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ABSTRACT 

Purpose Enhancement of intra-nasal sinus drug deposition involves nebulization of a drug 

superimposed by the acoustic airflow characterized by a specific frequency. We investigated the 

impact of fixed frequency versus frequency sweep acoustic airflow on the improvement of 

aerosolized drug penetration into the maxillary sinuses. 

Methods Fixed frequency and frequency sweep acoustic airflow were generated using a 

prototype of variable frequency nebulizing system, and their effect on the intra-nasal sinus 

aerosol deposition in a ‘nasal replica’, a transparent, water-resistant, non-porous resin replica of 

the human plastinated cast created using a stereolithography technique, was tested. Sodium 

fluoride and gentamicin were chosen as markers. In addition to this, the effect of sweep cycle 

and intensity variation was also studied.  

Results Studies performed using fixed frequency acoustic airflow showed that each of the 

maxillary sinuses of the ‘nasal replica’ required specific frequency for the optimal intra-nasal 

sinus aerosol deposition; depending on the ostia of the left and right maxillary sinuses which are 

different. Intra-nasal sinus drug deposition experiments under the effect of the frequency sweep 

acoustic airflow showed an optimal aerosol deposition into both maxillary sinus of the ‘nasal 

replica’. Studies on the effect of the duration of the sweep cycle showed that the shorter the cycle 

the better the deposition. 

Conclusion Our study demonstrates the benefit of frequency sweep acoustic airflow on the drug 

deposition into maxillary sinuses of the ‘nasal replica’ characterized by ostia of different 

geometry. However, the delivery rates of the ‘nasal replica’ cannot be directly applied to real 

human chronic rhinosinusitis condition; further in vivo studies have to be conducted. 
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1. Introduction  

Chronic rhinosinusitis (CRS) is a common disorder characterized by mucosal inflammation of 

the nose and paranasal sinuses with sinonasal symptoms persisting for greater than 12 weeks (1). 

Sinonasal symptoms involve nasal blockage, obstruction, congestion or nasal discharge (anterior 

or posterior nasal drip) (2). The nose and paranasal sinuses constitute a collection of air filled 

spaces within the anterior skull. The paranasal sinuses communicate with the nasal cavity 

through small apertures, known as maxillary ostia (3,4). The osteomeatal complex, composed of 

maxillary ostia and four other structures, plays a major role in clearing of the paranasal sinuses 

with mucus moving through these small orifices (1). Blockage of sinus drainage through 

infection of the nasal mucosa or impaired mucociliary clearance produces a favorable 

environment for sinusitis in which pathogens may proliferate. CRS is a significant and increasing 

health problem which results in a large financial burden on society (5,6). The etiology of CRS is 

incompletely understood; therefore, the management of this complex disease remains a 

challenge. Various systemic therapeutic agents are commonly employed. However, long term 

use of systemic agents, such as corticosteroids and antibiotics, over prolonged periods results in 

adverse effects, drug interactions, and antimicrobial resistance. Hence, functional endoscopic 

sinus surgery (FESS) plays a vital role in the treatment process. There are, however, several 

negative factors that are still present after surgery, including potential offending bacteria, fungi, 

viruses, and the patients’ immunologic responses. These factors and others cause many patients 

to have frequent, recurrent acute infections compounding their chronic sinusitis. To avoid this, 

studies have been redirected towards determining better treatments with fewer implications. The 

development of topical therapy delivered directly to the sinonasal cavity has created an 

alternative treatment strategy preventing sinus surgery or at least delaying the need for sinus 
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surgery. Antibiotics are the most commonly prescribed medication for CRS due to its recognized 

efficacy on rhinosinusitis associated bacteria (7). Nebulization is a widely used means of drug 

delivery to the upper and lower airways as it possesses an advantage over classic means by 

directly reaching the target area and enhancing local nebulized drug deposition (8). The 

effectiveness of nasal nebulization to target maxillary sinuses has been previously demonstrated 

in several studies (9,10,11,12,13). Nebulizing devices should enable deposition over the entire 

nasal cavity surface, including medial meatus, unlike nasal sprays. Nebulizers with additional 

acoustic airflow function are recommended for the treatment of CRS. These medical devices are 

enabled to generate acoustic airflows that induce acoustic hyper pressure in the ostium, 

displacing the air and aerosol towards the maxillary sinuses thus allowing sinus ventilation 

(8,15,16,10). The efficacy of superposition of the acoustic airflow on the nebulized drug has 

been demonstrated in previous studies. For example, Mainz et al. in his pilot study in cystic 

fibrosis patients with upper airway Pseudomonas aeruginosa colonization has showed that 

sinonasal inhalation of antibiotics applied as vibrating aerosols gave promise as a non-invasive 

method for the treatment of upper airway diseases (16). Recently, we have studied the 

gentamicin deposition in the maxillary sinuses under the effect of high frequency (f≥ 100 Hz) 

and low frequency (f≤ 45 Hz) acoustic airflow. We demonstrated the benefit of different modes 

of vibrating acoustic airflow for maxillary sinus ventilation and intra-sinus drug deposition, and 

that the degree of gentamicin deposition varies as a function of frequency of the acoustic airflow 

and the geometry of the ostia (17). Hence, depending on the degree of obstruction of the ostia in 

CRS patients, the concentration of drug penetrated to the sinuses varies. Therefore, we can make 

a hypothesis that using patient specific acoustic airflow (depending on the ostia geometry); 

improved treatment of CRS could be achieved in the future. Nowadays, commercial medical 
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nebulizing devices are being characterized by an acoustic airflow of fixed frequency. A new 

strategy capable of addressing different morphology of maxillary ostia is being sought to find a 

universal solution for the majority of CRS patients; volume and dimensions of maxillary sinuses 

and their ostia change throughout the progression of CRS. This study aims at investigating the 

impact of frequency sweep acoustic airflow on the enhancement of the aerosol deposition into 

the maxillary sinuses in a well-characterized nasal replica. The main purpose of this work was to 

demonstrate the benefit of a new strategy, i.e. the frequency sweep acoustic airflow on the 

enhanced drug deposition, whatever the ostium morphology, compared to actual strategy 

consisting of acoustic airflow of fixed frequency. 
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2. Materials and Methods 

2.1. Anatomic nasal replica 

In this study, a nasal replica of a human plastinated cast was used. The plastination technique, 

the methods of obtaining the human plastinated cast, its anatomic characteristics and the 

advantages it provides to the aerosol deposition experiments were described in previous 

studies (18,13). CT scan images of the human plastinated cast were numerically analyzed to 

obtain the dimensions of ostia and the volume of maxillary sinuses (MS); thus allowing the 

calculation of the resonance frequency of the MS using Helmholtz resonator theory (19). 

A nasal, transparent, water-resistant, non-porous resin replica of the human plastinated cast, 

created using a stereolithography technique (13), was used to perform sodium fluoride (NaF) 

aerosol and then gentamicin aerosol deposition experiments. Anatomical and aerodynamic 

reproducibility between the nasal replica and its human plastinated cast were confirmed after 

performing endoscopy and CT scans (13). The left maxillary ostium is characterized by being 

short and broad while the right maxillary ostium is long and narrow. The advantage of using 

the nasal replica over the human plastinated cast was previously described (20).  

2.2 Reconstruction of 3D image 

Analysis of the images obtained from cranially scanning the human plastinated head using CT 

scanner (Lightspeed VCT, GE Healthcare) of 0.2 mm slice spacing was performed. The 

images were analyzed to determine the volume of maxillary sinuses in addition to the 

geometric dimensions of maxillary ostia (length and diameter). Having determined these 

parameters, it was possible to calculate the resonance frequency of each MS; therefore 

comparing the numerically obtained values with the experimental ones. Steps of 
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reconstruction involved manual segmentation of each slice using polygonal approximation 

(Fig. 1). The segmentation process was performed on the total number of slices. After treating 

each slice with the polygon active tool, the total number of pixels of the total segmented 

volume was determined, and the volume of each maxillary sinus was calculated. This 

procedure was performed for each sinus separately. That was the first part of numerical 

analysis. 

The second part consisted of determining dimensions of maxillary ostia. Segmentation of the 

ostia was carried out following the same steps described above. After the selection of the 

required regions representing the ostia, to be able to determine exact dimensions of these 

ostia, selected regions were used to generate 3D volumetric mesh using the mesh generation 

and processing toolbox, iso2mesh. The mesh was viewed using the MeshLab software and the 

required dimensions were measured. Finally, applying the Helmholtz resonator formula 

(� � �
��
�� �	⁄ ) (17), the resonance frequency of the left and right maxillary sinuses was 

calculated. 

 

Figure 1 Manual segmentation of the region representing MS of each slice of CT scan images of human 
plastinated cast using polygonal approximation. 
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2.3 Medical nebulizing systems 

Two medical nebulizing systems were used in this study. The first commercial medical device 

used was the ATOMISOR NL11 jet nebulizer connected to the AOHBOX compressor (DTF 

Medical, Saint-Etienne, France). The jet nebulizer was connected to the nasal plug (C28, DTF 

Medical, Saint-Etienne, France) that ensured the connection with the nostrils of the nasal 

replica. This device was operated in its classic mode, i.e. producing the aerosol without 

superimposing its acoustic airflow. The output rate of the device is 0.2 ml/min and its MMAD 

of aerosol particle size is 2.75 ± 0.2 µm. 

The second commercial medical device was the PARI SINUS jet nebulizer associated with a 

PARI SINUS compressor (Pari GmbH, Starnberg, Germany). It was also used for the 

production of non-acoustic airflow nebulization only, by disconnecting the vent tubing from 

the acoustic airflow output of the compressor. The nebulizer was coupled to the same nasal 

plug as in the experiments with the ATOMISOR NL11. Thus, the PARI SINUS device was 

not used according to producer specifications (i.e. one nostril in, the other out). In fact, as the 

aim of this work was the impact of acoustic airflow on intra-sinus drug delivery; same 

experimental protocol of aerosol administration to the nasal fossa for both nebulizing devices 

was required to avoid biases due to the impact of the nasal plug. As a result, we must 

underline that the results of intra-sinus drug deposition for the PARI SINUS device cannot be 

representative of data obtained in vivo according to the producer specifications (17). The 

output rate of this PARI SINUS device is 0.22 ml/min and its MMAD is equal to 3.3 ± 0.1 

µm. 
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Both the PARI SINUS and the DTF medical nebulizing systems were chosen to be used in 

our study as they have appeared in citations of numerous studies performed in France and 

worldwide (20,21,11,15). 

2.4 Sweep Acoustic airflow set-up 

The sweep acoustic airflow set-up acts as a prototype of variable frequency nebulizing 

system. Its role in our study was to generate acoustic airflow of single and fixed frequency in 

the 50-800 Hz range as well as frequency sweep modes. It consists of a vibration exciter 

TIRAvib S 50009 (TIRA GmbH, Schalkau, Germany) and a power amplifier TIRA BAA 60 

(TIRA GmbH, Germany). The vibration exciter is an electrodynamic transducer with a wide 

frequency range of 2 to 20 kHz, and it is supplied with a sinus wave signal driven by a power 

amplifier. For a complete operation of the system, a computer with a soundcard was used as a 

signal generator. Computer was connected to the power amplifier which was connected to the 

vibration exciter. Vibration exciter was producing an acoustic airflow delivered to the 

nebulizer via vent tubing (Fig. 2). 

2.5 Acoustic airflow nebulization 

In the first part of experiments, nebulization with an acoustic airflow characterized by a single 

and fixed frequency values was tested. We tested several frequency values: 50 Hz, 100 Hz, 

200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz, 700 Hz and 800 Hz (n=6). 

In the second part of experiments, we tested the frequency sweep acoustic airflow 

nebulization. Frequency sweep acoustic airflow is characterized by a range of frequency 

values repeated over a certain sweep cycle. We tested three frequency ranges; 45- 500 Hz, 45- 
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800 Hz and 100- 500 Hz over different sweep cycles (n=6). The effect of intensity of the 

acoustic airflow on the intra-sinus aerosol deposition was also tested.  

Intensity of the acoustic airflow was measured using a C-weighted sound level meter 

(EXTECH Instruments, USA) used for the measurement of the maximum sound pressure 

level. It was positioned at the output of the NL11 nebulizer to measure the intensity of the 

acoustic airflow coming out of it. Variation in the level of intensity was induced using the 

power amplifier TIRA described in the previous section. Intensity level of the acoustic airflow 

produced by the DTF nebulizing system was also measured. Two intensity levels were tested, 

128 dB acoustic airflow and 120 dB acoustic airflow, denoted respectively “high intensity” 

and “low intensity”. 

 

Figure 2 (a) Experimental design of frequency sweep acoustic airflow intra-sinus aerosol deposition study. (b) 
Experimental setup of frequency sweep acoustic airflow intra-sinus aerosol deposition study. (1) Vibration exciter 

(2) Nebulizer (3) Nasal replica (4) AOHBOX compressor. 
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2.6 Aerosol deposition into the maxillary sinuses 

Aerosol penetration into the maxillary sinuses under the effect of acoustic airflow 

characterized by a fixed frequency and then by a frequency sweep, was studied. This 

experimental work was divided into two major parts. 

The first part involved the use of NaF, 2.5% (M/V) as a chemical marker according to 

European standard procedure (NF EN 13544-1). Nebulizer NL11 was filled with 4 ml of NaF 

and the nebulization using the DTF nebulizing system was performed (Fig. 2 (A), Fig. 2 (B)). 

The maxillary sinuses of the nasal replica were hermetically sealed during the experiments. 

All nebulization procedures lasted 10 minutes. At the end of each nebulization, the plates 

sealing the sinuses were then removed and the maxillary sinuses were flushed by syringe 

containing 5 ml of distilled water. Each sinus was flushed a couple of times using the same 

distilled water. The region close to the maxillary ostium was never flushed (23). After every 

rinsing procedure, the nasal replica was removed from the setup and copiously washed with 

distilled water and dried with pulsed air. To verify the efficiency of model washing, distilled 

water nebulization experiments were randomly performed throughout the experiments by 

filling the nebulizers with 4 ml of distilled water instead of NaF.  

The concentration of deposited NaF aerosol into MS was measured using the perfectIon 

Fluoride Electrode (METTLER TOLEDO, Switzerland) and the ion meter (METTLER 

TOLEDO, Switzerland) by adding 250 µL of TISAB IV solution (Sigma-Aldrich, Germany) 

to every rinse liquid, according to the European standard procedure (NF EN 13544-1). 

The second part of the experimental work involved the use of gentamicin (GENTAMICINE 

PANPHARMA 160 mg- 2 ml; 80 mg/ml) as a marker. These experiments were performed as 

a final part of the study to verify, using a drug, the benefits of the tested acoustic airflow 
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initially obtained using NaF. The procedure involved filling the nebulizers with 4 ml of a 

gentamicin solution operating at a flow rate of 8 L.min−1. The nasal replica was connected to 

a 15 cm long tube simulating the trachea equipped with an absolute filter. Nebulization lasted 

10 minutes. After each nebulization, the plates closing the sinuses were then removed and the 

maxillary sinuses were flushed four times by syringe containing 1 ml of distilled water. The 

complete experimental setup and the rinsing procedure were described in detail in the 

previous study (10). Gentamicin concentrations in samples were quantified by liquid 

chromatography- tandem mass spectrometry (LC-MS/MS). 

2.7 Statistical analysis 

Data of NaF concentration deposited into the maxillary sinuses was analyzed using Prism 5.0 

software (GraphPad, SanDiego, CA). Graphs were plotted and significance *** (P<0.001) and 

** (P<0.01) was established by two-way ANOVA test (p<0.05) for both NaF and gentamicin 

deposition study. 
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3. Results  

3.1 Reconstruction of 3D image; resonance frequency of LMS and RMS  

Images obtained from CT scanning of the human plastinated cast were numerically analyzed 

to determine the resonance frequency values of LMS and RMS. For the LMS, a volume of 10 

ml was calculated. The diameter and length of its ostium were found to be equal to 7.2 ± 0.4 

mm and 10.7 ± 0.3 mm respectively. As for the RMS, a volume of 14 ml was calculated and 

the diameter and length of its ostium were found to be 4.3 ± 0.3 mm and 9.8 ± 0.2 mm 

respectively. Therefore, by applying the Helmholtz resonator theory (17) where the maxillary 

sinus is compared with a sphere and the maxillary ostium is approximated as a cylindrical 

tube, the resonance frequency of the LMS of the nasal replica is 336 ± 15 Hz and the 

resonance frequency of the RMS is 177 ± 10 Hz. 

 

3.2 Aerosol deposition into the maxillary sinuses using NaF as a chemical marker 

3.2.1 Acoustic airflow with a fixed frequency 

Aerosol deposition into the maxillary sinuses was studied under the effect of acoustic airflow 

characterized by a fixed frequency. Each time an acoustic airflow was characterized by a 

certain single frequency value and superimposed on the nebulized chemical marker (i.e. NaF); 

then the concentration of the deposited NaF into the MS was measured.  

As can be observed in fig. 3 (A), the high deposition of NaF aerosol into the RMS was 

reached when the acoustic airflow was characterized by either of the following frequencies: 

150 Hz, 200 Hz and 300 Hz. These three frequency values correspond to the maximum RMS 

deposition when compared to the rest frequency values studied. The effect of superposition of 

acoustic airflow characterized by one of the 500 Hz, 600 Hz, 700 Hz, or 800 Hz frequencies is 
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negligible. When the deposition results were tested for the statistical significance, it was found 

that the 150 Hz and the 200 Hz acoustic airflow superimposed on the nebulizer has increased 

the NaF deposition by 4-fold when compared with the NaF deposition in the absence of 

superposition of any acoustic airflow. The 300 Hz acoustic airflow has increased the NaF 

deposition by around 4.5 fold. The deposition under the effect of 400 Hz acoustic airflow was 

also significant but relatively less than the one obtained under the effect of 150 Hz, 200 Hz 

and 300 Hz. 

With respect to the intra-sinus NaF aerosol deposition into the LMS, the obtained results are 

shown on (Fig. 3 (B)). The high deposition of NaF solution into the LMS was reached when 

the acoustic airflow was characterized by either of the following frequencies: 150 Hz, 200 Hz, 

400 Hz and 500 Hz. These four frequency values correspond to the maximum LMS deposition 

when compared with the deposition under the effect of the rest frequency values in this study. 

The deposition obtained under the effect of either 300 Hz or 600 Hz acoustic airflow is 

relatively high when compared with the nebulization performed without the superposition of 

acoustic airflow; however, it is smaller when compared with the four previously mentioned 

frequency values. The effect of superposition of acoustic airflow characterized by the 50 Hz, 

100 Hz, 700 Hz or 800 Hz frequency is negligible. When these results were tested for the 

statistical significance, it was observed that the 150 Hz or the 200 Hz acoustic airflow 

superimposed on the nebulizer has increased the NaF deposition by 4-fold when compared 

with the NaF deposition under in the absence of acoustic airflow superposition. The 300 Hz 

acoustic airflow has increased the NaF deposition by around 4.5 fold. The deposition under 

the effect of 400 Hz acoustic airflow was also significant but relatively less than the one 

obtained under the effect of 150 Hz, 200 Hz and 300 Hz. 
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Figure 3 (a)–(b) impact of (50 Hz, 100 Hz, 150 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz, 700 Hz and 800 Hz) 
acoustic airflow on nebulized NaF collected in the right and left maxillary sinuses respectively (in mg/L) (n= 6, 

mean± SEM, * (P <0.05), *** (P<0.0001) for RMS and ***(P<0.001) for LMS)). 
 
 

3.2.2 Acoustic airflow characterized by a frequency sweep 

Aerosol deposition into the maxillary sinuses was studied under the effect of acoustic airflow 

characterized by a frequency sweep of sweep cycle duration equal to 0.3s. Three frequency 

ranges were tested (50-500 Hz, 100-500 Hz, and 50-800 Hz) and deposition results were 

compared for the selection of the optimum range corresponding to the maximum deposition of 

NaF into both maxillary sinuses of our model (Fig. 4 (A)). As for the right maxillary sinus, 

there is no difference observed in the deposited quantity of NaF between the three ranges. 

With respect to the left maxillary sinus, the optimum deposition was attained by 

superimposing the acoustic airflow characterized by the 100-500 Hz frequency sweep range. 
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After selection of the frequency sweep range that led to the maximum NaF deposition into 

both MS of our nasal replica, the effect of the frequency sweep cycle on the intra-sinus 

aerosol deposition was tested. Three cycles were tested: 0.3 s, 3 s, and 30 s (Fig. 4 (B)). 

It can be observed that the longer the sweep cycle, the less the NaF deposition into the 

maxillary sinuses. Hence, sweep cycle of 0.3 seconds results in the efficient deposition of the 

aerosolized NaF into the maxillary sinuses. 

 

Figure 4 (a) Impact of three ranges of frequency sweep acoustic airflow of 0.3 s sweep cycle on the concentration 
(in mg/L) of NaF collected from the MS (n=6, mean±SEM, **(P<0.01), ***(P<0.001)). (b) Impact of sweep cycle 

on the concentration (in mg/L) of NaF deposited in the MS (n=6, mean±SEM, *(P<0.05), ***(P<0.001)). 
 
 

Effect of intensity of the acoustic airflow on the intra-sinus aerosol deposition was also 

studied. Acoustic airflow characterized by a frequency sweep range of 100- 500 Hz of 0.3s 

sweep cycle was involved in this part of the study. The effect of high intensity acoustic 

airflow of 128 dB and the low intensity acoustic airflow of 120 dB was tested on the RMS and 
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LMS separately (Fig. 5 (A), Fig. 5 (B)); a difference of 8 dB is high as the difference in 

decibels between the intensity levels is measured using logarithmic scale. It is clear from the 

figures that there is no significant effect of acoustic airflow intensity on the intra-sinus aerosol 

deposition. 

 

Figure 5 (a)–(b) effect of high intensity versus low intensity acoustic airflow on aerosol deposition into the right and 
left maxillary sinuses respectively. 
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3.3 Aerosol experiments using gentamicin to assess the benefit of acoustic airflow on the 

intra-sinus drug deposition  

Impact of sweep mode acoustic airflow on intra-sinus gentamicin deposition was tested using 

the AOHBOX compressor and the PARI SINUS compressor. Each of the compressors was 

coupled to its specific nebulizer. The acoustic airflow was characterized by a 100-500 Hz 

frequency sweep range of 0.3s sweep cycle. Obtained deposition results were compared with 

the deposition results of our previous study (17). The obtained results clearly demonstrate that 

(Fig. 6): 

- The frequency sweep mode acoustic airflow led to the enhanced gentamicin deposition 

into both maxillary sinuses when compared with the impact of vibrating acoustic airflow 

supplied by both nebulizing systems. 

- With respect to the frequency sweep mode superimposed on the aerosol generated by the 

AOHBOX compressor through the NL11SN nebulizer (i.e. the commercial device), the drug 

deposition into the RMS was increased by 3-fold when compared with the effect of acoustic 

airflow. As for the LMS, the deposited drug quantity was comparable under the effect of 

either modes of acoustic airflow. 

- With respect to the frequency sweep mode superimposed on the aerosol generated by the 

PARI SINUS jet nebulizer (i.e. the commercial device), the drug deposition into the RMS was 

increased by 2-fold when compared with the effect of acoustic airflow. As for the LMS, the 

deposited drug quantity has increased by 1.5-fold when comparing the effect of frequency 

sweep acoustic airflow with the acoustic airflow. 
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Figure 6 Impact of frequency sweep acoustic airflow on the intra-sinus drug deposition (in mg/L) in comparison 
with the impact of vibrating airflow supplied by commercial medical nebulizing devices; DTF and PARI SINUS 

respectively (n=6, mean ± SEM, **(P<0.01), ***(P<0.001)). 
 
 

 

4. Discussion  

Numerical analysis of cranial images of the human plastinated cast acquired using the CT-

scanner returned the theoretical resonance frequency values of the maxillary sinuses of the 

nasal cast (referring to the Helmholtz resonator theory and the limitation of approximating the 

ostium to a cylinder and the MS to a sphere). Knowing that the size and geometrical 

dimensions of the human plastinated cast are reproduced in the nasal replica (12), we obtained 

the theoretical resonance frequencies of the left and right maxillary sinuses of the replica in 

order to compare them with the experimental results obtained in the aerosol drug deposition 

studies; we thus related the maximal aerosol deposition to the frequency of the superimposed 
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acoustic airflow and verified its value with the numerically obtained value. Results showed 

that the resonance frequency of the right maxillary sinus, calculated using the Helmholtz 

resonator theory, is equal to 177 Hz ± 10 Hz, different from the resonance frequency of the 

left maxillary sinus which was found to be equal to 336 ± 15 Hz. To this day, commercial 

medical nebulizing systems are characterized by a fixed frequency acoustic airflow. Owing to 

the difference in resonance frequencies of each of the MS of the nasal replica, we assume that, 

in order to obtain the optimum aerosol deposition into each of the MS, we should use different 

medical nebulizing systems for each one. Depending on the severity of the illness of patients 

with CRS, the ostium is either completely or partially obstructed (17). This is also the case of 

patients who have undergone FESS and require after surgery therapy. Hence, to ensure the 

maximal drug deposition into the maxillary sinuses for each and every patient, a nebulizing 

device characterized by a specific frequency acoustic airflow has to be used. 

The current study simulates reality. Although we used a decongested model of a healthy 

volunteer, differences in anatomy of its maxillary sinuses and ostia provide a simplified 

example of what happens in real life with CRS patients throughout the progression of their 

disease and/or with CRS patients after undergoing FESS and requiring further treatment. 

Relying on the results obtained in one of our previous studies (17), specific geometry of an 

ostium requires specific acoustic airflow characterized by a frequency that falls in the range of 

its resonance frequency spectrum. 

Studies on the effect of application of acoustic airflow on intra-sinus drug deposition started 

in the last century (25). Later on, several studies were performed on the effectiveness of 

superposition of acoustic airflow in human cadavers and nasal casts (26, 27). These studies 

have been continued, and the results demonstrating the efficiency of application of an acoustic 
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airflow on the aerosolized drug deposition into MS have been published. Among previous 

studies, a preliminary study of the aerosolized drug delivery to the paranasal sinuses 

performed by Moeller et al. on three healthy volunteers showed that 4.2 ± 0.3% of total 

aerosol deposition deposited in the nose penetrated the sinuses under the effect of a pulsating 

acoustic airflow (characterized by a pressure wave of 45 Hz frequency); the deposition was 

below 1% without pulsation (28). Another study by Moeller et al., where 99mTc-DTPA 

pulsating aerosols were applied to eleven CRS patients without nasal polyps before and after 

surgery and in eleven healthy volunteers, showed that 4.8 ± 2.2% of the administered aerosol 

could penetrate the maxillary sinus cavities of CRS patients prior to FESS, 8.2 ± 3.8% of CRS 

patients after FESS and 9.7 ± 25% of healthy volunteers. Nebulization experiments have been 

performed under the effect of 25Hz acoustic airflow (27). A similar study investigated the 

impact of 100Hz acoustic airflow on the gentamicin deposition into the maxillary sinus 

cavities of the human plastinated cast and demonstrated a 2-3 fold increase in the intra-sinus 

drug deposition when compared with the nebulization procedures without the superposition of 

acoustic airflow (10). It is worth noting that the description of volunteers was narrowed to 

sick versus healthy and the size and dimensions of maxillary sinuses and their ostia were not 

measured. The major aim of these studies was to highlight the impact of acoustic airflow on 

the enhanced intra-sinus drug deposition. Nevertheless, the degree of enhancement of the 

deposition versus the severity of obstruction of the ostia of CRS patients wasn’t studied. In 

our study, we aimed at relating the degree of intra-sinus drug deposition to the frequency of 

the acoustic airflow and to the resonance frequency of the maxillary sinuses under study. 
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Impact of fixed frequency acoustic airflow on intra-sinus aerosol deposition 

We aimed at demonstrating that the amount of intra-sinus aerosol deposition varies with the 

frequency of the acoustic airflow and this explains our choice of nine frequency values. We 

wanted to have a wider range of frequency values to compare their effect on aerosol 

deposition. At the same time, we wanted to verify that the frequency of the acoustic airflow 

responsible for maximal aerosol deposition falls in the range of the calculated resonance 

spectrum of the MS according to the Helmholtz theory.  

To study the NaF deposition under the effect of fixed frequency acoustic airflow nine 

frequency values (50, 100, 150, 200, 300, 400, 500, 600, 700 and 800 Hz) were tested, and 

demonstrated a high aerosol deposition into the RMS under the effect of 150 Hz, 200 Hz, 300 

Hz, and 400 Hz acoustic airflow. The optimal deposition was achieved at 150 Hz, 200 Hz and 

300 Hz. Referring to our hypothesis that the optimal aerosol deposition to the maxillary 

sinuses is attained under the effect of acoustic airflow characterized by a frequency value 

close or equal to the resonance frequency of each of the maxillary sinuses, the resonance 

frequency of the RMS should fall in the 150 Hz- 400 Hz spectrum; upon the corresponding 

numerical analysis, the resonance frequency of the right maxillary sinus was calculated to be 

equal to 177± 10 Hz, which supports our initial hypothesis. With respect to the NaF collected 

from the LMS, a high aerosol deposition was recorded for the 150 Hz, 200 Hz, 300 Hz, and 

400 Hz acoustic airflow as in the case of aerosol deposition into the RMS. However, the 

quantity of aerosol deposition into LMS is always higher than the one in RMS due to the 

difference in morphology of the ostia of the LMS and RMS of the nasal replica (diameter of 

the LMS ostium is three times higher than that of the RMS) as previously described (12). The 

calculated resonance frequency of the LMS is equal to 336± 15 Hz.  
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Theoretically calculated resonance frequency values of each of the maxillary sinuses of the 

nasal replica are in good agreement with the experimental fixed frequency values 

characterizing the acoustic airflow that resulted in maximal aerosol deposition into each of the 

MS. 

Impact of sweep frequency acoustic airflow on intra-sinus aerosol deposition 

NaF deposition into the maxillary sinuses using the frequency sweep acoustic airflow was 

tested using three frequency ranges, selected based on the deposition results obtained in 

experiments with fixed frequency acoustic airflow. Results demonstrated that 100-500 Hz 

frequency sweep acoustic airflow resulted in better NaF deposition into the maxillary sinuses 

of the nasal replica. It was observed that enhanced and statistically significant aerosol 

deposition was achieved in both maxillary sinuses using the same sweep mode, when 

compared with the aerosol deposition in the absence of acoustic airflow, indicating that the 

resonance frequency of each MS falls in the selected sweep range. These results open a way to 

new studies to be performed in the future testing different sweep frequency ranges of acoustic 

airflow to obtain a precise conclusion regarding the reasons behind the enhanced intra-sinus 

drug penetration. 

Frequency sweep mode is characterized by a sweep cycle. We aimed at testing several sweep 

cycles to determine whether the duration of a cycle has an influence on the intra-sinus aerosol 

deposition. For the three sweep cycles chosen (0.3s, 3s, and 30s), results clearly demonstrated 

that the shorter the cycle, the better the deposition. Sweep cycle of 0.3s resulted in a 

statistically significant NaF deposition into both maxillary sinuses when compared with the 

aerosol deposition in the absence of acoustic airflow. The 0.3s cycle represents a 3Hz signal, 

so we assume that the faster the superposition of one signal over another, the better the 
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deposition. Difference between the results of 0.3s, 3s and 30s cycles shows that the system is 

very sensitive to frequency modulation. 

Effect of intensity of the frequency sweep acoustic airflow on intra-sinus aerosol deposition 

was also tested. However, only two intensity levels were tested: “high intensity” (128 dB) 

versus “low intensity” (120 dB). Intensity level of the acoustic airflow produced by the DTF 

nebulizing system was measured and found equal to 128 dB. The two tested intensity levels 

are considered relatively high in acoustics; however, the terms “high intensity” and “low 

intensity” were selected to differentiate between these two values. No statistically significant 

difference in NaF collected from the maxillary sinuses under the effect of both intensities was 

observed. In this case, we cannot certainly say that the intensity of the acoustic airflow has no 

effect on the aerosol penetration because of the small range of the intensity tested. However 

we assume that at certain intensity level, i.e. a saturation point is reached resulting in a 

comparable aerosol deposition under the effect of different intensity levels. This gives rise to 

future studies for testing different intensity levels and their effect on nebulized drug 

deposition.  

The final part of the study involved the use of gentamicin as a marker, and was performed to 

verify the benefits of the tested acoustic airflow obtained using NaF. The obtained results 

demonstrated the efficiency of the sweep acoustic airflow in enhancing the intra-sinus drug 

deposition to both sinuses simultaneously; thus providing a consistency with the results 

obtained using NaF as a marker. Comparing these results with the deposition results obtained 

using the acoustic airflow provided by the PARI Sinus and DTF nebulizing systems, the 

amount of gentamicin deposited in both the right and left maxillary sinuses was observed to 

be higher under the effect of the frequency sweep acoustic airflow. 
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Hence, in the light of results obtained in our study, the frequency sweep acoustic airflow 

characterized by a very short sweep cycle provides a considerable solution for the treatment of 

CRS patients as it encompasses frequency values among which the resonance frequency of the 

MS of patients might fall. Moreover, in cases where the maxillary sinuses are partially filled 

with fluid and where the level of this fluid (and therefore the resonance frequency) varies 

during the healing process, the frequency sweep may also be an effective solution. However, 

to be able to draw more conclusions, further studies on our nasal replica and clinical trials 

thereafter have to be performed. Moreover, it is important to notice that our study focused 

only on the maxillary sinuses, but additional nasal cavities are involved in CRS. Therefore, 

further studies should be performed to improve our understanding of the effect of acoustic 

airflow in paranasal sinuses including frontal sinus and ethmoidal sinuses. 
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5. Conclusion  

For better targeting of maxillary sinuses characterized by ostia of different anatomy and 

geometry, nebulization characterized by an acoustic airflow of specific frequency close to the 

resonance frequency of each of the maxillary sinuses under treatment should be used. We 

have demonstrated that each of the maxillary sinuses of our nasal replica (LMS and RMS 

have different geometry of their ostia) requested a specific frequency acoustic airflow for an 

enhanced and significant aerosol deposition. Using a frequency sweep acoustic airflow 

encompassing a certain range of frequencies we were able to achieve an optimal drug 

deposition into both MS of our model. Frequency sweep mode itself is not enough; it should 

also be characterized by a sweep cycle of short duration; the shorter, the better. Therefore, for 

better targeting of maxillary sinuses of different degree of obstruction, a frequency sweep 

acoustic airflow could be superimposed on the nebulized drug ensuring better treatment. 
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