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MULTIPLIERS BETWEEN MODEL SPACES

EMMANUEL FRICAIN, ANDREAS HARTMANN, AND WILLIAM T. ROSS

Abstract. In this paper we characterize the multipliers from one
model space (of the disk) to another. Our characterization in-
volves kernels of Toeplitz operators and Carleson measures. We
illustrate this characterization in different situations and in large
classes of examples. As it turns out, under certain circumstances,
every multiplier between the two model spaces is a bounded func-
tion. However, this is not always the case. In the case of onto
multipliers, this answers a question posed by Crofoot [14]. When
considering model spaces of the upper-half plane, we will discuss
in some detail when the associated inner function is a meromor-
phic inner function. This connects to de Branges spaces of entire
functions which are closely related to different important problems
in complex analysis (e.g., zero distribution, differential equations,
and completeness problems). When the derivative of the associ-
ated inner function is bounded, we show that the set of multipliers
contains the kernel of an associated Toeplitz operator.

1. Introduction

For two Hilbert spaces H1 and H2 of analytic functions on the open
unit disk D, what are the multipliers from H1 to H2? By the term
multiplier, we mean a ϕ ∈ O(D) (the analytic functions on D) for which
ϕH1 ⊆ H2. The set of all multipliers from H1 to H2 will be denoted
by M (H1,H2). The set of bounded multipliers, i.e., M (H1,H2) ∩
H∞, where H∞ denotes the bounded analytic functions on D, will be
denoted by Mb(H1,H2). Note that Mb(H1,H2) ⊆ M (H1,H2) but
there are cases, as we will see below, when this inclusion is proper.

For example, when H1 = H2 = H2, the classical Hardy space [17, 29],
it is well known (see also Proposition 3.1 below) that M (H2, H2) =
H∞. The same is true, with nearly the same proof, when H1 = H2 =
A2, the Bergman space [18]. When H1 = H2 = D, the Dirichlet
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2 FRICAIN, HARTMANN, AND ROSS

space, the situation is more delicate in that M (D,D) ( H∞ [23, 50].
There are results from [24, 50] which examine the multiplier spaces
M (H2, A2),M (D, H2), and M (D, A2). However, since the zeros se-
quences for D, H2, and A2 are different, meaning, for example, there
are A2 functions whose zeros are not those of any (non-zero) H2 func-
tion [18, p. 94], one concludes that M (A2, H2) = M (H2,D) =
M (A2,D) = {0}.
In this paper, we explore, for a pair of inner functions u and v, the mul-
tipliers M (Ku,Kv), abbreviated M (u, v). Here, for an inner function
Θ (a bounded analytic function on D with unimodular values almost
everywhere on T = ∂D),

KΘ := H2 ∩ (ΘH2)⊥

will denote the model space corresponding to Θ [27, 40].

One motivation for this paper comes from the work of Crofoot [14]
who considered a more restricted version of our model space multi-
plier problem (ϕKu ⊆ Kv), namely the class of ϕ ∈ O(D) for which
ϕKu = Kv, in other words, the multipliers from Ku onto Kv (see also
[8, Def. 3.7] where the authors are interested in the onto multipliers
which are bounded and boundedly invertible). As it turns out, these
onto multipliers are unique up to multiplicative constants and are outer
functions. Furthermore, Crofoot [14, Thm. 17] characterized the onto
multipliers in terms of their arguments and certain Carleson measure
conditions. More precisely, ϕKu = Kv if and only if (vϕ)/(uϕ) is a
constant function on T and

(1.1) ϕKu ⊆ H2 and
1

ϕ
Kv ⊆ H2.

We will present a new version of this result in Section 10. Crofoot also
showed that for every a ∈ D,

(1.2)
1

1− au
Ku = Kua,

where ua is the inner function defined by

(1.3) ua :=
u− a

1− au
,

i.e., a Frostman shift of u. Notice how the (onto) multiplier (1− au)−1

from (1.2) is an outer function.

An issue left unresolved in Crofoot’s paper [14, p. 244] was whether
or not this (onto) multiplier ϕ must always be a bounded function. In
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Theorem 8.4 of this paper, we use de Branges spaces of entire functions
[15] to resolve this issue with the following:

Theorem. There are two inner functions u and v and an unbounded
ϕ ∈ O(D) such that ϕKu = Kv.

Notice that since the onto multipliers are unique up to multiplicative
constants, the theorem above produces a non-trivial multiplier space
that, except for the zero multiplier, contains no bounded functions.

The above discussion becomes quite different if we relax the (onto)
multiplier condition ϕKu = Kv to just

ϕKu ⊆ Kv.

For one, these (into but not necessarily onto) multipliers need not be
outer functions. To see this, let I and J be two non-constant inner
functions. The well-known orthogonal decomposition KIJ = KJ ⊕
JKI [27, Ch. 5] shows that J ∈ M (I, IJ). Secondly, unlike the onto
multipliers, the into multipliers need not be unique (see Theorem 4.10
below). As we have seen, they also need not be bounded. In Section 8
we will give several other examples of this.

A more recent source of inspiration for this paper stems from [28] and
a recent preprint [51] which examined various pre-orders on the set
of partial isometries [28] and contractions [51] on Hilbert spaces and
their relationship to their associated Livšic characteristic functions. It
turns out, for example, that when the Livšic characteristic functions
u and v for two partial isometries A and B are inner, the issue of
whether or not A is “less than” B can be rephrased as to whether or
not M (u, v) 6= {0}.
To state another of the main results of this paper, the description
of M (u, v), and to further connect our work with some well-studied
problems in analysis, we recall a few definitions that will be explained in
later sections. The model spaces Ku are the generic invariant subspaces
for the backward shift operator S∗ on H2 and are singly generated by
the vector S∗u (see (2.13) below). For ϕ ∈ H2, we say that the measure
|ϕ|2dm, where m is normalized Lebesgue measure on the unit circle T,
is a Carleson measure for Ku if

(1.4)

∫

T

|f |2|ϕ|2dm .

∫

T

|f |2dm, f ∈ Ku.

Certainly any Carleson measure for H2 [29] is also a Carleson measure
for Ku but, for an inner function u, there are Carleson measures for
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Ku which need not be Carleson measures for H2 (the associated Clark
measure is such an example – see below). Such measures and their
generalizations have been discussed quite thoroughly in the papers [2, 3,
4, 5, 11, 12, 53] (and recently characterized in [36]) and we will use some
of these results in our analysis. For now, notice from (1.4) that |ϕ|2dm
is a Carleson measure for Ku precisely when ϕ ∈ M (Ku, H

2) and how
these measures appeared in our previous discussion of Crofoot’s results
(see (1.1)). Our main theorem will also involve the kernels of Toeplitz
operators Tψ on H2 which are well explored territory and we will make
use of results from [6, 21, 31, 32, 33, 39, 47] (see also [30] for a survey).

We first note that M (u, v) ⊆ H2 (see 3.7 below). Our description of
M (u, v) is as follows:.

Theorem. For inner functions u and v and ϕ ∈ H2, the following are
equivalent:

(i) ϕ ∈ M (u, v);

(ii) ϕS∗u ∈ Kv and |ϕ|2dm is a Carleson measure for Ku.

(iii) ϕ ∈ Ker Tzvu and |ϕ|2dm is a Carleson measure for Ku.

Furthermore, the following are equivalent:

(iv) ϕ ∈ Mb(u, v);

(v) ϕS∗u ∈ Kv ∩H∞.

(vi) ϕ ∈ Ker Tzvu ∩H∞.

So, in order for ϕ to be a multiplier from Ku into Kv, it must first
be a multiplier from Ku to H2 (an important necessary condition and
described by the Carleson condition (1.4)) and then ϕ must simply
multiply the test function S∗u ∈ Ku into Kv.

As one can see from statements (iii) and (vi) above, our main theorem
leads to a discussion of Ker TIJ for inner I and J . This turns out to
be an important and well-studied problem which makes connections to
several topics in analysis [21, 35, 39, 41].

Our paper is structured as follows. After setting our notation and re-
minding the reader of some elementary facts about model spaces in
Section 2, we proceed to Section 3 where we both review some of the
results from Crofoot’s paper [14] as well as establish some elemen-
tary facts about M (u, v) (e.g., M (u, u) = C; M (u, v) 6= {0} implies
the boundary spectrum of u is contained in the boundary spectrum
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of v; u a finite Blaschke product and v any inner function of infinite
degree implies M (u, v) 6= {0}). Section 4 contains our main result
(described above) along with a description of M (u, uI) and M (u, v)
(where u and v are finite Blaschke products) as well as examples of
when M (u, v) ( Ker Tzvu. In Section 5 we use a maximum principle of
Cohn [13] to establish a sufficient condition as to when M (u, v) ⊆ H∞

via the sub-level sets of u and v. We also give an alternative descrip-
tion of M (u, v), involving a more tractable testing condition, when u
satisfies the so-called connected level set condition. Section 6 contains
some examples of our main theorem involving the Frostman shifts of
inner functions and the Crofoot transform. A version of the multiplier
problem for model spaces for the upper half plane is explored in Section
7. This upper-half plane setting has some interesting features. When
the derivative of the associated inner function is bounded, the Carleson
measure condition becomes rather easy to check. In particular, the mul-
tipliers contained in the Hardy space of the upper half plane H 2 are
exactly given by an associated Toeplitz kernel. The upper-half plane
setting also lays the groundwork for our resolution of the Crofoot ques-
tion concerning the existence of unbounded onto multipliers discussed
in Section 8. Moreover, we will show that although the multipliers pre-
serve the spectra of the two inner functions (see Proposition 3.30), they
do not, in general, preserve the well-known Ahern-Clark condition (see
Proposition 7.16). Section 8 contains several examples of inner func-
tions u and v for which M (u, v) contains unbounded functions, one
uses analytic continuation, another using Bourgain factorization, and
still another, yielding a negative answer to Crofoot’s question, using
de Branges spaces of entire functions. We bring in the topic of Clark
measures and rephrase some of our multiplier results in this setting in
Section 9, which also allows us to create further classes of interesting
non-trivial classes of multiplier spaces M (u, v). We give several refor-
mulations of Crofoot’s description of the onto multipliers in Section 10
while in Section 11 we state some generalizations to the Lp setting as
well as pose some topics for further discussion.

Acknowledgement. We like to thank Cristina Câmara for some in-
teresting discussions.

2. Notation and basic facts

We assume the reader is familiar with Hardy spaces and so this section
is to set our notation and remind the reader of some of the basics of
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model spaces. Sources for this Hardy space material include [17, 29]
while sources for model spaces include [27, 40]. Throughout this paper,
D will be the open unit disk, T the unit circle, m normalized Lebesgue
measure on T, and L2 the standard Lebesgue space L2 := L2(T, m)
with norm

‖f‖ :=
(∫

T

|f |2dm
)1/2

and corresponding L2 inner product 〈·, ·〉.

Hardy space of the disk. Recall the “vanishing negative Fourier
coefficients” definition of the Hardy space

(2.1) H2 := {f ∈ L2 : 〈f, ζn〉 = 0 ∀n < 0}.
The Hardy space is a closed subspace of L2 and corresponds to a Hilbert
space of analytic functions on D via “bounded integral means”: If
f ∈ O(D), then

(2.2) f ∈ H2 ⇐⇒ sup
0<r<1

∫

T

|f(rξ)|2dm(ξ) <∞.

By means of radial limit functions, the two characterizations of H2

from (2.1) and (2.2) coincide.

Every f ∈ H2 can be factored as

(2.3) f = uF,

where u is an inner function and F ∈ H2 and is outer. Every inner
function u can be factored as

(2.4) u = BΛsµ,

where BΛ is the Blaschke factor with zero sequence Λ ⊆ D (repeated
according to multiplicity) and sµ is the singular inner factor with pos-
itive singular measure µ on T. The factorizations (2.3) and (2.4) are
unique up to a multiplicative unimodular constant.

The Hardy space is also a reproducing kernel Hilbert space with Cauchy
kernel

(2.5) kλ(z) :=
1

1− λz
, λ, z ∈ D,

in that

f(λ) = 〈f, kλ〉, λ ∈ D, f ∈ H2.
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Model spaces of the disk. For an inner function u define the model
space

Ku := H2 ∩ (uH2)⊥.

These are often called the “pseudocontinuable functions” and have an
equivalent description as “matching boundary values” with a mero-
morphic function on the exterior disk [16, 44]. If S is the forward shift
operator Sf := zf onH2, then, by Beurling’s theorem [17], uH2, where
u is a non-constant inner function, are all of the non-trivial S-invariant
subspaces of H2. One can show that

S∗f =
f − f(0)

z
,

and thus Ku, where u is a non-constant inner function, comprise all of
the non-trivial S∗-invariant subspaces properly contained in H2.

Here are some well-known facts about model spaces we will use in this
paper. Two references for model spaces, containing the proofs of the
facts mentioned below, are [27, 40]. The first simple but useful fact is

(2.6) u(0) = 0 ⇐⇒ 1 ∈ Ku.

In terms of almost everywhere defined boundary functions on T, Ku

can be written alternatively as

(2.7) Ku = H2 ∩ uzH2.

Model spaces are reproducing kernel Hilbert spaces with reproducing
kernel

(2.8) kuλ(z) :=
1− u(λ)u(z)

1− λz
,

meaning that kuλ ∈ Ku for all λ ∈ D and

f(λ) = 〈f, kuλ〉, f ∈ Ku.

Furthermore, each kuλ belongs to H∞, is outer, is invertible in H∞, and
satisfies

(2.9)
∨

{kuλ : λ ∈ D} = Ku,

where
∨

denotes the closed linear span in the H2 norm.

We also have the following inclusion result for model spaces

(2.10) Ku ⊆ Kv ⇐⇒ v

u
∈ H∞.
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When v/u ∈ H∞ one often says that u divides v, which is equivalent to
saying that v = uI for some inner function I. As a corollary, observe
that

(2.11) Ku = Kv ⇐⇒ u = ξv,

for some unimodular constant ξ. When v = uI we have the orthogonal
decomposition

(2.12) Kv = Ku ⊕ uKI = KI ⊕ IKu.

The model spaces are also singly generated by S∗u in that

(2.13)
∨

{S∗nu : n > 1} = Ku.

We already mentioned that model spaces have pseudo-continuation
properties. In certain circumstances, they also have analytic contin-
uation properties. Indeed, if

(2.14) σ(u) :=
{
ζ ∈ T : lim

z→ζ

|u(z)| = 0
}

is the boundary spectrum of u, then, assuming that σ(u) 6= T, there is
a two dimensional open neighborhood Ω of T \ σ(u) such that

(2.15) every f ∈ Ku has an analytic continuation to Ω.

Furthermore, if ζ ∈ σ(u), then S∗u ∈ Ku does not have an analytic con-
tinuation to an open neighborhood of ζ . Thus T \ σ(u) is the maximal
set of points for which every function in Ku has an analytic continua-
tion. The set T \ σ(u) is sometimes called the regular points of u. If
u = BΛsµ (Blaschke factor BΛ and singular inner factor sµ) then

(2.16) σ(u) = T ∩ (Λ− ∪ supt(µ)),

where Λ− is the closure of Λ and supt(µ) is the support of µ.

There is also a more subtle result of Ahern and Clark [1] which dis-
cusses when every function in a model space has a radial (even a non-
tangential) limit at ζ ∈ T even when ζ ∈ σ(u). The result says that
for an inner function u with zero set {an}n>1 (repeated according to
multiplicity) and associated singular measure µ from (2.4),

every f ∈ Ku has a non-tangential limit at ζ

⇐⇒
∑

n>1

1− |an|2
|ζ − an|2

+

∫

T

1

|ζ − ξ|2dµ(ξ) <∞

⇐⇒ lim
z→ζ

1− |u(z)|
1− |z| <∞.(2.17)
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The last equivalent condition above says that u has a finite angular
derivative at ζ and the point ζ is called an Ahern-Clark point for Ku.

There is the following characterization of when Ku is finite dimensional,
namely,

dim(Ku) <∞
⇐⇒ u is a finite Blaschke product

⇐⇒ σ(u) = ∅.(2.18)

If the finite Blaschke product u has n zeros {λ1, · · · , λn} (repeated
according to their multiplicity), then

(2.19) Ku =
{ p(z)∏n

j=1(1− λjz)
: p ∈ Pn−1

}
,

where Pn−1 are the (analytic) polynomials of degree at most n− 1. In
particular, for N ∈ N, KzN = PN−1.

Clark measures. Given an inner function u, we can associate (via
Herglotz’s theorem on positive harmonic functions on D [17, p. 3]) a
unique positive finite measure σu on T such that

(2.20)
1− |u(z)|2
|1− u(z)|2 =

∫

T

1− |z|2
|z − ξ|2 dσu(ξ), z ∈ D.

Moreover, using the fact that u is inner, it is easy to check that σu ⊥ m.
Furthermore, u(0) = 0 if and only if σu is a probability measure. This
process can be reversed in that given any positive singular measure ν
on T, there is an inner function uν such that

(2.21)
1− |uν(z)|2
|1− uν(z)|2

=

∫

T

1− |z|2
|z − ξ|2 dν(ξ), z ∈ D.

A well–known theorem of Clark [10] says that the linear transformation
Vu defined by

Vu(g) := (1− u)Cσu(g), g ∈ L2(σu),

where

(Cσug)(z) =

∫

T

g(ξ)

1− zξ
dσu(ξ), z ∈ D,

is the Cauchy transform associated with σu, is a unitary transformation
from L2(σu) onto Ku. The measure σu is called the Clark measure
corresponding to u. If kλ is the standard Cauchy kernel from (2.5) and
kuλ is the reproducing kernel for Ku from (2.8) then

(2.22) Vukλ = (1− u(λ))−1kuλ, λ ∈ D.
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Furthermore, a deep result of Poltoratski [43] says that every f ∈ Ku

has radial limits σu-almost everywhere and

(2.23) V −1
u (f) = f

on the carrier of σu. See [9, 42] for more on Clark measures.

This notion extends in several directions (and will be used from time
to time in this paper). For one, there is actually a family of Clark
measures {σαu : α ∈ T} associated with the inner function u by

1− |u(z)|2
|α− u(z)|2 =

∫

T

1− |z|2
|ξ − z|2dσ

α
u (ξ), z ∈ D.

Since u is an inner function, these measures σαu will all be singular with
respect to Lebesgue measure.

Secondly, when u ∈ H∞ and ‖u‖∞ 6 1, one can still create a family of
measures {σαu : α ∈ T}, called the Aleksandrov-Clark measures associ-
ated with u as above except that they need not be singular measures.

Toeplitz operators. As mentioned in the introduction, a useful tool
in our analysis of the multiplier space M (u, v) will be the Toeplitz
operators on H2. Here for ϕ ∈ L∞, the essentially bounded Lebesgue
measurable functions on T with essential supremum norm ‖ · ‖∞, we
define the Toeplitz operator Tϕ with symbol ϕ by

Tϕ : H2 → H2, Tϕf = P+(ϕf),

where P+ is the orthogonal (Riesz) projection from L2 ontoH2. Toeplitz
operators are well known and well studied [6]. We list a few facts about
these operators that will be particularly useful in our analysis of the
multipliers M (u, v):

(2.24) Tz = S∗;

(2.25) ‖Tϕ‖ = ‖ϕ‖∞;

(2.26) TϕTψ = Tϕψ ⇐⇒ ϕ ∈ H∞ or ψ ∈ H∞;

(2.27)
ϕ ∈ H∞ =⇒ Ker Tϕ = Kϕi

, where ϕi is the inner factor of ϕ;

(2.28) ϕ ∈ H∞ =⇒ TϕKu ⊆ Ku.

Observe that (2.28) implies that the model spaces enjoy the so-called
F -property [49]: If w is an inner function then

(2.29) f ∈ Ku and
f

w
∈ H2 =⇒ f

w
∈ Ku.
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In particular, the outer factor of a function from Ku also belongs to
Ku.

Hardy space of the upper-half plane. If C+ := {z ∈ C : ℑz > 0}
is the upper-half plane, we set

(2.30) H
2 :=

{
f ∈ O(C+) : sup

y>0

∫

R

|f(x+ iy)|2dx <∞
}

to be the Hardy space of the upper-half plane. Via boundary values,
H 2 can be viewed as a (closed) subspace of L2(R) and the inner prod-
uct on H 2 is the standard L2(R) inner product. The corresponding
“vanishing Fourier coefficients” characterization of H 2 via (2.1) is now

H
2 = {f ∈ L2(R) : Ff |(−∞,0) = 0},

where

(2.31) (Ff)(λ) :=

∫ ∞

−∞

f(x)e−2πixλdx

is the Fourier-Plancherel transform. There is an analogous factorization
of H 2 functions into their inner and outer parts. There is also a natural
unitary operator U : H2 → H 2 given by

(2.32) (Uf)(z) := 1√
π(z + i)

f(ω(z)),

where

(2.33) ω(z) :=
z − i

z + i

is the Möbius transform which maps C+ onto D and R∪{−∞,∞} onto
T.

As with H2, one can define, for a symbol Ψ ∈ L∞(R), the Toeplitz
operator

TΨ : H
2 → H

2, TΨf = P (Ψf),

where P is the orthogonal projection of L2(R) onto H 2.

Model spaces of the upper-half plane. For an inner function U
on C+ (a bounded analytic function on C+ with unimodular boundary
values almost everywhere on R), we define the model space

(2.34) KU := H
2 ∩ (UH

2)⊥.

The analogue to (2.7) here is the boundary values identity

(2.35) KΘ = H
2 ∩ΘH 2,



12 FRICAIN, HARTMANN, AND ROSS

where H 2 is often regarded as the Hardy space of the lower-half plane.
The corresponding reproducing kernel function for KU is

KU
λ (z) :=

i

2π

1− U(λ)U(z)

z − λ
, λ, z ∈ C+.

As expected, and due to the fact from (2.32) that the operator U is
unitary, if u is an inner function on D and U = u ◦ ω, then U is an
inner function on C+ (and vice versa). Furthermore, since U is unitary
we have

f ⊥H2 uH2 ⇐⇒ Uf ⊥H 2 UH
2

and thus

(2.36) UKu = KU .

3. Some observations and simplifications

In this section we recall some (essentially) known results for which we
provide short proofs that are new variations to known ones. We feel
this will help clarify certain parts of our upcoming discussions.

The multipliers of H2. To give us a reference for our results on model
spaces, let us begin with the following well-known characterization of
M (H2, H2). We include a proof in order to point out the difficulties
when trying to characterize the multipliers between two model spaces.

Proposition 3.1. M (H2, H2) = H∞.

Proof. Using the integral means characterization of H2 from (2.2), we
obtain H∞ ⊆ M (H2, H2). For the reverse inclusion, note that for
ϕ ∈ M (H2, H2) an application of the closed graph theorem shows
that the multiplication (Laurent) operator

Mϕ : H2 → H2, Mϕf = ϕf

is bounded. The reproducing property of the Cauchy kernel from (2.5)
yields

(3.2) (M∗
ϕkλ)(z) = 〈M∗

ϕkλ, kz〉 = 〈kλ, ϕkz〉 = (ϕkz)(λ) = ϕ(λ)kλ(z),

which implies that the range of ϕ is contained in the bounded set
σ(M∗

ϕ), where σ(M
∗
ϕ) is the spectrum of M∗

ϕ and the “bar” denotes
complex conjugation. �
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Remark 3.3. For most “reasonable” reproducing kernel Hilbert spaces
H of analytic functions on D, the eigenvalue identity in (3.2) will show
that M (H ,H ) ⊆ H∞ [26, Corollary 9.7]. This process breaks down
when examining the multipliers M (H1,H2) for two different Hilbert
spaces H1, H2. For example, the argument used in (3.2) will show
that when ϕ ∈ M (H1,H2), the adjoint of the multiplication operator
Mϕ : H1 → H2,Mϕf = ϕf , satisfies

(3.4) M∗
ϕk

H2

λ = ϕ(λ)kH1

λ , λ ∈ D,

where k
Hj

λ , j = 1, 2, are the corresponding reproducing kernels. How-
ever, since the spaces H1 and H2 are different, as are their reproducing
kernels, ϕ(λ) will not be an eigenvalue of M∗

ϕ. Despite this difficulty,
one can use (3.4) to show that

(3.5) |ϕ(λ)| 6 ‖M∗
ϕ‖H2→H1

‖kH2

λ ‖H2

‖kH1

λ ‖H1

, λ ∈ D.

Unfortunately, the norms of the two kernels appearing in (3.5) may
behave quite differently as |λ| → 1 and thus this argument cannot be
used to show that M (H1,H2) ⊆ H∞. There is a very good reason
why we run into trouble. Indeed, as well will see in Section 8 below,
the multiplier space M (H1,H2) may contain unbounded functions.
Although, when ‖kH2

λ ‖H2
. ‖kH1

λ ‖H1
, λ ∈ D, we do indeed obtain

M (H1,H2) ⊆ H∞.

Further complicating matters is the fact that the containment H∞ ⊆
M (H2, H2) came from the growth condition (2.2) which defined H2.
For other spaces, such as the classical Dirichlet space D, where mem-
bership is determined by a different growth condition (derivative and
integral), not every bounded function is a multiplier [23, 50].

When examining the multipliers M (u, v) between the model spaces
Ku and Kv, we encounter both of these difficulties. Indeed, since Ku

is described by the orthogonality condition Ku = (uH2)⊥, and not a
growth condition as with H2, we can’t automatically conclude that
H∞ ⊆ M (u, v). Furthermore, as we will see in Section 8, we don’t
automatically get the other inclusion M (u, v) ⊆ H∞.

Multipliers between model spaces. Let us now formally define our
notation for multipliers between model spaces. For two inner functions
u and v, let

M (u, v) := {ϕ ∈ O(D) : ϕKu ⊆ Kv}
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denote the multipliers from Ku into Kv and

Mb(u, v) := M (u, v) ∩H∞

denote the bounded multipliers from Ku into Kv. Though these two
multiplier spaces will be the two main objects of our study, we will also
have a few thoughts (see Theorem 4.11 below) on the ϕ ∈ M (u, v) for
which

(3.6) ‖ϕf‖ = ‖f‖, f ∈ Ku,

in other words, the isometric multipliers from Ku into Kv, denoted by
Mi(u, v).

We begin with some simple but very useful observations. First notice
that

(3.7) M (u, v) ⊆ H2.

Indeed, as discussed earlier, ku0 = 1 − u(0)u ∈ Ku and is an invertible
element of H∞. Thus if ϕ ∈ M (u, v) then ϕku0 ∈ Kv ⊆ H2 from which
(3.7) follows.

By a similar computation as in (3.4) we have M∗
ϕ : Kv → Ku and

(3.8) M∗
ϕk

v
λ = ϕ(λ)kuλ, λ ∈ D.

Since

‖kuλ‖2 = 〈kuλ, kuλ〉 = kuλ(λ) =
1− |u(λ)|2
1− |λ|2 ,

we see from (3.5) that

(3.9) |ϕ(λ)|2(1− |u(λ)|2) . (1− |v(λ)|2), λ ∈ D.

Unfortunately this inequality does not prove that ϕ is bounded. How-
ever, it does yield some useful control on the pointwise growth of a
multiplier as |λ| → 1. This estimate will be exploited in Example 4.7
and again in the proof of Corollary 5.2.

The following result from Crofoot [14, Proposition 12] says that the
multipliers from a model space to itself are not a very interesting class
of functions.

Proposition 3.10. M (u, u) = C.

Proof. For completeness we provide a variation of the proof found in
[27] (and slightly different in flavor from Crofoot’s proof).

The inclusion C ⊆ M(u, u) is automatic. To prove the converse, we will
use the fact that S∗u ∈ Ku (from (2.13)) and show that ϕS∗u 6∈ Ku for
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every ϕ ∈ H∞ \C (Note that it follows from (3.9) that if ϕ ∈ M (u, u)
then ϕ ∈ H∞).

Suppose towards a contradiction that ϕS∗u ∈ Ku and ϕ ∈ H∞ \ C.
Then

0 = Tu(ϕS
∗u) (by (2.27))

= P+

(
uϕ

u− u(0)

z

)

= P+(z̄ϕ(1− u(0)u))

= T1−u(0)uTzϕ (by (2.26))

= T1−u(0)u(S
∗ϕ) (by (2.24)),

which we rewrite as

S∗ϕ = u(0)TuS
∗ϕ.

Using the identity ‖Tu‖ = ‖Tu‖ = ‖u‖∞ = 1 from (2.25), we deduce
the inequality

‖S∗ϕ‖ 6 |u(0)| ‖S∗ϕ‖.
Since ϕ ∈ H∞ \ C, we see that ‖S∗ϕ‖ 6= 0. Therefore, |u(0)| > 1,
which, by the MaximumModulus Theorem, forces u to be a unimodular
constant (which it is not). This produces the desired contradiction. �

Proposition 3.11. C ⊆ M (u, v) if and only if u divides v.

Proof. It is easy to see that C ⊆ M (u, v) if and only if Ku ⊆ Kv. By
(2.10) this is equivalent to the fact that u divides v. �

Proposition 3.12. Suppose u divides v and u is not a constant mul-
tiple of v. Then M (v, u) = {0}.

Proof. If ϕ ∈ M (v, u) then, since Ku ⊆ Kv (2.10), we get

ϕKu ⊆ ϕKv ⊆ Ku.

This means that ϕ ≡ c (Proposition 3.10) and so cKv ⊆ Ku. Hence,
if c 6= 0 we can use (2.10) again to see that v divides u, i.e., u is a
constant multiple of v which we excluded. Thus c = 0. �

Remark 3.13. In our analysis below, we will make use of the follow-
ing simple observation (also found in Crofoot’s paper [14, Cor. 4]): If
ϕKu = Kv, then the map f 7→ ϕf is an isomorphism whose inverse is
g 7→ 1

ϕ
g. Moreover, the analysis used to prove (3.7) shows that 1

ϕ
∈ H2.

This also shows that ϕ must be outer [29, p. 65] (see also Remark 3.24
below).
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The Crofoot transform. This next result of Crofoot [14] has proven
to be a useful tool in studying model spaces (see [27, Ch. 13]). For the
sake of completeness, we include its short proof.

Theorem 3.14 (Crofoot). If u is inner, a ∈ D, and

(3.15) ua :=
u− a

1− au

is a Frostman shift for u, then

1

1− au
Ku = Kua.

Proof. By evaluating on T, one can see that ua is indeed an inner
function. For f ∈ Ku we see from (2.7) that f = uzg almost everywhere
on T for some g ∈ H2. Thus, almost everywhere on T, we have

1

1− au
f =

u− a

1− au

(
z

g

1− au

)
∈ uazH2.

This yields

(3.16)
1

1− au
Ku ⊆ Kua.

For the reverse inclusion, observe that since

u =
ua + a

1 + aua
,

an analogous argument to the one above will yield

1

1 + aua
Kua ⊆ Ku.

Now multiply both sides of the previous inclusion by (1 − au)−1 and
use the identity

(1− au)(1 + aua) = 1− |a|2

along with (3.16) to obtain the result. �

Remark 3.17. (1) With a little more work, one can show that the
map

f 7→
√
1− |a|2
1− au

f,

sometimes called the “Crofoot transform” is isometric from Ku

onto Kua.
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(2) Crofoot’s theorem says that when examining M (u, v), we can,
if needed, assume that one (or both) of u(0) or v(0) vanish.
Putting this in more precise notation:

(3.18)
1− λu

1− ηv
M (u, v) = M (uλ, vη).

In fact we also have

(3.19)
1− λu

1− ηv
Mb(u, v) = Mb(uλ, vη).

Outer multipliers. The set of multipliers is closed under removing
inner factors.

Proposition 3.20. If ϕ ∈ M (u, v) and F is the outer factor of ϕ,
then F ∈ M (u, v).

Proof. Using the F -property for model spaces (2.29) we see that if w
is the inner factor of ϕ then

ϕf ∈ Kv ∀f ∈ Ku =⇒ ϕ

w
f ∈ Kv ∀f ∈ Ku,

which implies that the outer function F = ϕ/w belongs to M (u, v). �

Thus M (u, v) contains an outer function whenever M (u, v) 6= {0}.
The next basic fact says that if there is an onto multiplier, there is
essentially only one multiplier [14, Corollary 13] and it must be outer
[14, Corollary 4].

Proposition 3.21 (Crofoot). If ϕKu = Kv, then M (u, v) = Cϕ. Fur-
thermore, ϕ is an outer function.

Proof. The proof of this result can be found in Crofoot’s paper. How-
ever it follows from our discussion above. To see that ϕ is outer note
that kv0 = 1 − v(0)v is outer (any function of the form 1 + q, where
q(D) ⊆ D, is outer [29, p. 65]). Thus since ϕKu = Kv we see that
kv0 = ϕh for some h ∈ Ku. It follows from factorization in H2 (see
(2.3)) that ϕ is outer.

To see that M (u, v) = Cϕ we can use Proposition 3.10. Indeed, if
ψ ∈ M (u, v) then

ψ

ϕ
Ku ⊆

1

ϕ
Kv = Ku,

whence ψ/ϕ must be a constant function. Thus M (u, v) = Cϕ. �
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Corollary 3.22. If M (u, v) 6= {0} and M (v, u) 6= {0}, then there
exists a ϕ ∈ H2 with ϕKu = Kv and M (u, v) = Cϕ.

Proof. Let ϕ ∈ M (u, v) \ {0} and ψ ∈ M (v, u) \ {0}. Then
ψϕKu ⊆ ψKv ⊆ Ku,

and Proposition 3.10 implies that ψϕ is a non-zero constant. It now
follows that ϕKu = Kv. To finish, apply Proposition 3.21. �

The last corollary immediately yields the following.

Corollary 3.23. If dimM (u, v) > 2 then M (v, u) = {0}.
Remark 3.24. We pause here for another observation. By Remark
3.13, if the multiplier is onto, then ϕ and 1/ϕ belong to H2. Though
we will not develop this much further here, this condition implies that
(but is not equivalent to) ϕ2 is a “rigid function” in H1 meaning that
ϕ2 is uniquely determined by its argument. See [46] for more on this.
Let us state this observation as a separate result.

Corollary 3.25. If ϕ is an onto multiplier between two model spaces,
then ϕ2 is rigid in H1.

Finite Blaschke products. We now use another idea found in Cro-
foot’s paper [14] which we will develop further in Theorem 4.10.

Definition 3.26. For an inner function u define the degree of u to be
n if u is a finite Blaschke product with n zeros (repeated according to
their multiplicity) and equal to ∞ otherwise.

So, for example, any Blaschke product with infinitely many zeros is of
infinite degree as is any singular inner function.

Proposition 3.27. Suppose that u and v are two finite Blaschke prod-
ucts with deg(u) 6 deg(v). Then M (u, v) = Mb(u, v) 6= {0}.

Proof. If m 6 n and {a1, . . . , am}, {b1, . . . , bn} are the respective zeros
of u and v (repeated according to their multiplicity), then by (2.19) we
have

Ku =
{ p(z)∏m

j=1(1− ajz)
: p ∈ Pm−1

}
,

Kv =
{ p(z)∏n

j=1(1− bjz)
: p ∈ Pn−1

}
.
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If

ϕ(z) :=

∏m
j=1(1− ajz)∏n
j=1(1− bjz)

,

then ϕKu ⊆ Kv and so Mb(u, v) 6= {0}.
To see that M (u, v) = Mb(u, v) notice that if ϕ ∈ M (u, v) then ϕku0 ∈
Kv. But since Kv ⊆ H∞ and ku0 is invertible in H∞ then ϕ ∈ H∞. �

There is a version of this result for certain types of infinite Blaschke
products in [14, Theorem 27] where the focus is the onto multipliers.

By just considering the dimensions of the spaces Ku and Kv, one con-
cludes that M (u, v) = {0} when u and v are finite Blaschke products
with deg(u) > deg(v). Once we have developed a few more techni-
cal tools, we will describe M (u, v) when u and v are finite Blaschke
products (see Theorem 4.10 below).

Corollary 3.28. If u is a finite Blaschke product, v is a finite Blaschke
product with deg(u) 6 deg(v), and w is any other inner function. Then
M (u, vw) 6= {0}.

An extension of this is the following.

Theorem 3.29. If u is a finite Blaschke product and v is any inner
function with infinite degree, then Mb(u, v) 6= {0}.

Proof. By a classical theorem of Frostman [29, p. 75] there is an a ∈ D

(in fact many such points a) such that the Frostman shift va of v from
(1.3) is a Blaschke product of infinite degree. Factor va = IJ , where I
and J are Blaschke products with the degree of I equal to the degree
of u, and observe from (2.10) that KI ⊆ Kva

From Proposition 3.27 there is a ϕ ∈ H∞ such that

ϕKu ⊆ KI ⊆ Kva .

Now use Crofoot’s theorem (Theorem 3.14) to get

(1− av)ϕKu ⊆ Kv. �

Multipliers and boundary spectra. The next result concerning the
boundary spectra is the “into-multiplier” version of [14, Theorem 14].
Crofoot shows equality of spectra in the situation of “onto-multipliers”
using operator theory techniques. Our proof is based on function the-
ory. Recall the boundary spectrum σ(u) from (2.14).
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Proposition 3.30. If M (u, v) 6= {0} then σ(u) ⊆ σ(v).

Proof. Without loss of generality, we can use Crofoot’s theorem (The-
orem 3.14) and assume that u(0) = 0 (the Crofoot transform preserves
the regular points in T). By (2.6), the constant function 1 belongs to
Ku and so

ϕKu ⊆ Kv =⇒ ϕ ∈ Kv.

Pick ζ ∈ T\σ(v) (a regular point for v). By (2.15), every function in Kv

has an analytic continuation to a two-dimensional open neighborhood
Ω of ζ . In particular, ϕ ∈ Kv enjoys this property. For every f ∈ Ku,
g := ϕf ∈ Kv has an analytic continuation to Ω and so f = g/ϕ is
either analytic on Ω or has a pole of order at least 1 at ζ . But this
second case is not possible since f ∈ H2 must be square integrable on
T. Hence f extends analytically to Ω and thus ζ ∈ T \ σ(u). �

The above result shows, for example, that when u and v are the atomic
inner functions

u(z) = exp
(
− ξ1 + z

ξ1 − z

)
, v(z) = exp

(
− ξ2 + z

ξ2 − z

)
, ξ1 6= ξ2,

(note that σ(u) = {ξ1}, σ(v) = {ξ2} from (2.16)) we have M (u, v) =
{0}.
Remark 3.31. (1) Note that the converse of Proposition 3.30 is

not true. Indeed, if u = vI, where I is a non-constant finite
Blaschke product, then σ(u) = σ(v) (finite Blaschke products
have analytic continuations across all of T). However, by Propo-
sition 3.12 we know that M (u, v) = {0}.

(2) By (3.9) and (2.17) it seems natural to conjecture that there
is an analogue to Proposition 3.30 for the Ahern-Clark points
of u and v (see (2.17)). However, we will see in Proposition
7.16 that it is possible for M (u, v) to be non-zero, σ(u) = σ(v),
but the Ahern-Clark points for u to not be contained in the
Ahern-Clark points for v.

4. The main result

We will now state and prove the main result of this paper which charac-
terizes multipliers in terms of kernels of Toeplitz operators and Carleson
measures. Recall the definition of a Carleson measure for Ku from (1.4)
and also recall that if ϕ ∈ H2 then |ϕ|2dm is a Carleson measure for
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Ku if and only if ϕ ∈ M (Ku, H
2). We now focus on the extra condition

needed to ensure that ϕ ∈ M (u, v).

Theorem 4.1. For inner functions u and v and ϕ ∈ H2, the following
are equivalent:

(i) ϕ ∈ M (u, v);

(ii) ϕS∗u ∈ Kv and |ϕ|2dm is a Carleson measure for Ku.

(iii) ϕ ∈ Ker Tzvu and |ϕ|2dm is a Carleson measure for Ku.

Furthermore, the following are equivalent:

(iv) ϕ ∈ Mb(u, v);

(v) ϕS∗u ∈ Kv ∩H∞.

(vi) ϕ ∈ Ker Tzvu ∩H∞.

Before proving Theorem 4.1, would like to emphasize the following
immediate consequence:

Corollary 4.2. Ker Tzvu ∩H∞ = Mb(u, v) ⊆ M (u, v) ⊆ Ker Tzvu.

As an easy example of this theorem, let u be an inner function and
v = zNu. Then

Ker Tzvu = Ker TzN+1 = PN .

So in this case we have

Mb(u, v) = M (u, v) = PN .

We will see in Example 4.7 below that, in general, M (u, v) ( Ker Tzvu.

Proof of Theorem 4.1. First observe the equivalences

ϕS∗u ∈ Kv ⇐⇒ Tv(ϕS
∗u) = 0 (by (2.27))

⇐⇒ TvS∗uϕ = 0 (by (2.26))

⇐⇒ ϕ ∈ Ker TvS∗u.

Moreover,

TvS∗u = Tzv(u−u(0)) = Tzvu(1−u(0))u = T
1−u(0)u

Tzvu.

Observe that T
1−u(0)u

is an invertible Toeplitz operator and thus

ϕS∗u ∈ Kv ⇐⇒ ϕ ∈ Ker Tzvu.

This yields (ii) ⇐⇒ (iii) and (vi) =⇒ (v). The reverse implication
(v) =⇒ (vi) needs an additional argument. Indeed, suppose that



22 FRICAIN, HARTMANN, AND ROSS

ϕS∗u ∈ Kv∩H∞. Then the above equivalences yield ϕ ∈ Ker Tzvu, and
we just have to check that ϕ is bounded. We already know that ϕ ∈ H2.
Thus in order to verify ϕ ∈ H∞, it suffices to prove that ϕ|T ∈ L∞

(Smirnov’s theorem [17, p. 28]). By assumption, ϕS∗u = g ∈ H∞ and
thus

g = ϕS∗u = ϕz(u− u(0)) = ϕu
1− u(0)u

z
.

On T we have

|ϕ| =
∣∣ g

1− u(0)u

∣∣

which is uniformly bounded since |u(0)| < 1. Hence ϕ ∈ H∞ which
proves (v) =⇒ (vi).

We now prove (i) =⇒ (ii). As mentioned already, when ϕ ∈ M (u, v)
then |ϕ|2dm is necessarily a Carleson measure for Kv. Furthermore,
since S∗u ∈ Ku, we have ϕS∗u ∈ Kv.

The implication (iv) =⇒ (v) is now automatic since ϕ ∈ Mb(u, v), by
definition, is bounded.

For the implication (v) =⇒ (iv), it remains to observe that if ϕ ∈ H∞

then |ϕ|2dm is automatically a Carleson measure, and the result follows
once we have shown (ii) =⇒ (i).

So it remains to prove (ii) =⇒ (i). We will use (2.13) which asserts
that the linear span of {S∗nu : n > 1} forms a dense set in Ku. Our
first step will be to show that ϕS∗nu ∈ Kv, n > 2, or equivalently, via
(2.26), Tv(ϕS

∗nu) = 0, when ϕS∗u ∈ Kv. By using (2.7) we observe
the following equivalences:

ϕS∗u ∈ Kv ⇐⇒ ϕz(u− u(0)) = vψ, ψ ∈ zH2

⇐⇒ ϕu(1− u(0)u) = zvψ, ψ ∈ zH2

⇐⇒ ϕ = zv

(
uψ

1− u(0)u

)
, ψ ∈ zH2

In the above recall that 1 − u(0)u is an outer function [29, p. 65] and
invertible in H∞. By the formula

S∗nu =
1

zn

(
u−

n−1∑

k=0

u(k)(0)

k!
zk
)
,
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we have S∗nu = zn(u − p) on T, where p is an analytic polynomial of
degree at most n− 1. Hence when n > 2,

Tv(ϕS
∗nu) = P+

[
vzv

(
uψ

1− u(0)u

)(
zn(u− p)

)]

= P+

[(
zn−1(u− p)

)( uψ

1− u(0)u

)]

= P+

[
zn−1

(
ψ

1− u(0)u

)]
− P+

[
zn−1p

(
uψ

1− u(0)u

)]
.

The first term in the above summand vanishes since

zn−1 · ψ

1− u(0)u
∈ zH2.

The second term also vanishes for a similar reason in that the degree
of p is at most n− 1 and ψ(0) = 0. As a result,

(4.3) ϕS∗nu ∈ Kv ∀n > 1.

It is here that we use the fact that |ϕ|2dm is a Carleson measure for Ku

in that f 7→ ϕf defines a bounded operator from Ku to H2 and thus
the inclusion

ϕ · span{S∗nu : n > 1} ⊆ Kv

from (4.3) extends to the inclusion ϕKu ⊆ Kv. �

Recall from Proposition 3.11 that if u divides v then C ⊆ M (u, v).
The above result allows us to say more.

Corollary 4.4. Suppose u is inner and v = uI for some inner I. Then

Mb(u, v) = KzI ∩H∞ ⊆ M (u, v) ⊆ KzI .

Proof. Clearly zvu = zI on T. �

We can actually go one step further and characterize M (u, v) when
v = uI.

Corollary 4.5. Suppose u and v are inner functions and v = uI. Then
the following are equivalent:

(i) ϕ ∈ M (u, v);

(ii) ϕ ∈ KzI and |ϕ|2dm is a Carleson measure for Ku.

Furthermore, the following are equivalent:
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(iii) ϕ ∈ Mb(u, v);

(iv) ϕ ∈ KzI ∩H∞.

Finally, if I is a finite Blaschke product then

Mb(u, v) = M (u, v) = KzI .

Remark 4.6. A little thought using the definition of the model spaces
will show that

(KI ∩H∞) · Ku ⊆ KuI .

It follows from this observation and the previous discussion that every
ϕ ∈ KI for which |ϕ|2dm is a Carleson measure for Ku is a multiplier
from Ku to Kv. However, our analysis shows that this does not exhaust
the whole multiplier space (which has one more dimension).

Multipliers and kernels. We now construct an example of when
KerTzI = Ker Tzvu contains functions which do not define Carleson
measures for Ku and thus

M (u, v) ( Ker Tzvu.

Hence the Carleson condition is important in Theorem 4.1.

Example 4.7. Set λn = 1− 2−n, n > 1, and note that {λn}n>1 is the
zero sequence of an interpolating Blaschke product I. With wn = n−1,
notice that

∑
n>1w

2
n < ∞. By an interpolation theorem from [40,

p. 135], there is a ϕ ∈ KI ⊆ KzI such that

(4.8) ϕ(λn) =
wn

(1− |λn|2)1/2
≍ 2n/2

n
→ ∞.

Now take u to be the inner function

u(z) = exp(
z + 1

z − 1
)

and observe that since λn → 1 on (0, 1) we have

(4.9) u(λn) → 0.

If v = uI then
ϕ ∈ KI ⊆ KzI = Ker Tzvu.

However, ϕ 6∈ M (u, v) since, if it were, (3.9) would imply that

|ϕ(λn)|2(1− |u(λn)|2) . 1− |v(λn)|2 . 1.

By (4.8) and (4.9), the left-hand side of the above string of inequalities
approaches +∞ as n → ∞ which yields a contradiction. So in this
case we have M (u, v) ( Ker Tzvu = KzI .
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Finite Blaschke products again. We now take another look at the
finite dimensional case treated in Proposition 3.27 and, in light of The-
orem 4.1, give a very tangible description of the multipliers.

Theorem 4.10. If u is a finite Blaschke product with zeros {a1, . . . , am}
and v is a finite Blaschke product with zeros {b1, . . . , bn} where m 6 n,
and the zeros are repeated according to their multiplicity, then

M (u, v) = Mb(u, v) =
{
q(z)

∏m
i=1(1− aiz)∏n
j=1(1− bjz)

: q ∈ Pn−m
}
.

Proof. The ⊇ containment follows from (2.19) and the proof of Propo-
sition 3.27. For the ⊆ containment, notice from Theorem 4.1 that

ϕ ∈ M (u, v) =⇒ ϕ ∈ Ker Tzvu

which is equivalent to

uϕ ∈ Ker Tzv = Kzv =
{ p(z)∏n

j=1(1− bjz)
: p ∈ Pn

}
⊆ H∞.

Hence

ϕ =
p∏n

j=1(1− bjz)

1

u
=

∏m
j=1(1− ajz)∏n
j=1(1− bjz)

· p∏m
j=1(z − aj)

,

for some polynomial p of degree at most n. But since ϕmust be analytic
on D we must have p(aj) = 0 for all 1 6 j 6 m and thus

ϕ =

∏m
j=1(1− ajz)∏n
j=1(1− bjz)

q

for some q ∈ Pn−m. �

Isometric Multipliers. To finish this section we would like to make
a connection with the so-called Aleksandrov-Clark measures [9, 46]
(defined in (2.20)) in the setting of isometric multipliers. Recall that
Mi(u, v) is the set of isometric multipliers from Ku to Kv (see (3.6)).
Using Aleksandrov’s isometric embedding theorem [2] (see also [5, The-
orem 1.1]), we obtain the following:

Theorem 4.11. Suppose u and v are inner functions. Then the fol-
lowing are equivalent:

(i) ϕ ∈ Mi(u, v);

(ii) ϕu ∈ Kzv and there exist an α ∈ T and b ∈ H∞, ‖b‖∞ 6 1, such
that |ϕ|2dm = σαbu, where σ

α
bu is the Aleksandrov-Clark measure

for the function bu at α.
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Observe how this requires that the Aleksandrov-Clark measure for the
function bu to be absolutely continuous with respect to m.

Here is an example of an isometric multiplier stemming from work of
Hitt [34] and Bourgain’s factorization theorem [7]: Given two inner
functions u and v with (Kv∩uH2) 6= {0} (e.g., u is a Blaschke product
whose zeros are those of a function from Kv \ {0}), then

1

u
(Kv ∩ uH2) = Ker Tvu = GKJ

where G is an extremal function for Ker Tvu, i.e., the unique solution
to

sup{ℜf(0) : f ∈ Ker Tvu, ‖f‖ 6 1}
and J is a suitable inner function satisfying J(0) = 0. Then Gu mul-
tiplies isometrically KJ into Kv, and we notice that |G|2 is the Radon-
Nikodym derivative of an Aleksandrov-Clark measure associated with
the function bu, where b can be explicitly expressed as a function de-
pending on G [47]. We will develop this idea further in Section 8

5. Sub-level sets

In this section we discuss some results using sub-level sets of inner
functions. The first one uses the following “maximum principle” result
of Cohn [13].

Theorem 5.1 (Cohn). Suppose Θ is inner and f ∈ KΘ is bounded on
{|Θ| < ǫ} for some ǫ ∈ (0, 1). Then f ∈ H∞.

This result can be used to show that under certain circumstances, all
multipliers must be bounded.

Corollary 5.2. Let u and v be inner. If, for some ǫ1, ǫ2 ∈ (0, 1),
{|v| < ǫ2} ⊆ {|u| < ǫ1}, then M (u, v) = Ker Tzvu ∩H∞.

Proof. Let ϕ ∈ M (u, v). Recall the estimate (3.9) which says that

|ϕ(λ)|2(1− |u(λ)|2) . (1− |v(λ)|2), λ ∈ D.

This says that for λ ∈ {|v| < ǫ2} ⊆ {|u| < ǫ1} we have

|ϕ(λ)|2 . 1

1− ǫ21

and thus ϕ is bounded on {|v| < ǫ2}. Since ku0 = 1 − u(0)u ∈ Ku

(see (2.8)) and bounded on D, we see that ku0ϕ ∈ Kv and bounded on
{|v| < ǫ2}. Applying Theorem 5.1 we get that ku0ϕ ∈ H∞. But since
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ku0 is invertible in H∞ we conclude that ϕ ∈ H∞. To finish, apply
Corollary 4.2. �

Example 5.3. Let u be any singular inner function and v = uα for
some α > 1 (or perhaps u a Blaschke product, or any inner function,
and α ∈ N). Notice that u divides v and so M (u, v) 6= {0} (Proposition
3.11). Furthermore if ǫ2 ∈ (0, 1) and z ∈ {|v| < ǫ2} then

|u(z)|1/α 6 ǫ
1/α
2 .

Setting ǫ1 = ǫ
1/α
2 we see that {|v| < ǫ2} ⊆ {|u| < ǫ1}. Corollary 5.2

yields {0} ( M (u, v) ⊆ H∞. Combine this with Corollary 4.4 to see
that

Mb(u, v) = M (u, v) = Kzuα−1 ∩H∞.

Sub-level sets also play a role in describing the Carleson measures on
model spaces. Here we use a theorem of Cohn [11, 12] which, in a spe-
cific situation, characterizes the Carleson measures forKΘ (equivalently
M (KΘ, H

2)). To do this, we first need a definition.

Definition 5.4. We say that an inner function Θ satisfies the connected
level set condition if the sublevel set {|Θ| < ǫ} is connected for some
ǫ > 0.

For instance, any finite Blaschke product, the atomic inner function

u(z) = exp
(z + 1

z − 1

)
,

and the Blaschke product with zeros {1 − rn}n>1, where r ∈ (0, 1),
satisfy this connected level set condition.

Theorem 5.5 (Cohn). Suppose Θ is a inner function satisfying the
connected level set condition. Then f ∈ H2 is a multiplier from KΘ to
H2, equivalently, |f |2dm is a Carleson measure for KΘ, if and only if

sup
λ∈D

(1− |Θ(λ)|2)
∫

T

1− |λ|2
|ξ − λ|2 |f(ξ)|

2dm(ξ) <∞.

This allows us to restate the first part of Theorem 4.1 and Corollary 4.5
using the above, more tangible, condition for |f |2dm to be a Carleson
measure for a model space.

Theorem 5.6. Suppose u, v are inner and u satisfies the connected
level set condition. Then the following are equivalent:

(i) ϕ ∈ M (u, v);
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(ii) ϕS∗u ∈ Kv and

sup
λ∈D

(1− |u(λ)|2)
∫

T

1− |λ|2
|ξ − λ|2 |ϕ(ξ)|

2dm(ξ) <∞.

(iii) ϕ ∈ Ker Tzvu and

sup
λ∈D

(1− |u(λ)|2)
∫

T

1− |λ|2
|ξ − λ|2 |ϕ(ξ)|

2dm(ξ) <∞.

Corollary 5.7. Suppose u and v are inner functions, u satisfies the
connected level set condition, and v = uI. Then the following are
equivalent:

(i) ϕ ∈ M (u, v);

(ii) ϕ ∈ KzI and

sup
λ∈D

(1− |u(λ)|2)
∫

T

1− |λ|2
|ξ − λ|2 |ϕ(ξ)|

2dm(ξ) <∞.

6. Examples involving Frostman shifts

In this short section, we give a few more examples of our main theorem.

For an inner function u and λ ∈ D, recall from (1.3) the definition of
the Frostman shift uλ of u. Suppose that u∗ is an inner factor of uλ
and

I :=
uλ
u∗
.

We want to classify M (I, u) and Mb(I, u).

Theorem 6.1. With the notation above, we have the following:

(i) If dim(Ku∗) <∞, then

M (I, u) = Mb(I, u) = (1− λu)Kzu∗.

(ii) If dim(Ku∗) = ∞, then

Mb(I, u) = (1− λu)Kzu∗ ∩H∞ ⊆ M (I, u) ⊆ (1− λu)Kzu∗.

Proof. Use the identity

M (I, u) =
1

1− λu
M (I, uλ)

and the observation that uλ = Iu∗. �
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Example 6.2. Applying Theorem 6.1 to M (uλ, u) we see that u∗ ≡ 1
and so

Mb(uλ, u) = M (uλ, u) = C(1− λu).

In other words, the multiplier space here is one dimensional.

Notice how this is Crofoot’s theorem (see Theorem 3.14 above). With
a little extra effort, we can obtain higher dimensional multiplier spaces
as with the following example.

Example 6.3. Define

uλ(z) =
u(z)− u(λ)

1− u(λ)u(z)

1− λz

z − λ
=
uu(λ)(z)

bλ(z)
, λ ∈ D \ {0},

where

bλ(z) =
z − λ

1− λz

is the single Blaschke factor. Apply Theorem 6.1 (with I = uλ, u∗ =
bλ, u∗I = uu(λ)) to see that

Mb(u
λ, u) = M (uλ, u)

= (1− u(λ)u)Kzbλ

=
∨{

1− u(λ)u,
1− u(λ)u

1− λz

}
.

In other words, the multiplier space here is two dimensional.

7. The upper-half plane

Recall the definitions of the Hardy space H 2 of the upper-half plane
from (2.30), the model space KU from (2.34), and the natural unitary
operator U : H2 → H 2 from (2.32). Given inner functions u, v on D,
we set U = u ◦ ω and V = v ◦ ω, where ω : C+ → D is the Möbius
transform from (2.33). These functions U and V will be inner on C+.

Multipliers and kernels. In this section we need the elementary
Blaschke factor on C+ with zero at i:

(7.1) b+i (z) :=
z − i

z + i
.

We begin with some elementary but useful facts that will be needed in
our later discussions.
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Lemma 7.2. Let ψ ∈ L∞(T) and Ψ = ψ ◦ ω. Then
f ∈ Ker Tψ ⇐⇒ F := Uf ∈ Ker TΨ.

Proof. If f ∈ KerTψ, then fψ ⊥H2 H2 and so U(fψ) ⊥H 2 H 2. More-
over,

U(fψ)(w) = 1

w + i
(fψ) ◦ ω

=
1

w + i
(f ◦ ω)× (ψ ◦ ω)

= Uf ×Ψ,

and hence F = Uf ∈ Ker TΨ. The proof of the converse is similar. �

Lemma 7.3. ϕ ∈ M (u, v) if and only if Φ = ϕ ◦ ω ∈ M (U, V ).

Proof. Recalling that UKu = KU and UKv = KV from (2.36), we note
that the following diagram is commutative:

Ku

ϕ
- Kv

KU

U
? Φ

- KV

U
?

Indeed, pick f ∈ KU , then

(UϕU−1f)(z) =
1

z + i
ϕ

(
z − i

z + i

)
× (U−1f)

(
z − i

z + i

)

=
1

z + i
ϕ

(
z − i

z + i

)
2i

1− z−i
z+i

f(z)

= Φ(z)f(z). �

Thus kernels are transformed via the operator U and multipliers are
transformed via composition with ω.

Let us set

ki(z) =
1

z + i

and observe that this is the reproducing kernel for H 2 at i (up to a
multiplicative constant). In particular,

Uf = ki × (f ◦ ω), f ∈ H2.
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Corollary 7.4. With the notation from (7.1), the following are equiv-
alent for Φ analytic on C+:

(i) Φ ∈ M (U, V );

(ii) Φki ∈ Ker T
b+i V U

and |Φ|2dx is a Carleson measure for KU .

Proof. (i) =⇒ (ii): Suppose that Φ ∈ M (U, V ). By Lemma 7.3,
Φ = ϕ ◦ ω for some ϕ ∈ M (u, v) and hence ϕ ∈ Ker Tzvu. Then

Uϕ = ki × (ϕ ◦ ω) ∈ Ker T
b+i V U

(Lemma 7.2). The Carleson measure condition is immediate.

(ii) =⇒ (i): By assumption we have Φki = Uϕ for some ϕ ∈ Ker Tzvu.
By the Carleson measure condition we also have FΦ ∈ L2(R) for every
F ∈ KU . Then U−1(FΦ) ∈ L2(T). Observe that

U−1(FΦ) = (U−1F )× ϕ.

Since U−1F runs through the Ku-functions when F runs through the
KU functions, we see that |ϕ|2dm is a Carleson measure for Ku. As a
result, ϕ ∈ Ker Tzvu and |ϕ|2dm is a Carleson measure for Ku. Hence
by Theorem 4.1, ϕ ∈ M (u, v), and by Lemma 7.3, Φ = ϕ ◦ ω ∈
M (U, V ). �

In Example 4.7 we gave an example of when M (u, v) ( Ker Tzvu. We
now discuss a situation when the Carleson condition becomes more
tractable. In the situation we have in mind, we will see that the multi-
plier space contains an associated Toeplitz kernel. We need the notion
of sub-level set of an inner function U for C+:

L(U, ǫ) = {z ∈ C+ : |U(z)| < ǫ}, ǫ ∈ (0, 1).

We will also define

(7.5) Cη = {z ∈ C : ℑz > η}, η > 0.

Lemma 7.6. Let U be an inner function in C+ such that L(U, ǫ) ⊆ Cη

for some ǫ ∈ (0, 1) and η > 0. Let µ be a positive Borel measure on R.
The following assertions are equivalent:

(i) µ is a Carleson measure for KU .

(ii) We have

M := sup
x∈R

µ([x, x+ η]) <∞.
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Note that instead of integrating over intervals of length η in the defini-
tion ofM , we could, for instance, also integrate over intervals of length
1.

Inner functions U for which the level set is bounded away from the real
line are precisely given by meromorphic inner U (inner on C+ with an
analytic continuation to a neighborhood of the closure of C+) for which
U ′ ∈ L∞(R) [20].

Proof of Lemma 7.6. (ii) =⇒ (i): using a result by Treil and Vol-
berg [53], it suffices to check the Carleson measure condition for those
Carleson boxes

S(I) = {z = x+ iy ∈ C+ : x ∈ I, y < |I|}, I ⊆ R,

where I is an interval, and |I| is its length, which meet the level set
L(U, ǫ). By assumption L(U, ǫ) ⊆ Cη so that we only need to test the
intervals I for which |I| > η. Then |I| = kη + r, where k ∈ N and
r ∈ [0, η). Setting I = [a, b] we get

µ(I) 6

k∑

j=0

µ([a+ jη, a+ (j + 1)η])

6 (k + 1)M =
(k + 1)M

kη
kη

6
(k + 1)M

kη
|I| 6 2

M

η
|I|.

(i) =⇒ (ii): since U is a meromorphic inner function, the kernel

kUx0(z) =
1− U(x0)U(z)

z − x0

belongs to KU and ‖kUx0‖22 = |U ′(x0)| for every x0 ∈ R. Using the fact
that µ is a Carleson measure for KU , there exists a constant C > 0
such that, for every x0 ∈ R, we have

(7.7)

∫

R

|kUx0(t)|2 dµ(t) 6 C|U ′(x0)|.

Write now U(t) = eiϕ(t), where ϕ is an increasing branch of the argu-
ment of U . Note that since U is a meromorphic inner function, ϕ is
real-analytic. Then we get

(7.8) |kUx0(t)| =
|U(t)− U(x0)|

|t− x0|
= 2

| sin
(
ϕ(t)−ϕ(x0)

2

)
|

|t− x0|
.
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Let
δ = min(

π

‖U ′‖∞
,
η

2
).

If |t− x0| 6 δ, we have

|ϕ(t)− ϕ(x0)| 6 ‖U ′‖∞|t− x0| 6 π.

Using the inequality of convexity sin(u) ≥ 2
π
u for u ∈ (0, π/2), we

deduce that

(7.9)

∣∣∣∣sin
(
ϕ(t)− ϕ(x0)

2

)∣∣∣∣ >
|ϕ(t)− ϕ(x0)|

π
.

By the mean value theorem, there is a point c ∈ (x0 − δ, x0 + δ) such
that

|ϕ(t)− ϕ(x0)| = |t− x0||ϕ′(c)| = |t− x0||U ′(c)|.
Combining this last equation with (7.8) and (7.9) gives

(7.10) |kUx0(t)| > 2
|U ′(c)|
π

.

Remembering that U is a meromorphic inner function with L(U, ε) ⊆
Cη, we have U(z) = eiazB(z) where B is a Blaschle product associated
to a Blaschke sequences of points (zn)n ⊆ Cη and a > 0 (because U is
assumed to have a non constant singular inner factor). Then it is well
known that

|U ′(t)| = a+ 2
∑

n

ℑzn
|t− zn|2

, t ∈ R.

Since
|x0 − zn|
|c− zn|

> 1− |x0 − c|
|c− zn|

> 1− δ

η
>

1

2
,

we get that

|U ′(c)| = a+ 2
∑

n>1

ℑzn
|c− zn|2

> a+
1

2

∑

n>1

ℑzn
|x0 − zn|2

>
1

4
|U ′(x0)|,

which, using (7.10), yields

|kUx0(t)| >
1

2π
|U ′(x0)|,

for every t such that |t− x0| 6 δ. We thus get from (7.7)

µ([x0, x0 + δ]) 6
C(2π)2

|U ′(x0)|2
6

4Cπ2

a2
.

Now let k ∈ N be the smallest integer such that kδ > η. If we iterate
the last estimate we obtain that

µ([x0, x0 + η]) 6
4Cπ2k

a2
.
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Since this is true for every x0 ∈ R, we get that

M 6
4Cπ2k

a2
<∞. �

Theorem 7.11. Let U and V be inner functions with U(i) = 0. Sup-
pose L(U, ǫ) ⊆ Cη for some ǫ ∈ (0, 1) and η > 0. Then

M (U, V ) =
{
Φ ∈ (z + i) KerT

b+i V U
:M := sup

x∈R

∫ x+η

x

|Φ(t)|2dt <∞
}
.

Proof. Observe that

Φki ∈ Ker T
b+i V U

⇐⇒ Φ ∈ (z + i) KerT
b+i V U

.

It remains to apply Corollary 7.4 and Lemma 7.6. �

Observe that when Φ ∈ (z+ i) KerT
b+i V U

and Φ ∈ H 2∪H ∞, then we

clearly have

sup
x∈R

∫ x+η

x

|Φ(x)|2dx <∞.

Let us consider the case when the multiplier is in H 2, in other words
we are interested when

Φ ∈
(
(z + i) KerT

b+i V U

)
∩ H

2.

As it turns out, for this it suffices to add just one zero to the inner
function defining the initial space KU .

Lemma 7.12. We have

F ∈ Ker TUV ⇐⇒ F ∈
(
(z + i) Ker T

b+i V U

)
∩ H

2.

Proof. The function F belongs to Ker TUV if and only if there is a
ψ ∈ H 2 such that

UV F = ψ.

This implies that on R we have

U(x)V (x)b+i (x)F (x)ki(x) = U(x)V (x)

(
x− i

x+ i

)
F (x)

1

x+ i

= ψ(x)

(
x− i

x+ i

)
1

x+ i

= ψ(x)

(
x+ i

x− i

)
1

x+ i
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= ψ(x)
1

x+ i

= (ψki)(x)

Hence Fki ∈ Ker T
b+i V U

and so F ∈ (z + i) KerT
b+i V U

.

The converse argument is in the same spirit. Indeed, when

F ∈ (z + i) KerT
b+i V U

∩ H
2,

we get

F (x)(U(x)V (x)) = ψ(x)(x− i) = ψ(x)(x+ i).

Since F ∈ H 2, and UV is bounded, we deduce that ψ(z + i) ∈ H 2,
and so F ∈ KerTUV . �

One can see from the discussion above that when KerTUV 6= {0}, every
F ∈ Ker TUV produces a multiplier F ∈ M (U, V ).

Let us state this observation in the following separate result which, in
this particular situation, characterizes those multipliers which belong
to H 2 in terms of kernels of Toeplitz operators.

Corollary 7.13. Let U and V be inner functions with U(i) = 0. Sup-
pose L(U, ǫ) ⊆ Cη for some ǫ ∈ (0, 1) and η > 0. Then

M (U, V ) ∩ H
2 = KerTUV .

Bounded multipliers. In [8] and [19], the authors determine when a
model space in the upper-half plane is contained in H ∞. In particular,
Dyakonov proved that the following conditions are equivalent:

(i) U ′ ∈ L∞(R).

(ii) For some η and some ε > 0, L(U, ε) ⊆ Cη.

(iii) KU ⊆ H ∞.

Remark 7.14. In the disk case, a well-known fact states that a model
space is contained in H∞ if and only if the corresponding inner func-
tion is a finite Blaschke product (see e.g., [8, Thm. 4.2]). This also
follows from a theorem by Grothendieck [45, p. 117] which shows that
a closed subspace of L2 which is contained in L∞ is necessarily finite
dimensional.

In Example 5.3, we construct two inner functions u1 and v such that
all the multipliers from Ku1 into Kv are bounded and in that example,
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the inner function u1 divides v. We now construct an example without
any divisibility condition.

Example 7.15. Let

u(z) = exp
(z + 1

z − 1

)

and U = u◦ω. Then the corresponding level set for U in C+, is Cη (see
(7.5)) for some η > 0. Now pick a separated sequence {xn}n∈Z ⊆ R,
i.e.,

|xn − xm| > δ > 0, m, n ∈ Z, m 6= n,

and let V be the Blaschke product (in the upper-half plane) whose
zeros are precisely {xn + i}n∈Z. Then V is an interpolating Blaschke
product whose level set is contained in some Cη′ , η

′ > 0 (it is a union
of Euclidean disks centered about the points xn+ i). If v = V ◦ω−1, is
the corresponding Blaschke product in D, then, for some ǫ1, ǫ2 ∈ (0, 1),
the sub-level set inclusion

{|v| < ǫ2} ⊆ {|u| < ǫ1}
is satisfied (note that the zeros of v lie in an oricycle) and hence by
Corollary 5.2 we have M (u, v) ⊆ H∞. At this point there is no guar-
antee that M (u, v) is non-zero. To guarantee that M (u, v) is non-zero,
we use Theorem 4.1 and results from [35, 39] to obtain sufficient condi-
tions for Ker Tzvu 6= {0}. For example, one can arrange this by taking
a sufficiently dense seperated sequence {xn}n∈Z.

Multipliers and Ahern-Clark points. When M (u, v) 6= {0} we
know from Proposition 3.30 that σ(u) ⊆ σ(v). Is it the case that the
Ahern-Clark points for u are also Ahern-Clark points for v? Recall the
Ahern-Clark property from (2.17): every f ∈ Ku has a non-tangential
limit at ζ ∈ T if and only if u has a finite angular derivative at ζ . In
the upper-half plane case note that ∞ is an Ahern-Clark point for a
model space KU precisely when U ◦ω−1 has a finite angular derivative
at z = 1 (equivalently U has an angular derivative at ∞).

Proposition 7.16. There exists two inner functions U and V in the
upper half plane such that M (U, V ) is non trivial, σ(U) = σ(V ) =
{∞}, and V has an angular derivative at ∞ while U does not.

In this situation, the multiplier ϕmust tend non-tangentially to 0 when
z → ∞ in a Stolz angle. This is because any function ϕF ∈ KV

(F ∈ KU) admits non-tangential limits while F , in general, does not.
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Proof. For n > 1 let µn = i2n and λn = n + i
n2 . We define the inner

functions U = BΛ1
and V = BΛ2

where Λ1 = {µn}n>1 and Λ2 =
{λn}n>1. The boundary spectrum of both functions U and V is simply
the sole point {∞}. It is known that ∞ is an Ahern-Clark point for a
Blaschke product BΛ, where Λ = {νn}n>1, if and only if

∑
n>1ℑνn <

∞. From this the assertions on the Ahern-Clark properties for U and
V follow immediately.

It remains to check that Ker T
b+i V U

is non-trivial. To do this we will

use a result by Makarov and Poltoratski [39, Corollary of Section 4.1]

which says that if γ, defined by b+i V U = eiγ on R, can be written as
a sum of a bounded and a decreasing function then, possibly adding n
zeros to V , we can obtain

Ker T
UV (b+i )n+1

∩H∞(C+) 6= {0}.
Here V has to be assumed tempered, which means that V ′ has at most
polynomial growth. Let us now check that we are in the situation of
the Marakov-Poltoratski result cited above.

Recall that for every BΛ(x) = eiγ(x), x ∈ R, Λ = {νn}, we have

γ′(x) =
∑

n>1

d

dx
log

x− νn
x− νn

=
∑

n>1

2ℑνn
|x− νn|2

Apply this to U = BΛ1
(x) = eiγ1(x), x ∈ R,

γ′1(x) =
∑

n>1

2ℑµn
|x− µn|2

=
∑

n>1

2× 2n

|x− i2n|2 =
∑

n>1

2n+1

x2 + 22n

6
∑

x62n

2n+1

x2 + 22n
+
∑

x>2n

2n+1

x2 + 22n

6
∑

x62n

2n+1

22n
+
∑

x>2n

2n+1

x2

6
∑

x62n

21−n +
1

x2

∑

x>2n

2n+1

.
2

x
+

2x

x2
=

4

x
.

So that the argument of U grows at most logarithmically.

Analogously for V ,

γ′2(x) =
∑

n>1

2ℑλn
|x− λn|2

=
∑

n>1

2/n2

|x− (n+ i/n2)|2
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=
∑

n>1

2/n2

(x− n)2 + 1/n4
(7.17)

>
2

n2
0(x− n0)2 + 1/n2

0

,

where we choose n0 such that x ∈ [n0− 1/2, n0+1/2). Let us estimate
from below the increment of γ2 on [n0 − 1/2, n0 + 1/2):

γ2(n0 + 1/2)− γ2(n0 − 1/2)

=

∫ n0+1/2

n0−1/2

γ′2(x)dx >

∫ n0+1/2

n0−1/2

2

n2
0(x− n0)2 + 1/n2

0

dx

=

∫ n0+1/2

n0−1/2

2n2
0

1 + (n2
0x− n3

0)
2
dx

Setting y = xn2
0 − n3

0 gives dy = n2
0dx and translates the interval of

integration to

[(n0 − 1/2)n2
0 − n3

0, (n0 + 1/2)n2
0 − n3

0) = [−n2
0/2, n

2
0/2).

Hence

γ2(n0 + 1/2)− γ2(n0 − 1/2) >

∫ n2
0
/2

−n2
0
/2

2

1 + y2
dy → 2π, n0 → ∞.

We deduce that γ2 increases at least linearly. This implies that the
at most logarithmic growth of γ1 can be absorbed into the, at least,
linear decrease of −γ2, so that γ1 − γ2 can be written as a decreasing
function and a bounded function. From (7.17) it can also be deduced
that the worst growth of γ′2(x) is for x = n0, then the term in n =
n0 contributes with n2

0 = x2 to the sum, while the remaining sum is
essentially bounded by 1/n0 = 1/x which is neglectible. Hence the
argument of V has at most quadratic growth so that V is tempered,
and the result of Makarov and Poltoratski applies (In our case the n
appearing in that theorem can be taken to be equal to 2). �

8. Unbounded multipliers

It turns out that unbounded multipliers between model spaces exist
in abundance and can be created in various ways. In this section, we
give three different examples of unbounded multipliers, each connecting
with a different aspect of model spaces.
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Using analytic continuation. Recall, again, the definition of the
boundary spectrum σ(u) of an inner function u from (2.14).

Theorem 8.1. Let u and v be inner functions, u(0) = 0, and v = uI
for some inner function I. Suppose further that σ(u)∩σ(I) = ∅. Then
M (u, v) = KzI . Furthermore, if I is not a finite Blaschke product then
M (u, v) contains unbounded functions.

Proof. By Corollary 4.5, we just need to check |ϕ|2dm is a Carleson
measure for Ku for every ϕ ∈ KzI .

Let V be a two dimensional neighborhood of σ(I) that is far from σ(u).
By (2.15) ϕ extends analytically outside V and thus can be assumed
to be bounded outside V . Similarly, every f ∈ Ku extends analytically
to V and can be assumed to be bounded there. Thus∫

T

|ϕf |2dm =

∫

T\V

|ϕf |2dm+

∫

T∩V

|ϕf |2dm

.

∫

T\V

|f |2dm+

∫

T∩V

|ϕ|2dm <∞.

By the Closed Graph Theorem, ϕ ∈ M (Ku, H
2), equivalently, |ϕ|2dm

is a Carleson measure for Ku.

For the last part of the theorem, note that if I is not a finite Blaschke
product then KI ⊆ KzI is infinite dimensional (see (2.18)) and thus
contains an unbounded function (see Remark 7.14). �

It is interesting that one can have an unbounded multiplier from a finite
dimensional model space to an infinite dimensional one. Of course,
one can come up with plenty of examples of two infinite degree inner
functions u and v satisfying the hypothesis of Theorem 8.1.

An example using Bourgain factorization. The previous example
of Mb(u, v) ( M (u, v) relied on the fact that u was a divisor of v.
Here we construct an unbounded multiplier based on the isometric
multipliers discussed after Theorem 4.11 and Bourgain factorization.

Proposition 8.2. There are inner functions u and v, with v not a
multiple of u, such that Mb(u, v) ( M (u, v).

Proof. From Hayashi [33] (see also [47]) observe that if a ∈ H∞, ‖a‖∞ 6
1, and outer, and b is its Pythagorean mate (i.e., b ∈ H∞ and |a|2 +
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|b|2 = 1 a.e. on T), and such that G0 := a/(1 − b) is rigid, then for
every inner J , the function

G :=
a

1− Jb

is an isometric multiplier on KJ to H2 and the space GKJ is the kernel
of a Toeplitz operator. It is not very difficult to construct a and b such
that G0, and hence G, are unbounded. See [31] for specific examples
of this.

Now from Bourgain’s factorization [21, Theorem 1] we know that there
is a triple (u, v, g) where u and v are inner functions (in fact Blaschke
products), g is an invertible element of H∞, such that

(8.3) GKJ =
g

u
(Kv ∩ uH2).

The identity (8.3) tells us that ϕ := Gu/g ∈ M (J, v). Moreover, ϕ is
unbounded since G is unbounded and g is an invertible element of H∞.
If the inner function J is chosen so that its singular inner part (from
(2.4)) is not constant, then, since v is a Blaschke product, the function
v is not a multiple of J . �

Resolving a question of Crofoot. The previous two examples cre-
ated unbounded multipliers, i.e., ϕKu ⊆ Kv. However, there was no
way to check that these multipliers were onto, i.e., ϕKu = Kv. This
next example, using de Branges spaces of entire functions, yields such
an example - and hence resolving a long standing question of Crofoot
[14, p. 244].

Theorem 8.4. There are two inner functions u and v on D and an
unbounded analytic function ϕ such that ϕKu = Kv.

We will prove the corresponding result for the model spaces KΘ of the
upper-half plane and then use Lemma 7.3. The construction is based
on the relationship between the model subspaces generated by mero-
morphic inner functions and the de Branges spaces of entire functions
[15].

First we define the Paley-Wiener class

PW := {F ∈ O(C) : F |R ∈ L2(R), |F (z)| 6 CF e
π|ℑz|}

∼= {f ∈ L2(R) : supp(Ff) ⊆ [−π, π]}
∼=
{
F ∈ O(C) :

F

e−iπz
,
F ∗

e−iπz
∈ H

2

}
,
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where

F ∗(z) := F (z).

Next we need the de Branges spaces of entire functions. Let E be an
entire function which belongs to the Hermite–Biehler class HB, that
is to say,

|E(z)| > |E(z)|, ℑz > 0

and E does not have any zeros in C−
+ (the closed upper half plane).

With E ∈ HB, define the de Branges space

H (E) :=

{
F ∈ O(C) :

F

E
,
F ∗

E
∈ H

2

}
.

The norm in H (E) is defined by

‖F‖E = ‖F
E
‖L2(R), F ∈ H (E).

If E ∈ HB, then Θ = E∗/E is a meromorphic inner function in C+,
meaning that Θ is an inner function and that Θ has an analytic contin-
uation to an open neighborhood of C−

+. Conversely, each meromorphic
inner function Θ admits a representation Θ = E∗/E for some entire
function E ∈ HB. One can see from (2.35) that when Θ = E∗/E, the
operator F 7→ F/E is unitary from H (E) onto the model space KΘ,
that is to say,

(8.5) KΘ =
1

E
H (E).

When E(z) = e−iπz, one can check that E ∈ HB, Θ = E∗/E satisfies
Θ(z) = e2iπz , and

KΘ = eiπzH (E) = eiπzPW,

where PW is the Paley-Wiener space defined earlier.

Proof of Theorem 8.4. Fix δ ∈ (0, 1
4
) and set

Eδ(z) = (z + i)
∞∏

k=1

(
1− z

k − δ − ik−4δ

)(
1− z

−k + δ − ik−4δ

)
.

It is shown in [38] that Eδ ∈ HB,

(8.6) H (Eδ) = PW,

with equivalent norms, and

(8.7) |Eδ(x)| ≃ (1 + |x|)2δ dist(x,Λδ), x ∈ R,
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where

Λδ = E−1
δ ({0})

= {k − δ − ik−4δ : k > 1} ∪ {−k + δ − ik−4δ : k > 1} ∪ {−i}.
If we define Iδ = E∗

δ/Eδ, then Iδ is a meromorphic inner function on
C+. Define ϕδ(z) = eiπzEδ(z) and use (8.5) and (8.6) to obtain

ϕδKIδ = eiπzEδKIδ = eiπzH (Eδ) = eiπzPW = KΘ,

where Θ(z) = e2πiz . Hence ϕδ is a multiplier from KIδ onto KΘ. We
now argue that ϕδ is unbounded. Indeed, the zero set Λδ of Eδ contains
the zeros

zk = (k − δ)− ik−4δ, k > 1.

For each interval (k− δ, k+1− δ), the zeros zk and zk+1 lie just below
the respective endpoints k − δ and k + 1− δ. If

xk :=
2k − 2δ + 1

2
,

the midpoint of (k − δ, k + 1− δ), one can see that

dist(xk,Λδ) >
1
2
.

From (8.7) we conclude that

|Eδ(xk)| ≃ (1 + xk)
2δdist(xk,Λδ) & (1 + xk)

2δ ≃ k2δ

which goes to infinity as k → ∞. The fact that ϕδ is unbounded now
follows. Complete the proof by transferring things back to the disk by
setting via

u = Iδ ◦ ω−1, v = Θ ◦ ω−1, ϕ = ϕδ ◦ ω−1

and applying Lemma 7.3. �

9. Multipliers and Clark measures

Recall our discussion of Clark measures from (2.20). We now exploit
these measures to obtain additional information about multipliers. We
begin with a simple lemma.

Lemma 9.1. Let u, v be two inner functions and ϕ ∈ H2. Then ϕ ∈
M (u, v) if and only if there exists a bounded linear operator Lϕ : Kv →
Ku satisfying

Lϕ(k
v
λ) = ϕ(λ)kuλ, λ ∈ D.
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Proof. Assume that ϕ ∈ M (u, v). Then Mϕ is a bounded operator
from Ku into Kv and for every f ∈ Ku and λ ∈ D we have

〈f,M∗
ϕk

v
λ〉 = 〈ϕf, kvλ〉 = ϕ(λ)f(λ) = ϕ(λ)〈f, kuλ〉 = 〈f, ϕ(λ)kuλ〉.

Hence M∗
ϕk

v
λ = ϕ(λ)kuλ and thus Lϕ = M∗

ϕ. Conversely, assume that
the operator Lϕ, initially defined on kernel functions by

Lϕ(k
v
λ) = ϕ(λ)kuλ, λ ∈ D,

extends, via linearity, to a bounded operator from Kv into Ku. For
every f ∈ Ku, we have

ϕ(λ)f(λ) = ϕ(λ)〈f, kuλ〉 = 〈f, ϕ(λ)kuλ〉
= 〈f, Lϕ(kvλ)〉 = 〈L∗

ϕ(f), k
v
λ〉

= (L∗
ϕf)(λ).

Hence L∗
ϕf = ϕf ∈ Kv which proves that ϕ ∈ M (u, v). �

Here is the rephrasing of the lemma above in terms of the corresponding
Clark measures.

Theorem 9.2. Let u, v be two inner functions and σu, σv be their as-
sociated Clark measures. For ϕ ∈ H2, the following are equivalent:

(i) ϕ ∈ M (u, v);

(ii) there exists a bounded linear operator Lϕ : L2(σv) → L2(σu)
satisfying

Lϕ(kλ) = ϕ(λ)
1− u(λ)

1 − v(λ)
kλ, λ ∈ D.

Proof. Assume that ϕ ∈ M (u, v). By Lemma 9.1, the operator Lϕ :
Kv → Ku satisfies

Lϕk
v
λ = ϕ(λ)kuλ, λ ∈ D.

Define Lϕ := V −1
u LϕVv : L

2(σv) → L2(σu), where Vu was defined earlier
in (2.22). Using (2.23) (twice) we obtain

Lϕ(kλ) = V −1
u Lϕ((1− v(λ))−1kvλ)

= (1− v(λ))−1ϕ(λ)V −1
u kuλ

= ϕ(λ)
1− u(λ)

1− v(λ)
kλ.
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Conversely, define the operator Lϕ := VuLϕV
−1
v . As in the chain of

equalities above, we get

Lϕ(k
v
λ) = VuLϕV

−1
v kvλ

= VuLϕ(1− v(λ))kλ

= ϕ(λ)Vu((1− u(λ))kλ)

= ϕ(λ)kuλ

To finish, apply Lemma 9.1. �

Remark 9.3. (1) A similar criterion for multipliers of de Branges–
Rovnyak spaces H (b) appears in [37].

(2) For ϕ ∈ H2, we can use the fact that 1− v is outer to see that
the function

ψ :=
ϕ(1− u)

1− v

belongs to the Smirnov class N+ [17]. According to [48, Propo-
sition 3.1], ψ can be written uniquely as ψ = b/a where a and
b are in the closed unit ball of H∞, a is an outer function,
a(0) > 0, and

(9.4) |a|2 + |b|2 = 1

almost everywhere on T. It is shown in [48] that if Tψ denotes
the operator of multiplication by ψ on the domain

D(Tψ) = {f ∈ H2 : ψf ∈ H2},
then Tψ is a closed and densely defined operator. Moreover,
D(Tψ) = aH2 and D(T ∗

ψ) = H (b), the de Branges–Rovnyak
space associated with b [26, 46]. In light of (9.4), it follows
from

log(1− |b2|) = log |a|2 ∈ L1

(this is a result of Riesz [17, p. 17]) that b is a non-extreme
point of the unit ball of H∞ [17, p. 125] and thus kλ ∈ H (b)
[46, Ch. IV]. In fact, the linear span of the Cauchy kernels
{kλ : λ ∈ D}, are dense in H (b). From here it is straightforward
to show that

T ∗
ψkλ = ψ(λ)kλ, λ ∈ D.

Hence the operator T ∗
ψ and Lϕ have the same action on the linear

span of kλ, a set which is dense in both L2(σu) and H (b).



MULTIPLIERS BETWEEN MODEL SPACES 45

Corollary 9.5. Let u, v be inner with associated Clark measures σu
and σv satisfying σu ≪ σv. If ϕ = (1 − v)/(1 − u) and h = dσu/dσv,
the following are equivalent:

(i) ϕ ∈ M (u, v)

(ii) h ∈ L∞(σv).

Proof. (ii) =⇒ (i): Using Theorem 9.2, ϕ ∈ M (u, v) if and only if
there exists a bounded linear operator Lϕ : L2(σv) −→ L2(σu) such
that

Lϕ(kλ) = ϕ(λ)
1− u(λ)

1− v(λ)
kλ = kλ, λ ∈ D.

For every f ∈ L2(σv), we have
∫

T

|f(ξ)|2 dσu(ξ) =
∫

T

|f(ξ)|2h(ξ) dσv(ξ)

6 ‖h‖L∞(σv)‖f‖2L2(σv)
.

Hence if we define Lϕ(f) = f for f ∈ L2(σv), then the operator Lϕ is
bounded from L2(σv) into L

2(σu), which proves that (1− v)/(1− u) ∈
M (u, v).

(i) =⇒ (ii): Again using Theorem 9.2, the map Lϕ(kλ) = kλ extends
linearly to a bounded operator from L2(σv) into L

2(σu). In particular,
for any f in the linear span of {kλ : λ ∈ D}, we have

∫

T

|f |2h dσv =
∫

T

|f |2 dσu .
∫

T

|f |2 dσv.

Since the linear span of {kλ : λ ∈ D} is dense in L2(σv) (use the fact
that σv ⊥ m along with the Riesz brothers theorem [29, p. 59]), we see
that h ∈ L∞(σv). �

Remark 9.6. It was shown in [46] that if σu ≪ σv and h := dσu/dσv,
then h ∈ L2(σv) if and only if (1− v)/(1− u) ∈ H2.

Example 9.7. If v is the atomic inner function

v(z) = exp(−1 + z

1− z
),

then it is easy to see that v(z) = 1 if and only if

z = zn =
2iπn− 1

2iπn+ 1
, n ∈ Z.
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Hence the Clark measure σv is discrete and given by

σv =
∑

n∈Z

cnδzn,

where

cn =
1

|v′(zn)|
=

2

4π2n2 + 1
.

Now pick c′n satisfying 0 6 c′n 6Mcn for some M > 1 and define

µ′ =
∑

n>1

c′nδzn .

See [27, Ch. 11] for the details on this. In other words, we have dµ′ =
hdσv, where 0 6 h 6 M . By (2.21) there is a unique inner function
u such that its associated Clark measure is precisely µ′. Corollary 9.5
now says that

1− v

1− u
∈ M (u, v).

This construction can be done more generally starting from any finite
measure

∑
n>1 cnδzn on T and its associated inner function v. A version

of the construction above appears in [28].

When σu ≪ σv and h = dσu/dσv ∈ L∞(σv), is it possible to describe
all the multipliers from Ku into Kv? Could it be that

M (u, v) = C
1 − v

1− u
?

10. Revisiting Crofoot’s characterization

To state our characterization of the onto multipliers, we need a defini-
tion and a preliminary result. For a function w : T → [0,∞), we say
that the measure w dm is a Carleson measure for Ku when

∫

T

|f |2w dm .

∫

T

|f |2dm, f ∈ Ku

and a reverse Carleson measure for Ku when
∫

T

|f |2w dm &

∫

T

|f |2dm, f ∈ Ku.

We point the reader to the survey paper [25] on reverse Carleson mea-
sures on various spaces of analytic functions and the paper [5] specifi-
cally for reverse Carleson measures on model spaces.
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If ϕKu = Kv (i.e., ϕ is an onto multiplier), Remark 3.13 says that ϕ
and 1

ϕ
belong to H2 and thus ϕ is an outer function. Moreover, |ϕ|2dm

is a Carleson measure for Ku and |ϕ|−2dm is a Carleson measure for
Kv.

We need the following result from [52]: Let w : T → [0,∞) be bounded
and let u be inner. Then∫

T

|f |2w dm ≍
∫

T

|f |2dm, f ∈ Ku

if and only if
inf{ŵ(λ) + |u(λ)| : λ ∈ D} > 0,

where

ŵ(λ) =

∫

T

1− |λ|2
|ξ − λ|2w(ξ)dm(ξ)

is the Poisson extension of w to D. Since w is bounded, then w dm is
automatically a Carleson measure and thus the above infimum condi-
tion tests whether or not w dm is a reverse Carleson measure for Ku.

Here is our characterization of the onto multipliers.

Theorem 10.1. For inner functions u, v and ϕ ∈ H2, the following
are equivalent:

(i) ϕKu = Kv;

(ii) The following three conditions hold:

(a) ϕS∗u ∈ Kv;

(b) 1
ϕ
∈ H2 and 1

ϕ
S∗v ∈ Ku;

(c) |ϕ|2dm is both a Carleson and a reverse Carleson measure
for Ku.

Proof. To prove (i) =⇒ (ii) we note from our preliminary remarks
that conditions (a) and (b) are satisfied. We also see that condition
(i) implies that |ϕ|2dm is a Carleson measure for Ku and |ϕ|−2dm is a
Carleson measure for Kv. In particular, this means there is a constant
c > 0 such that∫

T

|g|2|ϕ|−2dm 6 c

∫

T

|g|2dm, g ∈ Kv.

For f ∈ Ku we have g = ϕf ∈ Kv and the preceding inequality yields∫

T

|f |2dm 6 c

∫

T

|f |2|ϕ|2dm
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and thus |ϕ|2dm is both a Carleson and a reverse Carleson measure for
Ku. Thus condition (c) is satisfied.

To prove (ii) =⇒ (i) we observe that the conditions ϕS∗u ∈ Kv and
|ϕ|2dm is a Carleson measure for Ku imply that ϕKu ⊆ Kv (Theorem
4.1). Now since |ϕ|2dm is a reverse Carleson measure for Ku, we have

∫

T

|f |2dm .

∫

T

|f |2|ϕ|2dm, f ∈ Ku.

As in the proof of Theorem 4.1 we see that since 1
ϕ
S∗v ∈ Kv we have

1
ϕ
g ∈ Ku for all g ∈ S := span{S∗nv : n > 1}. For any g ∈ S we use

the previous inequality to see that
∫

T

|g|2|ϕ|−2dm .

∫

T

|g|2dm

which means, since S is dense in Kv, that
1
ϕ
Kv ∈ Ku. �

Combining this result and our discussion above, we have the following
characterization of the bounded onto multipliers.

Corollary 10.2. For inner functions u, v and ϕ ∈ H∞, the following
are equivalent:

(i) ϕKu = Kv;

(ii) ϕS∗u ∈ Kv,
1
ϕ
∈ H2, 1

ϕ
S∗v ∈ Ku, and

inf{|̂ϕ|2(λ) + |u(λ)| : λ ∈ D} > 0;

Remark 10.3. For ϕ ∈ H∞ notice that |ϕ(λ)| 6 |̂ϕ|2(λ) for all λ ∈ D.
Thus if ϕS∗u ∈ Kv,

1
ϕ
∈ H2, 1

ϕ
S∗v ∈ Ku, and

inf{|ϕ(λ)|2 + |u(λ)| : λ ∈ D} > 0,

then ϕKu = Kv.

11. Generalizations

When p ∈ (1,∞) there is an Lp version of the model spaces Ku, namely,
via boundary values as in (2.7),

Kp
u := Hp ∩ u(ζHp),

where

Hp :=
{
f ∈ Lp :

∫

T

f(ξ)ξ
n
dm(ξ) = 0 ∀n < 0

}
.
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From here one can examine the multipliers

Mp(u, v) := {ϕ ∈ O(D) : ϕKp
u ⊆ Kp

v}.
It is still the case that Mp(u, v) ⊆ Hp and our main characterization
(Theorem 4.1) holds for Mp(u, v) with the appropriate change that
|ϕ|pdm is a Carleson measure for Kp

u. Theorem 3.14 is also valid in this
more general setting but the Crofoot-transform is no longer isometric.
However, certain Lp results concerning bounded multipliers are more
delicate since the norm of a reproducing kernel no longer has the nice
form except when u and v satisfy the connected level set condition
(see [3, Corollary to Theorem 1.3]). In particular, equation (3.9) and
Corollary 5.2 still work under the connected level set condition.

It would be worth exploring the dependence of Mp(u, v) on the param-
eter p. For example, Dyakonov [21] showed that for certain ϕ ∈ L∞,

Kerp Tϕ = {f ∈ Hp : P+(ϕf) = 0}
can depend quite dramatically on p. Indeed, dimKerp Tϕ can change
with p. Does the same “jump in dimension” phenomenon take place
with the multiplier space Mp(u, v)?

We mention that in the context of multipliers from Kp
u to Kq

v, where u
divides v, Dyakonov characterizes the corresponding Carleson measures
(see for instance [22, Theorem A]).

Recall the de Branges-Rovnyak spaces H (b) mentioned earlier. These
are close cousins to the model spaces, where, in fact, H (b) = Kb

when b is inner. One can ask, as was done in [28], about the multi-
pliers M (H (b1),H (b2)). The paper [28] also relates other multiplier
problems (e.g., between two Herglotz spaces) to pre-order problems in
operator theory. See also [14] where some general facts are stated in
the setting of de Branges-Rovnyak spaces.

Finally, one can ask, what are necessary and sufficient conditions on u
and v such that M (u, v) 6= {0}? This non-triviality of M (u, v) goes
beyond the non-triviality of the kernel of a Toeplitz operator and ap-
pears in [28] in the context of pre-orders of partial isometries. This
current paper contains several results along these lines (some neces-
sary, some sufficient) but a tractable necessary and sufficient condition
remains unknown.
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