
HAL Id: hal-01319597
https://hal.science/hal-01319597

Submitted on 21 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new accurate numerical method of approximation of
chaotic solutions of dynamical model equations with

quadratic nonlinearities
René Lozi, Vasily A. Pogonin, Alexander N. Pchelintsev

To cite this version:
René Lozi, Vasily A. Pogonin, Alexander N. Pchelintsev. A new accurate numerical method of ap-
proximation of chaotic solutions of dynamical model equations with quadratic nonlinearities. Chaos,
Solitons & Fractals, 2016, 91, pp.108-114. �10.1016/j.chaos.2016.05.010�. �hal-01319597�

https://hal.science/hal-01319597
https://hal.archives-ouvertes.fr


A New Accurate Numerical Method of Approximation

of Chaotic Solutions of Dynamical Model Equations

with Quadratic Nonlinearities
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Abstract

In this article the authors describe the method of construction of approximate
chaotic solutions of dynamical model equations with quadratic nonlinearities
in a general form using a new accurate numerical method. Numerous systems
of chaotic dynamical systems of this type are studied in modern literature.
The authors find the region of convergence of the method and offer an al-
gorithm of construction and several criteria to check the accuracy of the
approximate chaotic solutions.
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1. Introduction

Chaotic dynamical systems are difficult to analyse. A close formula giving
the solution has not been found yet. Therefore numerical approximations are
mandatory in order to follow the motion of a particle driven by a system of
a nonlinear differential equation.
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Let us consider the system of a differential equations with quadratic non-
linearity

ẋ = B0 +B1x+ ϕ(x), (1)

where x(t) =
[
x(1)(t) . . . x(m)(t)

]T
is a m-dimensional real vector function,

B0 is a given m-dimensional real column vector,

ϕ(x) =
[
ϕ(1)(x) . . . ϕ(m)(x)

]T
,

ϕ(p)(x) = 〈Qpx, x〉, B1 and Qp (p = 1,m) are given real (m×m) matrices.
Suppose that the system (1) has a bounded solution for t ≥ 0. Thus, the

corresponding trajectory is attracted to the limit trajectory, see [1, pp. 338-
340]. Hence, this trajectory determines the behavior of the bounded solutions
of the system (1) when time goes to infinity. The limiting trajectory can be
a point of equilibrium, a cycle, or can be described by an almost periodic
function or can have a more complicated structure such as a strange attractor.

For some dynamical systems (1) the solutions are unstable on their at-
tractors. It causes difficulties applying numerical methods for solving corre-
sponding systems of ordinary differential equations (ODE). The problem is
not limited to ODE with entire derivatives, but also for dynamical systems
governed by fractional derivatives [2, 3, 4]. Many researchers use differ-
ent numerical schemes based on classical methods, e.g. the explicit Euler
scheme with the central-difference scheme [5], the Adams scheme [6], the
higher derivatives scheme [7], the 4th order Runge-Kutta method [8] and the
second-order accurate Adams-Bashforth method [9] for the Lorenz system.
However, the above methods cannot be used for (1) due to the instability of
chaotic solutions, since the global error increases with the size of the inte-
gration interval [10, 11]. Strogatz [12, pp. 320-323] computes the estimate
of the time Tc when the trajectories of the system (1) decouple critically for
the Lorenz system. In [11] the authors present the regression dependence to
estimate Tc for the integration step ∆t and the order No of the numerical
scheme

Tc(No,∆t) ≈ −2.6No lg ∆t (2)

for the classical values of parameters of the Lorenz system. They also high-
lights that the numerical solution converges to different positions of equilibria
for various values ∆t for the transient chaotic behavior.

Most importantly, the result cannot be improved by decreasing the inte-
gration step ∆t, since the integration error has an extremum as a function
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of ∆t. This problem can be solved by using high-accuracy calculations [13].
However, this approach restricts the study: on the one hand, the way to
decrease the error is narrow (to change ∆t and the accuracy of real number
representation in order to control the calculation process); on the other hand,
the number of operations needed for very small ∆t is large. The Runge-Kutta
methods can be applied to obtain solutions with a higher accuracy, but the
corresponding formulas for No > 6 are extremely cumbersome [14, 15].

In [16] the authors present the multistage spectral relaxation method
(MSRM) which differs from the previous direct methods. They use the
Chebyshev spectral method to solve the system (1) in the Gauss-Siedel form
by an iteration scheme at each subinterval of integration. The advantage is
that the accumulation of errors is not as great as it was in the direct meth-
ods. Motsa et al. compare the numerical results of MSRM with the piecewise
successive linearization method [17]. However, the authors do not study the
error of the method as an independent unit and increase the risk of rounding
errors.

To find approximate solutions of systems of differential equations, the
method of power series (or the method of Taylor series) is sometimes used.
In [18, 19, 20] this method is used as the Adomian decomposition method
(ADM). In those studies, the authors obtain the coefficients of expansion of
the solution in a power series for different systems of the form (1) without
finding the radius of convergence. The error of the approximate chaotic so-
lution is only compared with the numerical results using the Runge-Kutta
methods. Vadasz and Olek [21] also study the dependence of ratio of coeffi-
cients of power series with respect to the number of terms in the series.

In this article we consider a modification of the power series method (sim-
ilar to ADM) for the system (1). An advantage over the general scheme of
the Taylor series method is that the expansion coefficients can be rapidly
calculated by formulas in comparison to the procedure of symbolic differen-
tiation of the right-hand sides of the system equations (in the nonlinear case
huge memory is needed to store the symbol expressions in the calculation of
the higher-order derivatives). Also, an estimate of the region of convergence
of the power series is obtained, and some criteria for checking the accuracy
of the approximate chaotic solutions is given in this article. Recently such an
approach has been applied to the Lorenz and Chen systems [22, 23]. Here,
we generalize our results for the systems in the form (1).
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2. Some Examples of Chaotic Systems with Quadratic Nonlinear-
ities

In this section, we give several examples found in the literature on chaotic
systems of the form (1), for which our method can be applied.

2.1. The well known Lorenz system
ẋ(1) = σ

(
x(2) − x(1)

)
,

ẋ(2) = rx(1) − x(2) − x(1)x(3),

ẋ(3) = x(1)x(2) − bx(3).
For this system, the matrices are

B0 = 0, B1 =


−σ σ 0

r −1 0

0 0 −b

 , Q1 = 0, Q2 =


0 0 −1

0 0 0

0 0 0

 ,

Q3 =


0 1 0

0 0 0

0 0 0

 .
2.2. The Chen system [24, 25]

ẋ(1) = a
(
x(2) − x(1)

)
,

ẋ(2) = (c− a)x(1) − x(1)x(3) + cx(2),

ẋ(3) = x(1)x(2) − bx(3),
for which the matrices are

B0 = 0, B1 =


−a a 0

c− a c 0

0 0 −b

 , Q1 = 0, Q2 =


0 0 −1

0 0 0

0 0 0

 ,

Q3 =


0 1 0

0 0 0

0 0 0

 .
4



2.3. The Nose-Hoover oscillator [26]
ẋ(1) = x(2),

ẋ(2) = −x(1) − x(2)x(3),

ẋ(3) =
(
x2(2) − 1

)/
q.

In this case, the matrices are

B0 =


0

0

−1/q

 , B1 =


0 1 0

−1 0 0

0 0 0

 , Q1 = 0, Q2 =


0 0 0

0 0 −1

0 0 0

 ,

Q3 =


0 0 0

0 1/q 0

0 0 0

 .
2.4. The Sprott-Jafari system [27]

(we study this example in Sec. 7 to show the efficiency of our method)
ẋ(1) = x(2),

ẋ(2) = −x(1) + x(2)x(3),

ẋ(3) = x(3) + ax2(1) − x2(2) − b
(3)

with corresponding matrices

B0 =


0

0

−b

 , B1 =


0 1 0

−1 0 0

0 0 1

 , Q1 = 0, Q2 =


0 0 0

0 0 1

0 0 0

 ,

Q3 =


a 0 0

0 −1 0

0 0 0

 .
In [28] Sprott lists the nineteen three-dimensional ODEs of the form (1).
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2.5. Increasing the size of the system, one finds the 4D Rössler model [29]
ẋ(1) = −

(
x(2) + x(3)

)
,

ẋ(2) = x(1) + ax(2) + x(4),

ẋ(3) = b+ x(1)x(3),

ẋ(4) = −cx(3) + dx(4).

In this case, the matrices are

B0 =


0

0

b

0

 , B1 =


0 −1 −1 0

1 a 0 1

0 0 0 0

0 0 −c d

 , Q1 = Q2 = Q4 = 0,

Q3 =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 .
2.6. Finally, our method is even valid for the nine-dimensional Lorenz system

[30]



ẋ(1) = −σb1x(1) − σb2x(7) − x(2)x(4) + b4x
2
(4) + b3x(3)x(5),

ẋ(2) = −σx(2) −
σ

2
x(9) + x(1)x(4) − x(2)x(5) + x(4)x(5),

ẋ(3) = −σb1x(3) + σb2x(8) + x(2)x(4) − b4x2(2) − b3x(1)x(5),

ẋ(4) = −σx(4) +
σ

2
x(9) − x(2)x(3) − x(2)x(5) + x(4)x(5),

ẋ(5) = −σb5x(5) +
1

2
x2(2) −

1

2
x2(4),

ẋ(6) = −b6x(6) + x(2)x(9) − x(4)x(9),

ẋ(7) = −rx(1) − b1x(7) + 2x(5)x(8) − x(4)x(9),

ẋ(8) = rx(3) − b1x(8) − 2x(5)x(7) + x(2)x(9),

ẋ(9) = −rx(2) + rx(4) − x(9) − 2x(2)x(6) + 2x(4)x(6) + x(4)x(7) − x(2)x(8).
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3. The Numeric-Analytical Solution of Differential Equations

The system (1) has a polynomial right-hand side. This allows the use of
an explicit formula to calculate the power series coefficients and estimate the
region of convergence.

Let

x(t) =
∞∑
i=0

Λit
i, (4)

where x(0) = Λ0 is an initial condition for the system (1), Λi ∈ Rm. The
multiplication of the power series in the Cauchy form in the vector notation
is

ϕ(p)(x) =
∞∑
i=0

Φi(p)t
i, Φi(p) =

i∑
j=0

〈QpΛj,Λi−j〉, p = 1,m.

Let
Φi =

[
Φi(1) . . . Φi(m)

]T
.

Note that
Λ1 = B0 +B1Λ0 + Φ0. (5)

Equating the coefficients at the same powers, we obtain from the system (1)
the recurrence relation to calculate the power series coefficients in (4) for
i ≥ 2

Λi =
B1Λi−1 + Φi−1

i
. (6)

This form of coefficients of the power series is simpler and faster to compute
than in ADM (because it does not contain factorials).

Although a right-hand side of the system (1) is analytical everywhere,
the radius of convergence of the series can be bounded and it depends on
Λ0. Therefore, only a part of the trajectory can be obtained by the above
method. The procedure of constructing the trajectory arc of any time length
is given by joining several parts of the trajectory computed by our method.
These parts of trajectory describe the desired solution, when the series (4)
converges. The integration error is accumulated when passing from one tra-
jectory part to another part (due to the error of finding the current approxi-
mate solution), however it can be controlled by varying the accuracy of power
series expansion. Here, highly accurate calculations may help in continuing
the solution for very large time intervals because the accuracy εp of power
series expansion cannot be less than the machine epsilon εm.
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4. Algorithm for Constructing the Trajectory Arc

Let us consider the algorithm of constructing the trajectory arc for the
time interval [0;T ], where the value T is given:

begin

1. Set the values of εm and way;

2. Input the values of T , εp and Λ0;

3. t := 0;

4. Calculate the value of ∆t from a function of Λ0;

5. t := t+ ∆t;

6. If t > T then flag := 1; ∆t := ∆t− (t− T )
Else If t < T then flag := 0
Else flag := 1;

7. p := 1; i := 0;

8. x := Λ0;

9. i := i+ 1; p := p · way ·∆t;
10. Calculate Λi by the formulas (5) and (6);

11. x := x+ Λi · p;
12. L := ‖Λi‖ · |p|;
13. If L > εp then Goto Step 9;

14. Λ0 := x;

15. If flag = 0 then Goto Step 4;

16. Print Λ0

end.

The variable way provides an integration with reverse time when its value
is −1 (for going forward way = 1). For the sake of simplicity, the algorithm
uses the positive values of time in both directions of motion along a trajec-
tory. Thus, the algorithm allows the construction of an approximate solution
in forward and backward time. We use both time directions to check the pre-
cision of the approximated solution and evenly increase such a precision.

Let us consider in detail the procedure of constructing the trajectory arc.
Let tl ∈ Ω, l = 1, N be the index of the time intervals [tl−1; tl], where the

series (4) converges, N is the number of such intervals, t0 = 0, tN = T ,

Ω = [t0; t1] ∪ [t1; t2] ∪ . . . ∪ [tN−1; tN ].
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We define the vector Λ0 of initial conditions for time t0. Then the vectors Λi

(i = 1, 2, . . .) are calculated using the formulas (5) and (6) until the following
estimate is not valid

‖Λi‖ |∆tl|i < εp, (7)

where ∆tl = tl− tl−1. The module in (7) is used in case of negative values of
the step ∆tl. Let x1(t) be the m-dimensional n1-power polynomial, which is
obtained from the estimation (7) in the first stage (l = 1) of calculation. In
the second stage (l = 2) we set

Λ0 := xl−1(∆tl−1)

and set the initial time t1 to zero in order to simplify the calculations (since
the system (1) is dynamic).

If τl is the region of convergence of the power series (4), then the value
∆tl corresponds to

0 < ∆tl < τl

or
−τl < ∆tl < 0.

5. Estimating the Region of Convergence of the Power Series

Estimating the region of convergence of the series (4) is important when
approximate solutions of the system (1) are computed by the method de-
scribed above. For this, we introduce the following notations:

h1(Λ0) = ‖Λ0‖ , µ = m max
p=1,m

‖Qp‖ ,

h2(Λ0) =

{
‖B0‖+ (‖B1‖+ 2µ)h1 + µh21, if h1 > 1,

‖B0‖+ ‖B1‖+ µ otherwise.

Let us prove that the series (4) converges for t ∈ (−τl; τl), where τl = 1/h2.
For this, the number h2 (with h2|t| < 1) should be chosen such that∥∥Λit

i
∥∥ ≤ (h2|t|)i.

Then the series (4) converges absolutely by the direct comparison test.
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Theorem 1. The following inequalities hold

‖Λi‖ ≤ hi2 (8)

for any natural number i.

Proof. We use mathematical induction. Let us consider a case where h1 > 1.
Let us show that (8) is valid for i = 1. From the formula (5) and the

Cauchy-Schwarz inequality, we have

‖Λ1‖ ≤ ‖B0‖+ ‖B1‖ ‖Λ0‖+m max
p=1,m

|〈QpΛ0,Λ0〉| ≤

≤ ‖B0‖+ ‖B1‖h1 + µh21 ≤ h12,

which proves that (8) is valid for i = 1.
Assume that (8) is valid for i = k. Then it is also valid for any j = 1, k,

that is,
‖Λj‖ ≤ hj2. (9)

Let us prove that (8) is valid for i = k + 1. Let us estimate∥∥∥∥∥
k∑

j=0

〈QpΛj,Λk−j〉

∥∥∥∥∥ ≤ µ ‖Λ0‖ ‖Λk‖+ µ ‖Λk‖ ‖Λ0‖+

+µ
k−1∑
j=1

‖Λj‖ ‖Λk−j‖ ≤ 2µh1h
k
2+

+µ
k−1∑
j=1

hj2h
k−j
2 = 2µh1h

k
2 + (k − 1)µhk2.

From the formula (6) and the inequalities (9) we obtain the estimate (con-
sidering that k ≥ 1 and h1 > 1)

‖Λk+1‖ ≤
‖B1‖ ‖Λk‖+ 2µh1h

k
2

k + 1
+
k − 1

k + 1
µhk2 ≤ ‖B1‖hk2+

+2µh1h
k
2 + µhk2 ≤ (‖B0‖+ ‖B1‖+ 2µh1 + µ)hk2 ≤

≤ h2h
k
2 = hk+1

2 ,

which proves that (8) is valid for any natural number i.
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Now, let us consider the other case h2 ≤ 1. Let us prove by induction
that (8) is valid in this case. For i = 1 we have

‖Λ1‖ ≤ ‖B0‖+ ‖B1‖+ µ = h12.

Hence, when i = 1, the statement (8) is valid.
Assume that (8) is valid for i = k. Let us estimate∥∥∥∥∥

k∑
j=0

〈QpΛj,Λk−j〉

∥∥∥∥∥ ≤ 2µhk2 + (k − 1)µhk2 = (k + 1)µhk2.

Let us prove that (8) is valid for i = k + 1. It follows from the formula
(6) and the above assumption that

‖Λk+1‖ ≤
‖B1‖ ‖Λk‖
k + 1

+ µhk2 ≤ ‖B1‖hk2 + µhk2 =

= (‖B1‖+ µ)hk2 ≤ h2h
k
2 = hk+1

2 ,

which proves that (8) is valid for any natural i when h2 ≤ 1.

6. The Accuracy of the Approximate Chaotic Solution

We assume

n{way}
max = max

l
n
{way}
l , l{way}

max = indmax
l

n
{way}
l ,

∆t{way}
max = way ·max

l

∣∣∣∆t{way}
l

∣∣∣ , d{way}
max = indmax

l

∣∣∣∆t{way}
l

∣∣∣ , (10)

where the variable {way} shows the direction of the time.
In this section, we give some criteria to check the accuracy of the approx-

imate chaotic solutions:

1. The accuracy εa of approximation for way = 1. When the inequality (7)

holds, we increase the powers n
{1}
l of all polynomials x

{1}
l (t) (getting

other approximate solution) and check the distance δa between the
approximate solutions in the time interval [0;T ]. If δa > εa then we
increase nl.
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2. In the special case of the Lorenz system, we check (2) as

T � Tc

(
n{1},∆t{1}

)
,

where n{1} is the mean power of polynomials x
{1}
l (t) and ∆t{1} is the

mean value of ∆t
{1}
l .

3. Let εR be the radius of the neighborhood of initial point, in which
the approximate solution returns at backward by time. We choose the
precision εp so that the following inequality holds:∥∥∥x{−1}

N̂

(
∆t
{−1}
N̂

)
− x(0)

∥∥∥ < εR,

where N̂ = N{−1}. We do not know the exact solution of the system (1)
in the general case, but we know exactly its initial point. Therefore, we
can decide how many digits must coincide with the digits of the initial
point. This accuracy control of approximate chaotic solutions is a great
improvement when compared to the classical numerical methods. One
issue is that a large amount of computing is needed (due to the repeti-
tion of forward and backward trajectories computation). The solutions
of the system (1) are generally strongly unstable in reverse time: they
immediately diverge from the attractor, since in our calculations we are
close to it but not exactly on it. However, we cannot always go back
to the acceptable neighborhood of the initial point. If a value of the
accuracy εp is too big large, then the point of the trajectory will go to
infinity when we compute backward due to strong unstability. In [22]
εp = 10−50 for the Lorenz system, in [23] εp = 10−80 and 10−53 for the
Chen system.

4. A check of an approximate solution configuration (in addition to the
previous criterion). We calculate the numbers (10) which describe the
approximate solutions. Further, we verify that (enough of coincidence
of a several approximate equalities, an example is given in Sec. 7)

N ≈ N̂ , n
{1}
max ≈ n

{−1}
max , tl{1}max

+
∣∣∣t

l
{−1}
max

∣∣∣ ≈ T,

d
{1}
max + d

{−1}
max ≈ N, t

d
{1}
max

+
∣∣∣t

d
{−1}
max

∣∣∣ ≈ T.
(11)

The advantage here is that we control the accuracy comparing the
values of arguments of approximate solutions in forward and backward
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time. Thus, we conclude that it is sufficient to use the third and fourth
criteria of accuracy.

The authors of the article [31] introduced a transformation of the Chen
system to the Lorenz system as

xL(tL) = −xC(tC)

c
, tL = −c · tC , (12)

where xL and xC are vectors of phase coordinates for the Lorenz system
and Chen system, respectively; tL and tC are times in these systems, c is a
parameter of the Chen system. Chen is right in the article [32] that using
such a transformation, the time will be reversed in the Lorenz system for
c > 0.

Since usually
c > 1 (13)

then the division of xC by c decreases the computed error for the Lorenz
system. The presented algorithm allows going backward. Thus the trans-
formation (12) can give an approximate solution of the Lorenz system in
enlarged scale if one knows an approximate solution of the Chen system, if
the inequality (13) is valid.

7. Calculating Experiment

We present the results of computations based on the above scheme for
the system (3). The parameter values are a = 8.888, b = 4. We have

‖Q1‖ = 0, ‖Q2‖ = 1, ‖Q3‖ = a, µ = 3a, ‖B0‖ = b, ‖B1‖ = 1,

h1 =
∣∣Λ0(1)

∣∣+
∣∣Λ0(2)

∣∣+
∣∣Λ0(3)

∣∣ ,
where Λ0(i) is the i-coordinate of the vector Λ0. The initial condition is

Λ0 = [0 3.9 0.7]T.

as in [27]. We consider the solution of system (3) for T = T1 = 34, εp = 10−15

and εm = 1.0842 ·10−19 (the number of bits for the mantissa of a real number
is 64). In this case, εR = 10−5. We use the Euclidean norm in the inequality
(7) to reduce the number of terms in approximating polynomials.
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Figure 1: A graph of rapprochement of the trajectory with the initial point in the formula
(14).
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Figure 2: A graph of rapprochement of the trajectory with the initial point in the formula
(15).
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Let us move the initial point by the corresponding trajectory at T = T2 =
6 for a better approximation to the attractor. We get the point

x
{1}
N=15202(T2) =

 −1.388360370340798916
0.749102120590088463
1.996651922943586555

 . (14)

Then we set Λ0 = x
{1}
15202(T2).

Let us research the trajectory return in a neighborhood of the radius eps
of the initial point because the limiting trajectory on the attractor has a
property of recurrence. We construct a graph illustrating a rapprochement
of the trajectory with the initial point (Fig. 1).

We move forward in time the initial point obtained from the above for
T = T3 = 1 by trajectory. We get the point

x
{1}
N=2210(T3) =

 1.512058089397715359
0.408816498647179974
−4.158968175695369477

 . (15)

Then we set Λ0 = x
{1}
2210(T3) again. The graph of rapprochement of the

trajectory with the initial point is shown in Fig. 2.
The last point of the graph in Fig. 1 corresponds to the time

tr1 = 26.316,

in Fig. 2
tr2 = 26.297.

Note that
dT2 + max {tr1 , T3 + tr2}e = T1.

We checked the fourth criteria in Sec. 6 for the initial point in (15) and
T = tr2 (Tables 1 and 2). Note that the extrema can not be unique in the
formulas (10). Therefore, not all of the approximate equalities (11) are valid.

The graphs in Figs. 1 and 2 show that the solution on an attractor
of the system (3) is described by an almost periodic function because the
moments of time of trajectory return to the neighborhood of the initial point
are approximately at the same distance from each other. It shows the relative
density of the set of such moments of time.

The trajectory arc constructed in the time interval [0; tr1 ] is presented in
Fig. 3.
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Figure 3: The trajectory arc constructed in the time interval [0; tr1 ] for the initial point
in (14).

Table 1: The results of calculating experiment for way = 1.

N 63244

n
{1}
max 8

l
{1}
max 61150
t
l
{1}
max

25.1842

d
{1}
max 13653
t
d
{1}
max

6.40688

∆t
{1}
max 0.00617846
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Table 2: The results of calculating experiment for way = −1.

N̂ 63244

n
{−1}
max 8

l
{−1}
max 2097
t
l
{−1}
max

−1.11196

d
{−1}
max 13607
t
d
{−1}
max

−5.89213

∆t
{−1}
max −0.0061386
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