.4. Suppose u and v are inner and v = uI. Then the following

are equivalent:

(i) ϕ ∈ M (u, v);

(ii) ϕ ∈ KzI and |ϕ|2dm is a Carleson measure for Ku.

Furthermore, the following are equivalent:

(iii) ϕ ∈ M (u, v) ∩H∞;

(iv) ϕ ∈ KzI ∩H∞.

If I is a finite Blaschke product then M (u, v) ∩H∞ = M (u, v) = KzI.

Our next result uses analytic continuation and the boundary spectrum

to construct a class of inner functions u and v, with v = uI, such that the

Carleson condition on |ϕ|2dm is automatic as soon as ϕ ∈ KzI .

Theorem 3.5. Let u and v be inner functions with and v = uI for some

inner function I. Suppose further that σ(u) ∩ σ(I) = ∅. Then M (u, v) =

KzI. Furthermore, if I is not a finite Blaschke product then M (u, v) contains

unbounded functions.

Proof. By Corollary 3.4, we just need to check that |ϕ|2dm is a Carleson

measure for Ku for every ϕ ∈ KzI . Let V be a two dimensional neighborhood

of σ(I) that is far from σ(u). By [13, p. 153] ϕ extends analytically outside

V (i.e., D\V ) and thus can be assumed to be bounded outside V . Similarly,

every f ∈ Ku extends analytically to V and can be assumed to be bounded

there. From here it follows that ϕf ∈ H2. By the Closed Graph Theorem,

ϕ ∈ M (Ku, H
2), equivalently, |ϕ|2dm is a Carleson measure for Ku.

For the last part, note that if I is not a finite Blaschke product then KzI

is infinite dimensional [13, p. 117] and thus, via a well-known theorem of

Grothendieck [21], contains unbounded functions. �
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We now construct an example of when Ker TzI = Ker Tzvu contains func-

tions which do not define Carleson measures for Ku and thus M (u, v) (

Ker Tzvu. Hence the Carleson condition is important in Theorem 3.1.

Example 3.6. Set λn = 1−2−n, n > 1, and note this is the zero sequence of

an interpolating Blaschke product I. With wn = n−1, notice that
∑

n>1w
2
n <

∞. By an interpolation theorem from [18, p. 135], there is a ϕ ∈ KI ⊆ KzI

such that

ϕ(λn) =
wn

(1− |λn|2)1/2
≍ 2n/2

n
→ ∞.

Now take u(z) = exp((z+1)/(z−1)) and observe that since λn → 1 on (0, 1)

we have u(λn) → 0. If v = uI then ϕ ∈ KI ⊆ KzI = Ker Tzvu. However,

ϕ 6∈ M (u, v) since, if it were, (2.1) would imply that

|ϕ(λn)|2(1− |u(λn)|2) . 1− |v(λn)|2 . 1.

The above discussion now yields a contradiction. Thus we have M (u, v) (

Ker Tzvu = KzI .

4. Finite dimensional case

We now consider finite dimensional model spaces. For an inner u, the

degree of u is n if u is a finite Blaschke product with n zeros and equal to ∞
otherwise. When u is a finite Blaschke product with n zeros {λ1, · · · , λn},
we have

(4.1) Ku =
{ p(z)∏n

j=1(1− λjz)
: p ∈ Pn−1

}
,

where Pn−1 are the polynomials of degree at most n− 1.

Theorem 4.2. If u is a finite Blaschke product with zeros {a1, . . . , am} and

v is a finite Blaschke product with zeros {b1, . . . , bn} where m 6 n, and the

zeros are repeated according to their multiplicity, then

M (u, v) = M (u, v) ∩H∞ =
{
q(z)

∏m
i=1(1− aiz)∏n
j=1(1− bjz)

: q ∈ Pn−m
}
.

Proof. The ⊇ containment follows essentially from (4.1). For the ⊆ contain-

ment, notice from Theorem 3.1 that ϕ ∈ M (u, v) =⇒ ϕ ∈ KerTzvu which

is equivalent to

uϕ ∈ KerTzv = Kzv =
{ p(z)∏n

j=1(1− bjz)
: p ∈ Pn

}
⊆ H∞.

The result now follows. �
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Theorem 4.3. If u is a finite Blaschke product and v is any inner function

with infinite degree, then M (u, v) ∩H∞ 6= {0}.

Proof. By [14, p. 75] there is an a ∈ D (in fact “most” a) such that the

Frostman shift va =
v−a
1−av

of v is a Blaschke product of infinite degree. Factor

va = IJ , where I and J are Blaschke products with the degree of I equal

to the degree of u, and use [18, p. 14] to obtain KI ⊆ Kva . From Theorem

4.2 there is a rational ϕ ∈ H∞ such that ϕKu ⊆ KI ⊆ Kva . Proposition 2.2

(vi) now yields (1− av)ϕKu ⊆ Kv. �

5. Sub-level sets

In this section we discuss some results using sub-level sets of inner func-

tions. We start with a “maximum principle” result of Cohn [7].

Theorem 5.1. Suppose Θ is inner and f ∈ KΘ is bounded on {|Θ| < ǫ}
for some ǫ ∈ (0, 1). Then f ∈ H∞.

This result can be used to show that under certain circumstances, all

multipliers must be bounded.

Corollary 5.2. Let u and v be inner. If, for some ǫ1, ǫ2 ∈ (0, 1), {|v| <
ǫ2} ⊆ {|u| < ǫ1}, then M (u, v) = Ker Tzvu ∩H∞.

Proof. Let ϕ ∈ M (u, v). The estimate in (2.1) says that when λ ∈ {|v| <
ǫ2} ⊆ {|u| < ǫ1} we have |ϕ(λ)|2 . (1 − ǫ21)

−1 and thus ϕ is bounded

on {|v| < ǫ2}. Since ku0 = 1 − u(0)u ∈ Ku and bounded on D, we see

that ku0ϕ ∈ Kv and bounded on {|v| < ǫ2}. Apply Theorem 5.1 to obtain

ku0ϕ ∈ H∞. Since ku0 is invertible in H∞, we get ϕ ∈ H∞. Now apply

Corollary 3.3. �

Example 5.3. Let u be any singular inner function and v = uα for some

α > 1 (or perhaps u a Blaschke product, or any inner function, and α ∈ N).

Notice that u divides v and so M (u, v) 6= {0} (Corollary 3.4). Furthermore

if ǫ2 ∈ (0, 1) and z ∈ {|v| < ǫ2} then |u(z)|1/α 6 ǫ
1/α
2 . Setting ǫ1 = ǫ

1/α
2

we see that {|v| < ǫ2} ⊆ {|u| < ǫ1}. Corollary 5.2 yields M (u, v) ⊆ H∞.

Combine this with Corollary 3.4 to see that M (u, v) = Kzuα−1 ∩H∞.

Carleson measure results of Cohn [5, 6] allow us, in the special case where

u satisfies the connected level set condition (i.e., {|u| < ε} is connected for
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some ε > 0), to replace the condition that |ϕ|2dm is a Carleson measure in

Theorem 3.1 and Corollary 3.4 with

sup
λ∈D

(1− |u(λ)|2)
∫

T

1− |λ|2
|ξ − λ|2 |ϕ(ξ)|

2dm(ξ) <∞.

6. The upper-half plane

We will now turn to the upper half plane which in certain situations is

a more appropriate setting. If C+ denotes the upper-half plane, we set H 2

to be the corresponding Hardy space. There is a natural unitary operator

U from H2 onto H 2 given by

(Uf)(z) := 1√
π(z + i)

f(ω(z)),

where ω(z) := z−i
z+i

maps C+ onto D and R∪ {−∞,∞} onto T. As with H2,

one can define, for Ψ ∈ L∞(R), the Toeplitz operator TΨ on H 2.

For an inner function U on C+, we define the model space

KU := H
2 ∩ (UH

2)⊥.

The corresponding reproducing kernel function for KU is

KU
λ (z) :=

i

2π

1− U(λ)U(z)

z − λ
, λ, z ∈ C+.

Note that if u is an inner function on D and U = u ◦ ω, then U is an inner

function on C+ (and vice versa). Furthermore, UKu = KU .

Multipliers and kernels. In this subsection we need the elementary Blaschke

factor on C+ with zero at i:

b+i (z) :=
z − i

z + i
,

and

ki(z) =
1√
π

1

z + i
,

the corresponding kernel at i. Observe that Uf = ki × (f ◦ ω), f ∈ H2.

We begin with some elementary but useful facts. The proofs are straight-

forward.

Lemma 6.1. Let ψ ∈ L∞(T) and Ψ = ψ ◦ ω. Then

f ∈ Ker Tψ ⇐⇒ F := Uf ∈ Ker TΨ.

Lemma 6.2. ϕ ∈ M (u, v) if and only if Φ = ϕ ◦ ω ∈ M (U, V ).
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Corollary 6.3. With the notation from above, the following are equivalent

for Φ analytic on C+:

(i) Φ ∈ M (U, V );

(ii) Φki ∈ KerT
b+
i
V U

and |Φ|2dx is a Carleson measure for KU .

We now discuss a situation when the Carleson condition becomes more

tractable. We begin with a result from Baranov [2, Thm. 5.1].

Theorem 6.4. Let U be an inner function in C+ such that |U ′(x)| ≍ 1,

x ∈ R. For a positive Borel measure µ on R, the following are equivalent:

(i) µ is a Carleson measure for KU .

(ii) We have M := sup
x∈R

µ([x, x+ 1]) <∞.

Remark 6.5. Concerning boundedness of U ′, Dyakonov [11] proved that

the following conditions are equivalent:

(i) U ′ ∈ L∞(R).

(ii) For some η, ε > 0, {z ∈ C+ : |U(z)| < ǫ} ⊆ {z ∈ C : ℑz > η}.

(iii) KU ⊆ H ∞, the bounded analytic functions on C+.

Theorem 6.6. Let U and V be inner functions with |U ′(x)| ≍ 1, x ∈ R.

Then

M (U, V ) =
{
Φ ∈ (z + i) Ker T

b+
i
V U

:M := sup
x∈R

∫ x+1

x

|Φ(t)|2dt <∞
}
.

Proof. Observe that Φki ∈ Ker T
b+
i
V U

⇐⇒ Φ ∈ (z+i) Ker T
b+
i
V U

and apply

Corollary 6.3 and Theorem 6.4. �

Lemma 6.7. We have

F ∈ KerTV U ⇐⇒ F ∈
(
(z + i) Ker T

b+
i
V U

)
∩ H

2.

Proof. The function F belongs to Ker TUV if and only if there is a ψ ∈ H 2

such that V UF = ψ. A calculation shows that

V (x)b+i (x)U(x)F (x)ki(x) = (ψki)(x), x ∈ R.

Hence Fki ∈ Ker T
b+
i
V U

and so F ∈ (z + i) Ker T
b+
i
V U

.

The converse argument is in the same spirit. Indeed, when

F ∈ (z + i) Ker T
b+
i
V U

∩ H
2,
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we get F (x)(V (x)U(x)) = ψ(x)(x − i) = ψ(x)(x+ i). Since F ∈ H 2, and

UV is bounded, we deduce that ψ(z + i) ∈ H 2, and so F ∈ Ker TV U . �

Corollary 6.8. Let U and V be inner functions with |U ′(x)| ≍ 1, x ∈ R.

Then M (U, V ) ∩ H 2 = Ker TUV .

Resolving a question of Crofoot. We notice that an example con-

structed in [17] answers a question of Crofoot [8, p. 244]. We will state

the result for the model spaces KΘ of the upper-half plane and then use

Lemma 6.2.

Theorem 6.9. There are two inner functions B and Θ on C+ and an

unbounded analytic function Ψ on C+ such that ΨKB = KΘ.

The construction is based on the relationship between the model sub-

spaces generated by meromorphic inner functions and the de Branges spaces

of entire functions [9].

First we define the Paley-Wiener class

PW =
{
F ∈ Hol(C) :

F

e−iπz
,
F ∗

e−iπz
∈ H

2
}
, F ∗(z) := F (z).

Let E be an entire function which belongs to the Hermite–Biehler class

HB, i.e.,

|E(z)| > |E(z)|, ℑz > 0

and E does not have any zeros in C−

+ (the closed upper half plane). With

E ∈ HB, define the de Branges space

(6.10) H (E) :=
{
F ∈ Hol(C) :

F

E
,
F ∗

E
∈ H

2
}
.

The norm in H (E) is defined by

‖F‖E = ‖F
E
‖L2(R), F ∈ H (E).

If E ∈ HB, then Θ = E∗/E is a meromorphic inner function in C+, meaning

that Θ is an inner function and that Θ has an analytic continuation to an

open neighborhood of C−

+. Conversely, each meromorphic inner function Θ

admits a representation Θ = E∗/E for some entire function E ∈ HB. One

can see from the identity KU = H 2 ∩ UH 2 that when Θ = E∗/E, the

operator F 7→ F/E is unitary from H (E) onto the model space KΘ, that

is to say,

(6.11) KΘ =
1

E
H (E).
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When E(z) = e−iπz, one can check that E ∈ HB, Θ = E∗/E satisfies

Θ(z) = e2iπz, and KΘ = eiπzH (E) = eiπzPW.

Proof of Theorem 6.9. Fix δ ∈ (0, 1
4
) and set

Eδ(z) = (z + i)

∞∏

k=1

(
1− z

k − δ − ik−4δ

)(
1− z

−k + δ − ik−4δ

)
.

It is shown in [17] that Eδ ∈ HB,

(6.12) H (Eδ) = PW,

with equivalent norms, and

(6.13) |Eδ(x)| ≃ (1 + |x|)2δ dist(x,Λδ), x ∈ R,

where

Λδ = E−1
δ ({0})

= {k − δ − ik−4δ : k > 1} ∪ {−k + δ − ik−4δ : k > 1} ∪ {−i}.

If we define Iδ = E∗
δ /Eδ, then Iδ is a meromorphic inner function on C+.

Define Ψδ(z) = eiπzEδ(z) and use (6.11) and (6.12) to obtain

ΨδKIδ = eiπzEδKIδ = eiπzH (Eδ) = eiπzPW = KΘ,

where Θ(z) = e2πiz. Hence Ψδ is a multiplier from KIδ onto KΘ. We now

argue that Ψδ is unbounded. Indeed, the zero set Λδ of Eδ contains

zk = (k − δ)− ik−4δ, k > 1.

For each interval (k − δ, k + 1 − δ), the zeros zk and zk+1 lie just below

the respective endpoints k − δ and k + 1 − δ. If xk is the midpoint of

(k−δ, k+1−δ), one can see that dist(xk,Λδ) >
1
2
. From (6.13) we conclude

that

|Eδ(xk)| ≃ (1 + xk)
2δdist(xk,Λδ) & (1 + xk)

2δ ≃ k2δ

which goes to infinity as k → ∞. The fact that Ψδ is unbounded now

follows. �

This example can be transferred to the disk via u = Iδ ◦ ω−1, v = Θ ◦
ω−1, ϕ = Ψδ ◦ ω−1, and applying Lemma 6.2.



12 FRICAIN, HARTMANN, AND ROSS

Crofoot once again. Crofoot proved that ϕKu = Kv =⇒ M (u, v) = Cϕ.

A natural question to ask is whether or not M (u, v) = Cϕ =⇒ ϕKu = Kv?

The answer, in general, is no. Similar to Theorem 6.9, we construct our

example in the upper-half plane setting.

Theorem 6.14. There are two inner functions B and Θ on C+ such that

M (B,Θ) = CΨ, with Ψ 6≡ 0, but ΨKB ( KΘ.

Proof. Let Θ(z) = ei2πz, so that KΘ = eiπzPW , and let E(z) be the canoni-

cal product associated with the sequence Λ = {−i+n+sign(n)δ}n∈Z where

we now choose the limit case in the Ingham-Kadets theorem: δ = 1/4. As

before, set B = E∗/E.

It is known that the family F = {eiλnx : n ∈ Z} is complete and minimal

in L2(−π, π) [15, p. 178], from which it can also be deduced that E is of

exponential type π (see some standard computations in [15, p. 177] along

with a more general result [24, Theorem 1]). This yields the following two

properties: (i) H(E) ⊆ PW ; (ii) Ker TΘB = {0}. To see (i), observe first

that on R we have E(x) ≃ (1 + |x|)−2δ = (1 + |x|)−1/2 [15, p.178] so that

when f ∈ H(E) (see (6.10)), then
∫

R

|f |2
|E|2dm ≃

∫

R

|f |2(1 + |x|)dm <∞,

implying that f ∈ L2(R). Moreover, since E is of exponential type π, if

f ∈ H(E), then f is also of exponential type π. So, by an alternate definition

of the Paley-Wiener space, we conclude that f ∈ PW . Property (ii) follows

from the completeness of F which means that Λ is a uniqueness sequence

for PW . This is equivalent to Ker TΘB = {0}.

We are now in a position to prove our claim. By (i), as in the proof of

Theorem 6.9, define Ψ(z) = eiπzE(z) and use (6.11) and (6.12) to obtain

ΨKB = eiπzEKB = eiπzH (E) ⊆ eiπzPW = KΘ, and so Ψ ∈ M(B,Θ).

By Corollary 6.3, the dimension of the multiplier space is bounded by that

of Ker T
b+
i
ΘB

. By (ii), we have Ker TΘB = {0}. Now T
b+
i
ΘB

= T
b+
i

TΘB, and

dimKer T
b+
i

= 1, so, by injectivity of TΘB, at most one function can be

sent to 0 by T
b+
i
ΘB

. So the multiplier algebra is at most one dimensional,

and, since ϕ already belongs to this algebra, its dimension is precisely one.

Finally it is clear that the weight (1 + |x|) appearing in the norm of H(E)

does not produce an equivalent norm to that in PW (one could for instance

consider the family fn(z) =
sin(π(z − n))
π(z − n)

) so that H(E) ( PW . �
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Multipliers and Ahern-Clark points. When M (u, v) 6= {0} we know

from Proposition 2.3 that σ(u) ⊆ σ(v). Is it the case that the boundary

behavior in Ku is the same as in Kv? To discuss this further, we need the

following result of Ahern and Clark [1]: For an inner function u, every f ∈ Ku

has a non-tangential limit at ζ if and only if

lim
z→ζ

1− |u(z)|
1− |z| <∞.

The last equivalent condition says that u has a finite angular derivative at

ζ and ζ is called an Ahern-Clark point for Ku.

In the upper-half plane case note that ∞ is an Ahern-Clark point for

a model space KU precisely when U ◦ ω−1 has a finite angular derivative

at z = 1 (equivalently U has an angular derivative at ∞). When U is a

Blaschke product with zeros µn, this happens precisely when

(6.15)
∑

n>1

ℑµn <∞.

Proposition 6.16. There exists two inner functions U and V in the upper

half plane such that M (U, V ) is non trivial, σ(U) = σ(V ) = {∞}, and V
has an angular derivative at ∞ while U does not.

Proof. Let

E1(z) =

∞∏

n=1

(1 +
z

2ni
), E2(z) =

∞∏

n=1

(1− z

2n − 2−2ni
).

Standard estimates from canonical products yield

∣∣∣∣
E1(z)

E2(z)

∣∣∣∣ ≍
∣∣∣∣

z + 2mi

z − 2m + 2−2mi

∣∣∣∣ , |z| ∈ [2m − 2m−2, 2m + 2m−1].

Observe that this fraction is largest when z is close to 2m where it behaves

like 23m. Setting Ẽ2 := (z + i
2
)3E2, we get that E1/Ẽ2 is bounded on C+

and for any F ∈ H (E1) we have

F

Ẽ2

=
F

E1
· E1

Ẽ2

.

Thus F ∈ H (Ẽ2). Hence E1/Ẽ2 is a multiplier from KU to KV for the

inner functions U = E∗
1/E1 and V = Ẽ∗

2/Ẽ2. The assertions about the

Ahern-Clark properties follow from (6.15). �
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7. Multipliers and Clark measures

If u is inner, we can associate [10, p. 3] a unique positive finite measure

σu on T, called the Clark measure, via the identity

(7.1)
1− |u(z)|2
|1− u(z)|2 =

∫

T

1− |z|2
|z − ξ|2 dσu(ξ), z ∈ D.

Note that σu ⊥ m and that u(0) = 0 if and only if σu is a probability

measure. This process can be reversed [4, 19].

We now exploit these measures to obtain additional information about

multipliers. Using straightforward arguments from the theory of reproducing

kernel Hilbert spaces, one obtains the following.

Lemma 7.2. Let u, v be two inner functions and ϕ ∈ H2. Then ϕ ∈
M (u, v) if and only if there exists a bounded linear operator Lϕ : Kv → Ku

satisfying Lϕ(k
v
λ) = ϕ(λ)kuλ, λ ∈ D.

Here is the rephrasing of the lemma above in terms of Clark measures.

Theorem 7.3. Let u, v be two inner functions and σu, σv be their associated

Clark measures. For ϕ ∈ H2, the following are equivalent:

(i) ϕ ∈ M (u, v);

(ii) there exists a bounded linear operator Lϕ : L2(σv) → L2(σu) satisfy-

ing

(7.4) Lϕ(kλ) = ϕ(λ)
1− u(λ)

1− v(λ)
kλ, λ ∈ D.

Proof. Assume that ϕ ∈ M (u, v). By Lemma 7.2, the (bounded) operator

Lϕ : Kv → Ku satisfies Lϕk
v
λ = ϕ(λ)kuλ, λ ∈ D. Define Lϕ := V −1

u LϕVv :

L2(σu) → L2(σv), where the Clark operator Vu : L2(σu) → Ku is defined

by Vukλ = (1 − u(λ))−1kuλ, λ ∈ D. A result of Poltoratski [20] says that

every f ∈ Ku has radial limits σu-almost everywhere and V −1
u (f) = f on

the carrier of σu. The identity in (7.4) now follows.

It is easy to see that the above argument can be reversed. �

Remark 7.5. A similar criterion for multipliers of de Branges–Rovnyak

spaces H (b) appears in [16].

Corollary 7.6. Let u, v be inner with associated Clark measures σu and σv

satisfying σu ≪ σv. If ϕ = (1 − v)/(1− u) and h = dσu/dσv, the following

are equivalent: (i) ϕ ∈ M (u, v); (ii) h ∈ L∞(σv).
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Proof. (ii) =⇒ (i): Using Theorem 7.3, ϕ ∈ M (u, v) if and only if there

exists a bounded linear operator Lϕ : L2(σv) −→ L2(σu) such that

Lϕ(kλ) = ϕ(λ)
1− u(λ)

1 − v(λ)
kλ = kλ, λ ∈ D.

For every f ∈ L2(σv), we have
∫

T

|f(ξ)|2 dσu(ξ) =
∫

T

|f(ξ)|2h(ξ) dσv(ξ) 6 ‖h‖L∞(σv)‖f‖2L2(σv)
.

Hence if we define Lϕ(f) = f for f ∈ L2(σv), then Lϕ is bounded from

L2(σv) into L
2(σu), which proves (1− v)/(1− u) ∈ M (u, v).

(i) =⇒ (ii): Again using Theorem 7.3, the map Lϕ(kλ) = kλ extends

linearly to a bounded operator from L2(σv) into L2(σu). In particular, for

any f in the linear span of {kλ : λ ∈ D}, we have
∫

T

|f |2h dσv =
∫

T

|f |2 dσu .
∫

T

|f |2 dσv.

Since the linear span of {kλ : λ ∈ D} is dense in L2(σv) (use σv ⊥ m along

with [14, p. 59]), we get h ∈ L∞(σv). �

Remark 7.7. It was shown in [22] that if σu ≪ σv and h := dσu/dσv, then

h ∈ L2(σv) if and only if (1− v)/(1− u) ∈ H2.

Example 7.8. If v(z) = exp((z + 1)/(z − 1)), one can show [13, p. 235]

that the Clark measure σv is discrete and given by

σv =

∞∑

n=−∞

cnδzn , zn =
2πin− 1

2πin+ 1
, cn =

2

4π2n2 + 1
.

Now pick c′n satisfying 0 6 c′n 6 Mcn for some M > 1 and define µ′ =∑
n>1 c

′
nδzn. See [13, Ch. 11] for the details on this. In other words, we have

dµ′ = hdσv, where 0 6 h 6 M . Then there is a unique inner function u

such that its associated Clark measure is precisely µ′. Corollary 7.6 says that

(1 − v)/(1 − u) ∈ M (u, v). This construction can be done more generally

starting from any finite measure
∑

n>1 cnδzn on T and its associated inner

function v. See also [12].
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