
HAL Id: hal-01319293
https://hal.science/hal-01319293v1

Preprint submitted on 20 May 2016 (v1), last revised 2 Nov 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Variance Reduction Methods for
Saddle-Point Problems
P Balamurugan, Francis Bach

To cite this version:
P Balamurugan, Francis Bach. Stochastic Variance Reduction Methods for Saddle-Point Problems.
2016. �hal-01319293v1�

https://hal.science/hal-01319293v1
https://hal.archives-ouvertes.fr

Stochastic Variance Reduction Methods

for Saddle-Point Problems

P. Balamurugan and Francis Bach

INRIA - Sierra project-team

Département d’Informatique de l’Ecole Normale Supérieure

Paris, France

May 20, 2016

Abstract

We consider convex-concave saddle-point problems where the objective functions may be split
in many components, and extend recent stochastic variance reduction methods (such as SVRG
or SAGA) to provide the first large-scale linearly convergent algorithms for this class of problems
which is common in machine learning. While the algorithmic extension is straightforward, it
comes with challenges and opportunities: (a) the convex minimization analysis does not apply
and we use the notion of monotone operators to prove convergence, showing in particular that
the same algorithm applies to a larger class of problems, such as variational inequalities, (b)
there are two notions of splits, in terms of functions, or in terms of partial derivatives, (c) the
split does need to be done with convex-concave terms, (d) non-uniform sampling is key to an
efficient algorithm, both in theory and practice, and (e) these incremental algorithms can be
easily accelerated using a simple extension of the “catalyst” framework, leading to an algorithm
which is always superior to accelerated batch algorithms.

1 Introduction

When using optimization in machine learning, leveraging the natural separability of the objective
functions has led to many algorithmic advances; the most common example is the separability as a
sum of individual loss terms corresponding to individual observations, which leads to stochastic gra-
dient descent techniques. Several lines of work have shown that the plain Robbins-Monro algorithm
could be accelerated for strongly-convex finite sums, e.g., SAG [1], SDCA [2], SVRG [3], SAGA [4].
However, these only apply to separable objective functions.

In order to tackle non-separable losses or regularizers, we consider the saddle-point problem:

min
x∈Rd

max
y∈Rn

K(x, y) +M(x, y), (1)

where the functions K and M are “convex-concave”, that is, convex with respect to the first variable,
and concave with respect to the second variable, with M potentially non-smooth but “simple” (e.g.,
for which the proximal operator is easy to compute), and K smooth. These problems occur naturally
within convex optimization through Lagrange or Fenchel duality [5]; for example the bilinear saddle-
point problem minx∈Rd maxy∈Rn f(x) + y⊤Kx− g(y) corresponds to a supervised learning problem
with design matrix K, a loss function g∗ (the Fenchel conjugate of g) and a regularizer f .

1

We assume that the function K may be split into a potentially large number of components. Many
problems in machine learning exhibit that structure in the saddle-point formulation, but not in the
associated convex minimization and concave maximization problems (see examples in Section 2.1).

Like for convex minimization, gradient-based techniques that are blind to this separable structure
need to access all the components at every iteration. We show that algorithms such as SVRG [3] and
SAGA [4] may be readily extended to the saddle-point problem. While the algorithmic extension is
straightforward, it comes with challenges and opportunities. We make the following contributions:

– We provide the first convergence analysis for these algorithms for saddle-point problems, which
differs significantly from the associated convex minimization set-up. In particular, we use in
Section 6 the interpretation of saddle-point problems as finding the zeros of a monotone operator,
and only use the monotonicity properties to show linear convergence of our algorithms, thus
showing that they extend beyond saddle-point problems, e.g., to variational inequalities [6, 7].

– We show that the saddle-point formulation (a) allows two different notions of splits, in terms
of functions, or in terms of partial derivatives, (b) does need splits into convex-concave terms
(as opposed to convex minimization), and (c) that non-uniform sampling is key to an efficient
algorithm, both in theory and practice (see experiments in Section 7).

– We show in Section 5 that these incremental algorithms can be easily accelerated using a simple
extension of the “catalyst” framework of [8], thus leading to an algorithm which is always superior
to accelerated batch algorithms.

2 Composite Decomposable Saddle-Point Problems

We consider the saddle-point problem defined in Eq. (1), with the following assumptions:

(A) M is strongly (λ, γ)-convex-concave, that is, the function (x, y) 7→ M(x, y) − λ
2 ‖x‖2 +

γ
2 ‖y‖2 is

convex-concave. Moreover, we assume that we may compute the proximal operator of M , i.e., for
any (x′, y′) ∈ R

n+d:

proxσM (x′, y′) = arg min
x∈Rd

max
y∈Rn

σM(x, y) + λ
2 ‖x− x′‖2 − γ

2‖y − y′‖2. (2)

The values of λ and γ lead to the definition of a weighted Euclidean norm on R
n+d defined

as Ω(x, y)2 = λ‖x‖2 + γ‖y‖2, with dual norm defined through Ω∗(x, y)2 = λ−1‖x‖2 + γ−1‖y‖2.
Dealing with the two different scaling factors λ and γ is crucial for good performance, as these
may be very different, depending on the many arbitrary ways to set-up a saddle-point problem.

(B) K is convex-concave and has Lipschitz-continuous gradients; it is natural to quantify this by con-
sidering the gradient operator B : Rn+d → R

n+d defined as B(x, y) = (∂xK(x, y),−∂yK(x, y)) ∈
R

n+d and to consider L = supΩ(x−x′,y−y′)=1 Ω
∗(B(x, y) −B(x′, y′)). The quantity L represents

the condition number of the problem.

(C) The vector-valued function B(x, y) = (∂xK(x, y),−∂yK(x, y)) ∈ R
n+d may be split into a family

of vector-valued functions as B =
∑

i∈I
Bi, where the only constraint is that each Bi is Lipschitz-

continuous (with constant Li). There is no need to assume the existence of Ki : R
n+d → R such

that Bi = (∂xKi,−∂yKi).

We will also consider splits which are adapted to the saddle-point nature of the problem, that
is, of the form B(x, y) =

(
∑

k∈K Bx
k (x, y),

∑

j∈J B
y
j (x, y)

)

, which is a subcase of the above with

I = J × K, Bjk(x, y) = (pjB
x
k (x, y), qkB

y
j (x, y)), for p and q sequences that sum to one. This

substructure, which we refer to as “factored”, will only make a difference when storing the values
of these operators in Section 4 for our SAGA algorithm.

2

Given assumptions (A)-(B), the saddle-point problem in Eq. (1) has a unique solution (x∗, y∗) such
that K(x∗, y)+M(x∗, y) 6 K(x∗, y∗)+M(x∗, y∗) 6 K(x, y∗)+M(x, y∗), for all (x, y); moreover
minx∈Rd maxy∈Rn K(x, y) +M(x, y) = maxy∈Rn minx∈Rd K(x, y) +M(x, y) (see, e.g., [9, 5]).

The main generic examples for the functions K(x, y) and M(x, y) are:

– Bilinear saddle-point problems: K(x, y) = y⊤Kx for a matrix1 K ∈ R
n×d, for which the

vector-valued function B(x, y) is linear, i.e., B(x, y) = (K⊤y,−Kx). Then L = ‖K‖op/
√
γλ,

where ‖K‖op is the largest singular value of K.

There are two natural potential splits with I = {1, . . . , n}×{1, . . . , k}, with B =
∑n

j=1

∑d
k=1 Bjk:

(a) the split into individual elements Bjk(x, y) = Kjk(yj ,−xk), where every element is the gradi-
ent operator of a bi-linear function, and (b) the “factored” split into rows/columns Bjk(x, y) =
(qkyjK

⊤
j· ,−pjxkK·k), where Kj· and K·k are the j-th row and k-th column of K, p and q are any

set of vectors summing to one, and every element is not the gradient operator of any function.
These splits correspond to several “sketches” of the matrix K [10], adapted to subsampling of K,
but other sketches could be considered.

– Separable functions: M(x, y) = f(x) − g(y) where f is any λ-strongly-convex and g is γ-
strongly convex, for which the proximal operators proxσf (x

′) = argminx∈Rd σf(x) + λ
2 ‖x − x′‖2

and proxσg (y
′) = argmaxy∈Rd −σg(y) − γ

2‖y − y′‖2 are easy to compute. In this situation,
proxσM (x′, y′) = (proxσf (x

′), proxσg (y
′)). Following the usual set-up of composite optimization [11],

no smoothness assumption is made on M and hence on f or g.

2.1 Examples in machine learning

Many learning problems are formulated as convex optimization problems, and hence by duality as
saddle-point problems. We now give examples where our new algorithms are particularly adapted.

Supervised learning with non-separable losses or regularizers. For regularized linear super-
vised learning, with n d-dimensional observations put in a design matrix K ∈ R

n×d, the predictions
are parameterized by a vector x ∈ R

d and lead to a vector of predictions Kx ∈ R
n. Given a loss

function defined through its Fenchel conjugate g∗ from R
n to R, and a regularizer f(x), we obtain

exactly a bi-linear saddle-point problem. When the loss g∗ or the regularizer f is separable, i.e., a
sum of functions of individual variables, we may apply existing fast gradient-techniques [1, 3, 4] to
the primal problem minx∈Rd g∗(Kx) + f(x) or the dual problem maxy∈Rn −g(y)− f∗(K⊤y), as well
as methods dedicated to separable saddle-point problems [12]. When the loss g∗ and the regularizer
f are not separable (but have a simple proximal operator), our new fast algorithms are the only
ones that can be applied from the class of large-scale linearly convergent algorithms.

Non-separable losses may occur when (a) predicting by affine functions of the inputs and not penaliz-
ing the constant terms (in this case defining the loss functions as the minimum over the constant term,
which becomes non-separable) or (b) using structured output prediction methods that lead to convex
surrogates to the area under the ROC curve (AUC) or other precision/recall quantities [13, 14, 15].
These come often with efficient proximal operators (see Section 7 for an example).

Non-separable regularizers with available efficient proximal operators are numerous, such as grouped-
norms with potentially overlapping groups, norms based on submodular functions, or total variation
(see [16] and references therein, and an example in Section 7).

Robust optimization. The framework of robust optimization [17] aims at optimizing an objective
function with uncertain data. Given that the aim is then to minimize the maximal value of the
objective function given the uncertainty, this leads naturally to saddle-point problems.

1We identify here a matrix with the associated bilinear function.

3

Convex relaxation of unsupervised learning. Unsupervised learning leads to convex relaxations
which often exhibit structures naturally amenable to saddle-point problems, e.g, for discriminative
clustering [18] or matrix factorization [19].

2.2 Existing batch algorithms

In this section, we review existing algorithms aimed at solving the composite saddle-point problem
in Eq. (1), without using the sum-structure. Note that it is often possible to apply batch algorithms
for the associated primal or dual problems (which are not separable in general).

Forward-backward (FB) algorithm. The main iteration is

(xt, yt) = proxσM
[

(xt−1, yt−1)− σ
(1/λ 0

0 1/γ

)

B(xt−1, yt−1)
]

= proxσM
(

xt−1 − σλ−1∂xK(xt−1, yt−1), yt−1 + σγ−1∂yK(xt−1, yt−1)).

Intuitively, the algorithm aims at simultaneously minimizing with respect to x while maximizing with
respect to y (when M(x, y) is the sum of isotropic quadratic terms and indicator functions, we get
simultaneous projected gradient descent). This algorithm is known not to converge in general [9],
but is linearly convergent for strongly-convex-concave problems, when σ = 1/L2, with the rate
(1 − 1/(1 + L2))t [20] (see simple proof in Appendix B.1). This is the one we are going to adapt to
stochastic variance reduction.

When M(x, y) = f(x)−g(y), we obtain the two parallel updates xt = proxσf
(

xt−1−λ−1σ∂xK(xt−1, yt−1

))

and yt = proxσg
(

yt−1+γ−1σ∂yK(xt−1, yt−1

))

, which can de done serially by replacing the second one

by yt = proxσg
(

yt−1 + γ−1σ∂yK(xt, yt−1

))

. This is often referred to as the Arrow-Hurwicz method
(see [21] and references therein).

Extragradient algorithm. When M is not assumed to be strongly convex-concave, the forward-
backward algorithm may not be convergent. The extragradient algorithm performs two updates at
each iteration (see, e.g., [22, 23]), and is then convergent. It is convergent for our problem with a
similar worst-case convergence rate [23], but is more robust to step-size selection.

Accelerated forward-backward algorithm. The forward-backward algorithm may be acceler-
ated by a simple extrapolation step, similar to Nesterov’s acceleration for convex minimization [24].
The algorithm from [21], which only applies to bilinear functions K, and which we extend from
separable M to our more general set-up in Appendix B.2, has the following iteration:

(xt, yt) = proxσM
[

(xt−1, yt−1)− σ
(1/λ 0

0 1/γ

)

B(xt−1 + θ(xt−1 − xt−2), yt−1 + θ(yt−1 − yt−2))
]

.

With σ = 1/(2L) and θ = L/(L+ 1), we get an improved convergence rate, where (1−1/(1 + L2))t is
replaced by (1− 1/(1 + 2L))t. This is always a strong improvement when L is large (ill-conditioned
problems), as illustrated in Section 7. Note that our acceleration technique in Section 5 may be
extended to get a similar rate for the batch set-up for non-linear K.

2.3 Existing stochastic algorithms

Forward-backward algorithms have been studied with added noise [25], leading to a convergence rate
in O(1/t) after t iterations for strongly-convex-concave problems. In our setting, we replace B(x, y)
in our algorithm with 1

πi
Bi(x, y), where i ∈ I is sampled from the probability vector (πi)i. We have

EBi(x, y) = B(x, y); the main iteration is then

(xt, yt) = proxσt

M

[

(xt−1, yt−1)− σt

(1/λ 0

0 1/γ

)

1
πit

Bit(xt−1, yt−1)
]

,

4

with it selected independently at random in I with probability vector π. In Appendix C, we show
that using σt = 2/(t+1+8L̄(π)2) leads to a convergence rate in O(1/t), where L̄(π) is a smoothness
constant explicited below. For saddle-point problems, it leads to the complexities shown in Table 1.
Like for convex minimization, it is fast early on but the performance levels off. Such schemes are
typically used in sublinear algorithms [26].

2.4 Sampling probabilities, convergence rates and running-time complex-
ities

In order to characterize running-times, we denote by T (A) the complexity of computing A(x, y)
for any operator A and (x, y) ∈ R

n+d, while we denote by Tprox(M) the complexity of computing
proxσM (x, y). In our motivating example of bilinear functions K(x, y), we assume that Tprox(M)
takes times proportional to n+ d and getting a single element of K is O(1).

In order to characterize the convergence rate, we need the Lipschitz-constant L defined earlier as
well as a smoothness constant adapted to our sampling schemes:

L̄(π)2 = sup(x,y,x′,y′)

∑

i∈I
1
πi
Ω∗(Bi(x, y)− Bi(x

′, y′))2 such that Ω(x− x′, y − y′)2 6 1.

We always have the bounds L2 6 L̄(π)2 6 maxi∈I L
2
i ×

∑

i∈I
1
πi

. However, in structured situations
(like in bilinear saddle-point problems), we get much improved bounds, as described below.

Bi-linear saddle-point. The constant L is equal to ‖K‖op/
√
λγ, and we will consider as well

the Frobenius norm ‖K‖F defined through ‖K‖2F =
∑

j,k K
2
jk, and the norm ‖K‖max defined as

‖K‖2max = max{supj(KK⊤)1/2jj , supk(K
⊤K)

1/2
kk }. Among the norms above, we always have:

‖K‖max 6 ‖K‖op 6 ‖K‖F 6
√

max{n, d}‖K‖max 6
√

max{n, d}‖K‖op, (3)

which allows to show below that some algorithms have better bounds than others.

There are several schemes to choose the probabilities πjk (individual splits) and πjk = pjqk (factored
splits). For the factored formulation where we select random rows and columns, we consider the non-
uniform schemes pj = (KK⊤)jj/‖K‖2F and qk = (K⊤K)kk/‖K‖2F , leading to L̄(π) 6 ‖K‖F/

√
λγ,

or uniform, leading to L̄(π) 6
√

max{n, d}‖K‖max/
√
λγ. For the individual formulation where we

select random elements, we consider πjk = K2
jk/‖K‖2F , leading to L̄(π) 6

√

max{n, d}‖K‖F/
√
λγ,

or uniform, leading to L̄(π) 6
√
nd‖K‖max/

√
λγ (in these situations, it is important to select several

elements simultaneously, which our analysis supports).

We characterize convergence with the quantity ε = Ω(x − x∗, y − y∗)2/Ω(x0 − x∗, y0 − y∗)2, where
(x0, y0) is the initialization of our algorithms (typically (0, 0) for bilinear saddle-points). In Table 1
we give a summary of the complexity of all algorithms discussed in this paper: we recover the same
type of speed-ups as for convex minimization. A few points are worth mentioning:

– Given the bounds between the various norms on K in Eq. (3), SAGA/SVRG with non-uniform
sampling always has convergence bounds superior to SAGA/SVRG with uniform sampling, which
is always superior to batch forward-backward. Note however, that in practice, SAGA/SVRG with
uniform sampling may be inferior to accelerated batch method (see Section 7).

– Accelerated SVRG with non-uniform sampling is the most efficient method, which is confirmed in
our experiments.

5

Algorithms Complexity

Batch FB log(1/ε) ×
(

nd+ nd‖K‖2op/(λγ)
∣

∣

∣

)

Batch FB-accelerated log(1/ε) ×
(

nd+ nd‖K‖op/
√
λγ)

∣

∣

∣

)

Stochastic FB-non-uniform (1/ε) ×
(

max{n, d}‖K‖2F/(λγ)
∣

∣

∣

)

Stochastic FB-uniform (1/ε) ×
(

nd‖K‖2max/(λγ)
∣

∣

∣

)

SAGA/SVRG-uniform log(1/ε) ×
(

nd+ nd‖K‖2max/(λγ)
∣

∣

∣

)

SAGA/SVRG-non-uniform log(1/ε) ×
(

nd+max{n, d}‖K‖2F/(λγ)
∣

∣

∣

)

SVRG-non-uniform-accelerated log(1/ε) ×
(

nd+
√

ndmax{n, d}‖K‖F/
√
λγ

∣

∣

∣

)

Table 1: Summary of convergence results for the strongly (λ, γ)-convex-concave bilinear saddle-point
problem with matrix K and individual splits (and n+ d updates per iteration). For factored splits
(little difference), see Appendix D.4. For accelerated SVRG, we omitted the logarithmic term (see
Section 5).

3 SVRG: Stochastic Variance Reduction for Saddle Points

Following [3, 27], we consider a stochastic-variance reduced estimation of the finite sum B(x, y) =
∑

i∈I
Bi(x, y). This is achieved by assuming that we have an iterate (x̃, ỹ) with a known value of

B(x̃, ỹ), and we consider the estimate of B(x, y):

B(x̃, ỹ) + 1
πi
Bi(x, y)− 1

πi
Bi(x̃, ỹ),

which has the correct expectation when i is sampled from I with probability π, but with a reduced
variance. Since we need to refresh (x̃, ỹ) regularly, the algorithm works in epochs (we allow to
sample m elements per updates, i.e., a mini-batch of size m), with an algorithm that shares the
same structure than SVRG for convex minimization; see Algorithm 1. Note that we provide an
explicit number of iterations per epoch, proportional to (L2 + 3L̄2/m). We have the following
theorem, shown in Appendix D.1 (see also a dicussion of the proof in Section 6).

Theorem 1 Assume (A)-(B)-(C). After v epochs of Algorithm 2, we have:

E
[

Ω(xv − x∗, yv − y∗)
2
]

6 (3/4)vΩ(x0 − x∗, y0 − y∗)
2.

The computational complexity to reach precision ε is proportional to
[

T (B)+(mL2+L̄2)maxi∈I T (Bi)+

(1+L2+ L̄2/m)Tprox(M)
]

log 1
ε . Note that by taking m large, we can alleviate the complexity of the

proximal operator proxM if too large. Moreover, if L2 is too expensive to compute, we may replace
it by L̄2 but with a worse complexity bound.

Bilinear saddle-point problems. When using a mini-batch size m = 1 with the factored updates,
or m = n + d for the individual updates, we get the same complexities proportional to [nd +
max{n, d}‖K‖2F/(λγ)] log(1/ε) for non-uniform sampling, which improve significantly over (non-
accelerated) batch methods (see Table 1).

4 SAGA: Online Stochastic Variance Reduction for Saddle

Points

Following [4], we consider a stochastic-variance reduced estimation of B(x, y) =
∑

i∈I
Bi(x, y). This

is achieved by assuming that we store values gi = Bi(x
old(i), yold(i)) for an old iterate (xold(i), yold(i)),

6

Algorithm 1 SVRG: Stochastic Variance Reduction for Saddle Points

Input: Functions (Ki)i, M , probabilities (πi)i, smoothness L̄(π) and L, iterate (x, y)
number of epochs v, number of updates per iteration (mini-batch size) m

Set σ =
[

L2 + 3L̄2/m
]−1

for u = 1 to v do
Initialize (x̃, ỹ) = (x, y) and compute B(x̃, ỹ)
for k = 1 to log 4× (L2 + 3L̄2/m) do

Sample i1, . . . , im ∈ I from the probability vector (πi)i with replacement

(x, y)← proxσM
[

(x, y)− σ
(1/λ 0

0 1/γ

)(

B(x̃, ỹ) + 1
m

∑m
k=1

{

1
πik

Bik(x, y)− 1
πik

Bik(x̃, ỹ)
})]

end for
end for

Output: Approximate solution (x, y)

and we consider the estimate of B(x, y):

∑

j∈I
gj + 1

πi
Bi(x, y)− 1

πi
gi,

which has the correct expectation when i is sampled from I with probability π. At every iteration,
we also refresh the operator values gi ∈ R

n+d, for the same index i or with a new index i sampled
uniformly at random. This leads to Algorithm 2, and we have the following theorem showing linear
convergence, proved in Appendix D.2. Note that for bi-linear saddle-points, the initialization at
(0, 0) has zero cost (which is not possible for convex minimization).

Theorem 2 Assume (A)-(B)-(C). After t iterations of Algorithm 2 (with the option of resampling
when using non-uniform sampling), we have:

E
[

Ω(xt − x∗, yt − y∗)2
]

6 2
(

1− (max{ 3|I|2m , 1 + L2

µ2 + 3 L̄2

mµ2 })−1
)t

Ω(x0 − x∗, y0 − y∗)2.

Resampling or re-using the same gradients. For the bound above to be valid for non-uniform
sampling, like for convex minimization [28], we need to resample m operators after we make the
iterate update. In our experiments, following [28], we considered a mixture of uniform and non-
uniform sampling, without a resampling step.

SAGA vs. SVRG. The difference between the two algorithms is the same as for convex mini-
mization (see, e.g., [29] and references therein), that is SVRG has no storage, but works in epochs
and requires slightly more accesses to the oracles, while SAGA is a pure online method with fewer
parameters but requires some storage (for bi-linear saddle-point problems, we only need to store
O(n+d) elements for the factored splits, while we need O(dn) for the individual splits). Overall they
have the same running-time complexity for individual splits; for factored splits, see Appendix D.4.

Factored splits. When using factored splits, we need to store the two parts of the operator values
separately and update them independently, leading in Theorem 2 to replacing |I| by max{|J|, |K|}.

5 Acceleration

Following the “catalyst” framework of [8], we consider a sequence of saddle-point problems with
added regularization; namely, given (x̄, ȳ), we use SVRG to solve approximately

min
x∈Rd

max
y∈Rn

K(x, y) +M(x, y) + λτ
2 ‖x− x̄‖2 − γτ

2 ‖y − ȳ‖2, (4)

7

Algorithm 2 SAGA: Online Stochastic Variance Reduction for Saddle Points

Input: Functions (Ki)i, M , probabilities (πi)i, smoothness L̄(π) and L, iterate (x, y)
number of iterations t, number of updates per iteration (mini-batch size) m

Set σ =
[

max{ 3|I|2m − 1, L2 + 3 L̄2

m }
]−1

Initialize gi = Bi(x, y) for all i ∈ I and G =
∑

i∈I
gi

for u = 1 to t do
Sample i1, . . . , im ∈ I from the probability vector (πi)i with replacement
Compute hk = Bik(x, y) for k ∈ {1, . . . ,m}
(x, y)← proxσM

[

(x, y)− σ
(1/λ 0

0 1/γ

)(

G+ 1
m

∑m
k=1

{

1
πik

hk − 1
πik

gik
})]

(optional) Sample i1, . . . , im ∈ I uniformly with replacement
(optional) Compute hk = Bik(x, y) for k ∈ {1, . . . ,m}
Replace G← G−∑m

k=1{gik − hk} and gik ← hk for k ∈ {1, . . . ,m}
end for

Output: Approximate solution (x, y)

for well-chosen τ and (x̄, ȳ). The main iteration of the algorithm differs from the original SVRG
by the presence of the iterate (x̄, ȳ) and different step-sizes (see details in Appendix D.3). The
complexity to get an approximate solution of Eq. (4) (forgetting the complexity of the proximal
operator and for a single update), up to logarithmic terms, is proportional, to T (B) + L̄2(1 +
τ)−2 maxi∈I T (Bi).

The key difference with the convex optimization set-up is that the analysis is simpler, without the
need for Nesterov acceleration machinery [24] to define a good value of (x̄, ȳ); indeed, the solution of
Eq. (4) is one iteration of the proximal-point algorithm, which is known to converge linearly [30] with
rate (1+τ−1)−1 = (1− 1

1+τ). Thus the overall complexity is up to logarithmic terms equal to T (B)(1+

τ) + L̄2(1 + τ)−1 maxi∈I T (Bi). The trade-off in τ is optimal for 1 + τ = L̄
√

maxi∈I T (Bi)/T (B),

showing that there is a potential acceleration when L̄
√

maxi∈I T (Bi)/T (B) > 1, leading to a com-

plexity L̄
√

T (B)maxi∈I T (Bi).

Since the SVRG algorithm already works in epochs, this leads to a simple modification where every
log(1 + τ) epochs, we change the values of (x̄, ȳ). See Algorithm 3 in Appendix D.3. Moreover, we
can adaptively update (x̄, ȳ) more aggressively to speed-up the algorithm.

The following theorem gives the convergence rate of the method (see proof in Appendix D.3). With

the value of τ defined above (corresponding to τ = max
{

0, ‖K‖F√
λγ

√

max{n−1, d−1} − 1
}

for bilinear

problems), we get the complexity L̄
√

T (B)maxi∈I T (Bi), up to the logarithmic term log(1+τ). For
bilinear problems, this provides a significant acceleration, as shown in Table 1.

Theorem 3 Assume (A)-(B)-(C). After v epochs of Algorithm 3, we have, for any positive τ :

E
[

Ω(xv − x∗, yv − y∗)2
]

6
(

1− 1
τ+1

)v
Ω(x0 − x∗, y0 − y∗)2.

While we provide a proof only for SVRG, the same scheme should work for SAGA. Moreover, the
same idea also applies to the batch setting (by simply considering |I| = 1, i.e., a single function),
leading to an acceleration, but now valid for all functions K (not only bilinear).

8

6 Extension to Monotone Operators

In this paper, we have chosen to focus on saddle-point problems because of their ubiquity in machine
learning. However, it turns out that our algorithm, and, more importantly, our analysis extend to all
set-valued monotone operators [9, 31]. We thus consider a maximal strongly-monotone operator A
on a Euclidean space E, as well as a finite family of Lipschitz-continuous (not necessarily monotone)
operators Bi, i ∈ I, with B =

∑

i∈I
Bi monotone. Our algorithm then finds the zeros of A +

∑

i∈I
Bi = A+B, from the knowledge of the resolvent (“backward”) operator (I +σA)−1 (for a well

chosen σ > 0) and the forward operators Bi, i ∈ I. There several interesting examples (on which
our algorithms apply):

– Saddle-point problems: We assume for simplicity that λ = γ = µ (this can be achieved by a
simple change of variable). If we denote B(x, y) = (∂xK(x, y),−∂yK(x, y)) and the multi-valued
operator A(x, y) = (∂xM(x, y),−∂yM(x, y)), then the proximal operator proxσM may be written
as (µI + σA)−1(µx, µy), and we recover exactly our framework from Section 2.

– Convex minimization: A = ∂g and Bi = ∂fi for a strongly-convex function g and smooth
functions fi: we recover proximal-SVRG [27] and SAGA [4], to minimize minz∈E g(z)+

∑

i∈I
fi(z).

However, this is a situation where the operators Bi have an extra property called co-coercivity [7],
which we are not using because it is not satisfied for saddle-point problems. The extension of SAGA
and SVRG to monotone operators was proposed earlier by [32], but only co-coercive operators are
considered, and thus only convex minimization is considered (with important extensions beyond
plain SAGA and SVRG), while our analysis covers a much broader set of problems. In particular,
the step-sizes obtained with co-coercivity lead to divergence in the general setting.

Because we do not use co-coercivity, applying our results directly to convex minimization, we
would get slower rates, while, as shown in Section 2.1, they can be easily cast as a saddle-point
problem if the proximal operators of the functions fi are known, and we then get the same rates
than existing fast techniques which are dedicated to this problem [1, 2, 3, 4].

– Variational inequality problems, which are notably common in game theory (see, e.g., [6]).

7 Experiments

We consider binary classification problems with design matrix K and label vector in {−1, 1}n, a non-
separable strongly-convex regularizer with an efficient proximal operator (the sum of the squared
norm λ‖x‖2/2 and the clustering-inducing term

∑

i6=j |xi−xj |, for which the proximal operator may
be computed in O(n log n) by isotonic regression [33]) and a non-separable smooth loss (a surrogate
to the area under the ROC curve, defined as proportional to

∑

i+∈I+

∑

i−∈I−
(1 − yi + yj)

2, where

I+/I− are sets with positive/negative labels, for a vector of prediction y, for which an efficient
proximal operator may be computed as well, see Appendix E).

Our upper-bounds depend on the ratio ‖K‖2F/(λγ) where λ is the regularization strength and γ ≈ n
in our setting where we minimize an average risk. Setting λ = λ0 = ‖K‖2F/n2 corresponds to
a regularization proportional to the average squared radius of the data divided by 1/n which is
standard in this setting [1]. We also experiment with smaller regularization (i.e., λ/λ0 = 10−1),
to make the problem more ill-conditioned (it turns out that the corresponding testing losses are
sometimes slightly better). We consider two datasets, sido (n = 10142, d = 4932, non-separable
losses and regularizers presented above) and rcv1 (n = 20242, d = 47236, separable losses and
regularizer described in Appendix F, so that we can compare with SAGA run in the primal). We
report below the squared distance to optimizers which appears in our bounds, as a function of the
number of passes on the data (for more details and experiments with primal-dual gaps and testing
losses, see Appendix F). Unless otherwise specified, we always use non-uniform sampling.

9

0 100 200 300 400 500

10
−5

10
0

sido − distance to optimizers − λ/λ
0
=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500
10

−5

10
0

sido − distance to optimizers − λ/λ
0
=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

rcv1 − distance to optimizers − λ/λ
0
=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

We see that uniform sampling for SAGA does not improve on batch methods, SAGA and accelerated
SVRG improve significantly over the existing methods, with a stronger gain for the accelerated
version for ill-conditioned problems (middle vs. left plot). On the right plot, we compare to primal
methods on a separable loss, showing that primal methods (here “fba-primal”, which is Nesterov
acceleration) that do not use separability (and can thus be applied in all cases) are inferior, while
SAGA run on the primal remains faster (but cannot be applied for non-separable losses).

8 Conclusion

We proposed the first linearly convergent incremental gradient algorithms for saddle-point problems,
which improve both in theory and practice over existing batch or stochastic algorithms. While we
currently need to know the strong convexity-concavity constants, we plan to explore in future work
adaptivity to these constants like already obtained for convex minimization [4], paving the way to
an analysis without strong convexity-concavity.

Acknowledgements

We would like to thank Simon Lacoste-Julien and Jalal Fadili for fruitful discussions related to
saddle-point problems and monotone operators.

References

[1] N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In Adv. NIPS, 2012.

[2] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss. The Journal of Machine Learning Research, 14(1):567–599, 2013.

[3] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Adv. NIPS, 2013.

[4] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Adv. NIPS, 2014.

[5] R. T. Rockafellar. Monotone operators associated with saddle-functions and minimax problems.
Nonlinear Functional Analysis, 18(part 1):397–407, 1970.

[6] P. T. Harker and J.-S. Pang. Finite-dimensional variational inequality and nonlinear complemen-
tarity problems: a survey of theory, algorithms and applications. Math. Prog., 48(1-3):161–220,
1990.

10

[7] D. L. Zhu and P. Marcotte. Co-coercivity and its role in the convergence of iterative schemes
for solving variational inequalities. SIAM Journal on Optimization, 6(3):714–726, 1996.

[8] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In Adv.
NIPS, 2015.

[9] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer Science & Business Media, 2011.

[10] D. Woodruff. Sketching as a tool for numerical linear algebra. Technical Report 1411.4357,
arXiv, 2014.

[11] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[12] X. Zhu and A. J. Storkey. Adaptive stochastic primal-dual coordinate descent for separable
saddle point problems. In Machine Learning and Knowledge Discovery in Databases, pages
645–658. Springer, 2015.

[13] T. Joachims. A support vector method for multivariate performance measures. In Proc. ICML,
2005.

[14] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regres-
sion. In Adv. NIPS, 1999.

[15] B. Taskar, S. Lacoste-Julien, and M. I. Jordan. Structured prediction, dual extragradient and
Bregman projections. The Journal of Machine Learning Research, 7:1627–1653, 2006.

[16] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penal-
ties. Foundations and Trends in Machine Learning, 4(1):1–106, 2012.

[17] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press,
2009.

[18] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. In Adv. NIPS,
2004.

[19] F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. Technical Report
0812.1869, arXiv, 2008.

[20] G. H. G. Chen and R. T. Rockafellar. Convergence rates in forward-backward splitting. SIAM
Journal on Optimization, 7(2):421–444, 1997.

[21] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

[22] Korpelevich G. M. The extra-gradient method for finding saddle points and other problems.
Ekonomika i Matem. Metody, 12(4):747–756, 1976.

[23] P. Marcotte. Application of Khobotov’s algorithm to variational inequalities and network equi-
librium problems. Information Systems and Operational Research, 29(4):258–270, 1991.

[24] Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer, 2004.

[25] L. Rosasco, S. Villa, and B. C. Vũ. A stochastic forward-backward splitting method for solving
monotone inclusions in hilbert spaces. Technical Report 1403.7999, arXiv, 2014.

[26] K. L. Clarkson, E. Hazan, and D. P. Woodruff. Sublinear optimization for machine learning.
Journal of the ACM (JACM), 59(5):23, 2012.

[27] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduc-
tion. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

11

[28] M. Schmidt, R. Babanezhad, M.O. Ahmed, A. Defazio, A. Clifton, and A. Sarkar. Non-uniform
stochastic average gradient method for training conditional random fields. In Proc. AISTATS,
2015.

[29] R. Harikandeh, M. O. Ahmed, A. Virani, M. Schmidt, J. Konečnỳ, and S. Sallinen. Stop wasting
my gradients: Practical SVRG. In Adv. NIPS, 2015.

[30] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on
Control and Optimization, 14(5):877–898, 1976.

[31] E. Ryu and S. Boyd. A primer on monotone operator methods. Appl. Comput. Math., 15(1):3–
43, 2016.

[32] D. Davis. Smart: The stochastic monotone aggregated root-finding algorithm. Technical Report
1601.00698, arXiv, 2016.

[33] X. Zeng and M. Figueiredo. Solving OSCAR regularization problems by fast approximate
proximal splitting algorithms. Digital Signal Processing, 31:124–135, 2014.

A Formalization through Monotone Operators

Throughout the proofs, we will consider only maximal monotone operators on a Euclidean space
E, that is A is assumed to be a µ-strongly monotone (corresponding to M for saddle-points) and
potentially set-valued, while B is monotone and L-Lipschitz-continuous with respect to the Euclidean
norm (and hence single-valued). For an introduction to monotone operators, see [9, 31].

For simplicity, in this appendix, we will only consider a single-valued operator A (noting that the
proof extends to any set-valued operator A), and we will mostly focus here on the monotonicity
properties (noting that the “maximal” can be treated rigorously [9], in particular to ensure that
the resolvent operator is defined everywhere). An operator is monotone if and only if for all (z, z′),
(A(z)−A(z′))⊤(z − z′) > 0. The most basic example is the subdifferential of a convex function. In
this paper, we focus on saddle-point problems.

Application to saddle-point problems. For the saddle-point problems defined in Section 2 of
the main paper, where we have z = (x, y), we need to make a change of variable because of the two
potentially different scaling factors λ and γ. We consider the operators

B(x, y) = (λ−1/2∂xK(λ−1/2x, γ−1/2y),−γ−1/2∂yK(λ−1/2x, γ−1/2y))

A(x, y) = (λ−1/2∂xM(λ−1/2x, γ−1/2y),−γ−1/2∂yM(λ−1/2x, γ−1/2y)).

The solutions of A(x, y) + B(x, y) = 0 are exactly the solutions of the problem in Eq. (1), rescaled
by λ1/2 and γ1/2. Moreover, the operator A is 1-monotone, i.e., for any z, z′, we have (A(z) −
A(z′))⊤(z − z′) > ‖z− z′‖2. Finally, our definition of the smoothness constants for B and Bi in the
main paper, exactly leads to a Lipschitz-constant of L with respect to the natural Euclidean norm
(a similar result holds for the constant L̄(π) defined later). Moreover, convergence results in the
Euclidean norm here transfer to convergence results in the norm Ω defined in the main paper. Note
that because of our proofs through operators, it is not easily possible to get bounds on the primal
and dual gaps.

Properties of monotone operators and resolvents. Given a maximal monotone operator A,
we may define its resolvent operator as z′ = (I + σA)−1(z), which is defined as finding z′ such that
z′ + σA(z′) = z. When A is the operator associated to the saddle-point function M as described
above, then the resolvent operator is exactly the proximal operator of M defined in Eq. (2) of the
main paper. Note that care has to be taken with the scaling factors λ and γ.

12

We will use the following properties (on top of Lipschitz-continuity) [9, 31]:

– Monotonicity property: for any (z, z′), (B(z)−B(z′), z − z′) > 0.

– Contractivity of the resolvent operator for A µ-strongly-monotone: for any (z, z′), ‖(I+σA)−1(z)−
(I + σA)−1(z′)‖ 6 (1 + σµ)−1‖z − z′‖.

– Firm non-expansiveness of the resolvent: for any (z, z′), ‖(I + σA)−1(z) − (I + σA)−1(z′)‖2 6

(1 + σµ)−1(z − z′)⊤
(

(I + σA)−1(z)− (I + σA)−1(z′)
)

.

Moreover, given our strong-monotonicity assumption, A+B has a unique zero z∗ ∈ E.

Finally in order to characterize the running-times, we will consider the complexity Tfw(B) of com-
puting the operator B and the complexity Tbw(A) to compute the resolvent of A. For saddle-point
problems, these correspond to T (B) and Tprox(M) from the main paper.

B Proof for Deterministic Algorithms

All proofs in this section will follow the same principle, by showing that at every step of our algo-
rithms, a certain function (a “Lyapunov” function) is contracted by a factor strictly less than one.
For the forward-backward algorithm, this will be the distance to optimum ‖zt − z∗‖2; while for the
accelerated version, it will be different.

B.1 Forward-backward algorithm

We consider the iteration zt = (I + σA)−1(zt−1 − σB(zt−1)), with B being monotone L-Lipschitz-
continuous and A being µ-strongly monotone. The optimum z∗ (i.e., the zero of A+B) is invariant
by this iteration. Note that this is the analysis of [20] and that we could improve by putting some
of the strong-monotonicity in the operator B rather than in A.

We have:

‖zt − z∗‖2

6
1

(1 + σµ)2
‖zt−1 − z∗ − σ(B(zt−1)−B(z∗))‖2 by contractivity of the resolvent,

=
1

(1 + σµ)2

[

‖zt−1 − z∗‖2 − 2σ(zt−1 − z∗)
⊤(B(zt−1)−B(z∗)) + σ2‖B(zt−1)−B(z∗)‖2

]

6
1

(1 + σµ)2
(1 + σ2L2)‖zt−1 − z∗‖2 by monotonicity of and Lipschitz-continuity of B,

6

(1 + σ2L2

(1 + σµ)2

)t

‖z0 − z∗‖2, by applying the recursion t times.

Thus we get linear (i.e., geometric) convergence as soon as 1 + σ2L2 < (1 + σµ)2. If we consider
η = σµ

1+σµ ∈ [0, 1), and the rate above becomes equal to:

1 + σ2L2

(1 + σµ)2
= (1− η)2 + η2

L2

µ2
= 1− 2η + η2(1 +

L2

µ2
),

thus the algorithm converges if η < 2

1+L2

µ2

, and with η = 1

1+L2

µ2

which corresponds to σ = 1
µ

η
1−η = µ

L2 ,

we get a linear convergence rate with constant 1− η = L2

µ2+L2 .

13

Thus the complexity to reach the precision ε×‖z0− z∗‖2 in squared distance to optimum ‖zt− z∗‖2
is equal to

(

1 + L2

µ2)
[

Tfw(B) + Tbw(A)
]

log 1
ε .

Note that we obtain a slow convergence when applied to convex minimization, because we are not
using any co-coercivity of B, which would lead to a rate (1− µ/L) [7]. Indeed, co-coercivity means
that ‖B(z)−B(z′)‖2 6 L(B(z)−B(z′))⊤(z−z′), and this allows to replace above the term 1+σ2L2

by 1 if σ 6 2/L, leading to linear convergence rate with constant (1 + µ/L)−2 ≈ 1− 2µ/L.

B.2 Accelerated forward-backward algorithm

We consider the iteration zt = (I+σA)−1(zt−1−σB[zt−1+θ(zt−1−zt−2)]), with B being monotone
L-Lipschitz-continuous and linear, and A being µ-strongly monotone. Note that this is an extension
of the analysis of [21] to take into account the general monotone operator situation. Again z∗ is a
fixed-point of the iteration.

Using the firm non-expansiveness of the resolvent operator, we get, with η = σµ
1+σµ , and then using

the linearity of B:

‖zt − z∗‖2 6
1

1 + σµ
(zt − z∗)

⊤
[

zt−1 − z∗ − σB[zt−1 − z∗ + θ(zt−1 − zt−2)]
]

= (zt − z∗)
⊤
[

(1 − η)(zt−1 − z∗)−
η

µ
B[zt−1 − z∗ + θ(zt−1 − zt−2)]

]

= −1− η

2
‖zt − zt−1‖2 +

1− η

2
‖zt − z∗‖2 +

1− η

2
‖zt−1 − z∗‖2

− η

µ
(zt − z∗)

⊤B[zt−1 − z∗ + θ(zt−1 − zt−2)]

= −1− η

2
‖zt − zt−1‖2 +

1− η

2
‖zt − z∗‖2 +

1− η

2
‖zt−1 − z∗‖2

− η

µ
(zt − z∗)

⊤B(zt−1 − z∗)− θ
η

µ
(zt − z∗)

⊤B(zt−1 − zt−2),

by regrouping terms. By using the Lipschitz-continuity of B, we get:

‖zt − z∗‖2

6 −1− η

2
‖zt − zt−1‖2 +

1− η

2
‖zt − z∗‖2 +

1− η

2
‖zt−1 − z∗‖2 −

η

µ
(zt − z∗)

⊤B(zt−1 − zt)

−θ η
µ
(zt−1 − z∗)

⊤B(zt−2 − zt−1) + θ
η

µ
L‖zt − zt−1‖‖zt−1 − zt−2‖

6 −1− η

2
‖zt − zt−1‖2 +

1− η

2
‖zt − z∗‖2 +

1− η

2
‖zt−1 − z∗‖2 −

η

µ
(zt − z∗)

⊤B(zt−1 − zt)

−θ η
µ
(zt−1 − z∗)

⊤B(zt−2 − zt−1) +
θL

2

η

µ

[

α−1‖zt − zt−1‖2 + α‖zt−1 − zt−2‖2
]

,

with a constant α > 0 to be determined later. This leads to, with θ = 1−η
1+η , and by regrouping terms:

1 + η

2
‖zt − z∗‖2 +

(1− η

2
− θηL

2µ
α−1

)

‖zt − zt−1‖2 − η(zt − z∗)
⊤B(zt−1 − zt)

6
1− η

2
‖zt−1 − z∗‖2 +

(αηθL

2µ

)

‖zt−1 − zt−2‖2 − θ
η

µ
(zt−1 − z∗)

⊤B(zt−2 − zt−1)

6 θ

[

1 + η

2
‖zt−1 − z∗‖2 +

(ηαL

2µ

)

‖zt−1 − zt−2‖2 −
η

µ
(zt−1 − z∗)

⊤B(zt−2 − zt−1)

]

.

14

We get a Lyapunov function L : (z, z′) 7→ 1+η
2 ‖z − z∗‖2 +

(

1−η
2 − θηL

2µ α−1
)

‖z − z′‖2 − η(z −
z∗)⊤B(z′ − z), such that L(zt, zt−1) converges to zero geometrically, if αηL

µ 6 1− η − ηθL
µ α−1 and

(

1 + η −ηL/µ
ηL/µ 1− η − ηθLµ−1α−1

)

< 0. By setting η = 1
1+2L/µ , and thus θ = 1−η

1+η = 1
1+µ/L , σ =

1
µ

η
1−η = 1

2L , and α = 1, we get the desired first property and the fact that the matrix above is greater

than

(

1/2 0
0 0

)

, which allows us to get a linear rate of convergence for ‖zt − z∗‖2 6 2L(zt, zt−1).

C Proof for Existing Stochastic Algorithms

We follow [25], but with a specific step-size that leads to a simple result, which also applies to non-
uniform sampling from a finite pool. We consider the iteration zt = (I + σtA)

−1(zt−1 − σt(Bzt−1 +
Ctzt−1)), with B being monotone L-Lipschitz-continuous and A being µ-strongly monotone, and Ct

a random operator (not necessarily monotone) such that ECt(z) = 0 for all z. We assume that all
random operators Ct are independent, and we denote by Ft the σ-field generated by C1, . . . , Ct, i.e.,
the information up to time t.

We have with Lip(Ct) the Lipschitz-constant of Ct:

‖zt − z∗‖2 6
1

(1 + σtµ)2
‖zt−1 − z∗ − σt(B(zt−1)−B(z∗))− σtCt(zt−1)‖2

by contractivity of the resolvent,

=
1

(1 + σtµ)2

[

‖zt−1 − z∗‖2 − 2σt(zt−1 − z∗)
⊤(B(zt−1)−B(z∗))

+σ2
t ‖B(zt−1)−B(z∗) + Ct(zt−1)‖2 + 2σt(Ct(zt−1))

⊤(zt−1 − z∗)
]

.

By taking conditional expectations, we get:

E
(

‖zt − z∗‖2
∣

∣Ft−1

)

6
1

(1 + σtµ)2
[

(1 + σ2
tL

2)‖zt−1 − z∗‖2 + σ2
tE(‖Ct(zt−1)‖2|Ft−1)

]

by monotonicity and Lipschitz-continuity of B,

6
1

(1 + σtµ)2
[

(1 + σ2
tL

2)‖zt−1 − z∗‖2 + 2σ2
tE(‖Ct(z∗)‖2|Ft−1)

+2σ2
t ‖zt−1 − z∗‖2E(sup

‖z−z′‖=1

‖Ct(z)− Ct(z
′)‖2|Ft−1)

]

=
1

(1 + σtµ)2
[

(1 + σ2
tL

2)‖zt−1 − z∗‖2 + 2σ2
tE(‖Ct(z∗)‖2|Ft−1)

+2σ2
t ‖zt−1 − z∗‖2E(Lip(Ct)

2|Ft−1)
]

=
1

(1 + σtµ)2
[

(1 + σ2
tL

2 + 2σ2
tE(Lip(Ct)

2|Ft−1))‖zt−1 − z∗‖2 + 2σ2
tE(‖Ct(z∗)‖2|Ft−1)

]

.

By denoting ηt =
σtµ

1+σtµ
∈ [0, 1), we get

E‖zt − z∗‖2 6

(

1− 2ηt + η2t + 2η2t
L2

µ2
+ 2η2t

1

µ2
E(Lip(Ct)

2|Ft−1)
)

‖zt−1 − z∗‖2 + 2
η2t
µ2

E(‖Ctz∗‖2|Ft−1)
]

.

15

By selecting ηt = 2

(t+1)+4L2

µ2 + 4

µ2 E(Lip(Ct)2|Ft−1)
= 2

t+1+A , with A = 4L2

µ2 + 4
µ2E(Lip(Ct)

2|Ft−1), we

get:

E‖zt − z∗‖2 6 (1 − ηt)E‖zt−1 − z∗‖2 + 2
η2t
µ2

E(‖Ctz∗‖2)
]

=
t− 1 +A

t+ 1 +A
E‖zt−1 − z∗‖2 +

8

(t+ 1 +A)2
1

µ2
E(‖Ctz∗‖2)

6
A(1 +A)

(t+ 1 +A)(t+A)
‖z0 − z∗‖2 +

8

µ2

t
∑

u=1

(u+A)(u + 1 +A)

(t+ 1 +A)(t+A)

1

(u + 1 +A)2
E(‖Cuz∗‖2)

by expanding the recursion t times,

6
A(1 +A)

(t+ 1 +A)(t+A)
‖z0 − z∗‖2 +

8

µ2

t
∑

u=1

1

(t+ 1+ A)(t+A)
E(‖Cuz∗‖2)

6
(1 +A)2

(t+A)2
‖z0 − z∗‖2 +

8

µ2(t+A)
sup

u∈{1,...,t}
E(‖Cuz∗‖2).

The overall convergence rate is in O(1/t) and the constant depends on the noise in the operator
values at the optimum. Note that initial conditions are forgotten at a rate O(1/t2).

Application to sampling from a finite family. When sampling from |I| operators Bi, i ∈ I,
and selecting it with probability vector π, then we have E(Lip(Ct)

2|Ft−1) 6 L̄(π)2 = L̄2 defined

as sup‖z−z′‖61

√

∑

i∈I
1
πi
‖Bi(z)−Bi(z′)‖2. Thus, we can take the step-size 2

t+1+4L2+L̄2

µ2

, and thus

σt =
2/µ

t+1+4L2+L̄2

µ2

. Moreover, if L is unknown (or hard to compute), we can take L̄ instead.

We may further bound: E(‖Cuz∗‖2) 6 2E(‖Cuz0‖2) + 2E(Lip(Ct)
2)‖z0 − z∗‖2, and thus, if we start

from an initial point z0 such that Cuz0 = 0, which is always possible for bi-linear problems, we get
an overall bound of (taking L = L̄ for simplicity)

((1 + 8L̄2/µ2)2

(t+ 8L̄2/µ2)2
+

16L̄2/µ2

t+ 8L̄2/µ2

)

‖z0 − z∗‖2 6
1 + 24L̄2/µ2

t+ 8L̄2/µ2
‖z0 − z∗‖2.

We thus get an overall O(1/t) convergence rate.

D Proof for New Stochastic Algorithms

We also consider the monotone operator set-up, since this is the only assumption that we use. We
follow the proof of the corresponding convex minimization algorithms, with key differences which we
highlight below. In particular, (a) we do not use function values, and (b) we use shorter step-sizes
to tackle the lack of co-coercivity.

D.1 SVRG: Stochastic-Variance reduced saddle-point problems (Theo-
rem 1)

We only analyze a single epoch starting from the reference estimate z̃, and show that the expected
squared distance to optimum is shrunk by a factor of 3/4 if the number of iterations per epoch is
well-chosen. The epoch is started with z0 = z̃.

16

We denote by Ft−1 the information up to time t − 1. We consider sampling it1, . . . , itm ∈ I with
replacement at time t. By using the contractivity of the resolvent operator of A, and the fact that
z∗ = (I + σA)−1(z∗ − σB(z∗)), we get:

‖zt − z∗‖2 6
1

(1 + σµ)2

∥

∥

∥
zt−1 − z∗ − σ[B(z̃)−B(z∗) +

1

m

m
∑

k=1

1

πitk

(Bitk (zt−1)−Bitk (z̃))]
∥

∥

∥

2

=
1

(1 + σµ)2

∥

∥

∥
zt−1 − z∗

−σ[B(zt−1)−B(z∗) +
1

m

m
∑

k=1

1

πitk

(Bitk (zt−1)−Bitk(z̃))− (B(zt−1)−B(z̃))]
∥

∥

∥

2

.

Expanding the squared norm, taking conditional expectations with E(1
πitk

Bitk|Ft−1) = B, and using

the independence of it1, . . . , itm, we get:

E
[

‖zt − z∗‖2|Ft−1

]

6
1

(1 + σµ)2
(

‖zt−1 − z∗‖2 − 2σ(zt−1 − z∗)
⊤(B(zt−1)−B(z∗)) + σ2‖B(zt−1)−B(z∗)‖2

)

+
1

m
E

[1

(1 + σµ)2

∥

∥

∥

1

πit

(Bit(zt−1)−Bit(z̃))− (B(zt−1)−B(z̃))
∥

∥

∥

2∣
∣

∣
Ft−1

]

.

Using the monotonicity of B and the Lipschitz-continuity of B (like in Appendix B.1) , we get the
bound

1 + σ2L2

(1 + σµ)2
‖zt−1 − z∗‖2 +

1

m
E

[1

(1 + σµ)2
∥

∥

1

πit

(Bit(zt−1)−Bit(z̃))− (B(zt−1)−B(z̃))
∥

∥

2∣
∣Ft−1

]

.

We denote by L̄2 the quantity L̄2 = supz,z′∈E
1

‖z−z′‖2

∑

i∈I
1
πi
‖Bi(z)−Bi(z

′)‖2. We then have (using

the fact that a variance is less than the second-order moment):

E

[

∥

∥

1

πit

(Bit(zt−1)−Bit(z̃))− (B(zt−1)− B(z̃))
∥

∥

2∣
∣Ft−1

]

6 E

[

∥

∥

1

πit

(Bit(zt−1)−Bit(z̃))
∥

∥

2∣
∣Ft−1

]

,

which is less than L̄2‖zt−1 − z̃‖2 because we sample i from π. This leads to

E
[

‖zt − z∗‖2|Ft−1

]

6
1 + σ2L2

(1 + σµ)2
‖zt−1 − z∗‖2 +

1

(1 + σµ)2
L̄2

m
‖zt−1 − z̃‖2

6

(

1− 2η + η2 + η2
L2

µ2
+

(1 + a)η2

µ2

L̄2

m

)

‖zt−1 − z∗‖2

+
(1 + a−1)η2

µ2

L̄2

m
‖z̃ − z∗‖2,

with η = σµ
1+σµ ∈ [0, 1) and a > 0 to be determined later. Assuming that η

(

1 + L2

µ2 + (1+a)
µ2

L̄2

m

)

6 1,

and taking full expectations, this leads to:

E‖zt − z∗‖2 6 (1− η)E‖zt−1 − z∗‖2 +
(1 + a−1)η2

µ2

L̄2

m
‖z̃ − z∗‖2,

that is we get a shrinking of the expected distance to optimum with additional noise that depends
on the distance to optimum of the reference point z̃. The difference with the convex minimization
set-up of [27] is that the proof is more direct, and we get a shrinkage directly on the iterates (we

17

have no choice for monotone operators), without the need to do averaging of the iterates. Moreover,
we never use any monotonicity of the operators Bi, thus allowing any type of splits (as long as the
sum B is monotone).

Then, using the fact that z0 = z̃, and expanding the recursion:

E‖zt − z∗‖2 6 (1 − η)t‖z0 − z∗‖2 +
(

t−1
∑

u=0

(1 − η)u
) (1 + a−1)η2

µ2

L̄2

m
‖z̃ − z∗‖2

6

(

(1 − η)t +
(1 + a−1)η

µ2

L̄2

m

)

‖z̃ − z∗‖2.

If we take a = 2, η = 1
∣

∣1+L2+3L̄2/(mµ2)
, which corresponds to σ = 1

µ
η

1−η = µ
∣

∣L2+ 3
m

L̄2
and t =

log 4/η = log 4 × (1 + L2

µ2 + 3 L̄2

mµ2), we obtain a bound of 3/4, that is, after t step in an epoch, we

obtain E‖zt − z∗‖2 6
3
4‖z̃ − z∗‖2, which is the desired result.

In terms of running-time, we therefore need a time proportional to T (B)+
(

1+L2

µ2 +3 L̄2

mµ2

)(

mmaxi T (Bi)+

Tprox(A)
)

, times log 1
ε to reach precision ε.

Note that if L2 is too expensive to compute (because it is a global constant), we may replace it by
L̄2 and get a worse bound (but still a valid algorithm).

D.2 SAGA: Online stochastic-variance reduced saddle-point problems
(Theorem 2)

The proof follows closely the one of SVRG above. Following the same arguments, we get, by
contractivity of the resolvent operator:

‖zt − z∗‖2 6
1

(1 + σµ)2

∥

∥

∥
zt−1 − z∗ − σ[

∑

i∈I

git−1 −B(z∗) +
1

m

m
∑

k=1

1

πitk

(Bitk(zt−1)− gitkt−1)]
∥

∥

∥

2

=
1

(1 + σµ)2

∥

∥

∥
zt−1 − z∗ − σ[B(zt−1)−B(z∗)

+
1

m

m
∑

k=1

1

πitk

(Bitk(zt−1)− gitkt−1)− (B(zt−1)−
∑

i∈I

git−1)]
∥

∥

∥

2

.

Then, using independence, monotonicity and Lipschitz-continuity of B, we get (note that we never
use any monotonicity of Bi), like in the proof of Theorem 1:

E
[

‖zt − z∗‖2|Ft−1

]

6
1 + σ2L2

(1 + σµ)2
‖zt−1 − z∗‖2

+
1

m
E

[1

(1 + σµ)2
∥

∥

1

πit

(Bit(zt−1)− gitt−1)− (B(zt−1)−
∑

i∈I

git−1)
∥

∥

2∣
∣Ft−1

]

6
1 + σ2L2

(1 + σµ)2
‖zt−1 − z∗‖2 +

1

m

1

(1 + σµ)2

(

∑

i∈I

1

πi
‖Bi(zt−1)− git−1‖2

)

6

(

1− 2η + η2 + η2
L2

µ2
+

(1 + a)η2

µ2

L̄2

m

)

‖zt−1 − z∗‖2

+
(1 + a−1)η2

µ2m

(

∑

i∈I

1

πi
‖Bi(z∗)− git−1‖2

)

,

18

with η = σµ
1+σµ . Assuming η

(

1 + L2

µ2 + (1+a)
µ2

L̄2

m

)

6 1, we get

E
[

‖zt − z∗‖2|Ft−1

]

6 (1− η)‖zt−1 − z∗‖2 +
(1 + a−1)η2

µ2m

(

∑

i∈I

1

πi
‖Bi(z∗)− git−1‖2

)

.

Like in the SVRG proof above, we get a contraction of the distance to optimum, with now an added
noise that depends on the difference between our stored operator values and the operator values
at the global optimum. We thus need to control this distance by adding the proper factors to a
Lyapunov function. Note that we never use any monotonicity of the operators Bi, thus allowing any
type of splits (as long as the sum B is monotone).

We assume that we update (at most m because we are sampling with replacement and we may
sample the same gradient twice) “gradients” git uniformly at random (when we consider uniform
sampling, we can reuse the same gradients as dependence does not impact the bound), by replacing
them by git = Bi(zt−1). Thus:

E

(

∑

i∈I

1

πi
‖Bi(z∗)− git‖2

∣

∣

∣
Ft−1

)

= E

(

∑

i selected

1

πi
‖Bi(z∗)−Bi(zt−1)‖2 +

∑

i non selected

1

πi
‖Bi(z∗)− git−1‖2

∣

∣

∣
Ft−1

)

=E

(

∑

i selected

1

πi

(

‖Bi(z∗)− Bi(zt−1)‖2 − ‖Bi(z∗)− git−1‖2
)

+
∑

i∈I

1

πi
‖Bi(z∗)− git−1‖2

∣

∣

∣
Ft−1

)

.

Since we sample uniformly with replacement, the marginal probabilities of selecting an element i is
equal to ρ = 1− (1− 1

|I|)
m. We thus get

E

(

∑

i∈I

1

πi
‖Bi(z∗)− git‖2

∣

∣

∣
Ft−1

)

6 (1− ρ)
∑

i∈I

1

πi
‖Bi(z∗)− git−1‖2 + ρ

∑

i∈I

1

πi
‖Bi(z∗)−Bi(zt−1)‖2

6 (1− ρ)
∑

i∈I

1

πi
‖Bi(z∗)− git−1‖2 + ρL̄2‖zt−1 − z∗‖2.

Therefore, overall, we have, for a scalar b > 0 to be chosen later:

E

(

‖zt − z∗‖2 + b
∑

i∈I

1

πi
‖Bi(z∗)− git‖2

∣

∣

∣
Ft−1

)

6

(

1− 2η + η2 + η2
L2

µ2
+

(1 + a)η2

µ2

L̄2

m
+ bρL̄2

)

‖zt−1 − z∗‖2

+b
(

1− ρ+ b−1 (1 + a−1)η2

mµ2

)

∑

i∈I

1

πi
‖Bi(z∗)− git−1‖2.

If we take a = 2, η = 1

max{ 3|I|
2m

,1+L2

µ2 +3 L̄2

mµ2 }
, which corresponds to σ = 1

µ
η

1−η = µ
∣

∣max{ 3|I|
2m

−1,L
2

µ2 +3 L̄2

mµ2 }
,

with bρL̄2 = 3η
4 , then we get the bound (using η 6 1/(L̄2/(3m))):

(1− η

4
)‖zt−1 − z∗‖2 + (1− ρ

3
)
∑

i∈I

1

πi
‖Bi(z∗)− git−1‖2,

which shows that the function (z, g) 7→ ‖z − z∗‖2 + b
∑

i∈I
1
πi
‖Bi(z∗) − gi‖2 is a good Lyapunov

function for the problem that shrinks geometrically in expectation (it resembles the one from convex
minimization, but without the need for function values).

19

Finally, since we assume that m 6 |I|, we have ρ = 1− (1 − 1/|I|)m > 1− exp(−m/|I|) > m/(2|I|).
This leads to, after t iterations

E‖zt − z∗‖2 6 (1−min{η
4
,
m

6|I|})
t
[

‖z0 − z∗‖2 +
3η

4ρL̄2

∑

i∈I

1

πi
‖Bi(z∗)−Bi(z0)‖2

]

.

We have η 6 2m/(3|I|) and 3η/(4ρ) 6 3
4

2m
3|I|

2|I|
m 6 1, leading to

E‖zt − z∗‖2 6 2(1− η

4
)t‖z0 − z∗‖2,

which is the desired result.

Note that we get the same overall running-time complexity than for SVRG.

Factored splits. Note that when applying to saddle-points with factored splits, we need to use
a Lyapunov function that considers these splits. The only difference is to treat separately the two
parts of the vectors, leading to replacing everywhere |I| by max{|J|, |K|}.

D.3 Acceleration

We also consider in this section a proof based on monotone operators. We first give the algorithm
for saddle-point problems.

Algorithms for saddle-point problems. At each iteration, we need solve the problem in Eq. (4)
of the main paper, with the SVRG algorithm applied to K̃(x, y) = K(x, y)− λτx⊤x̄ + γτy⊤ȳ, and
M̃(x, y) = M(x, y)+ λτ

2 ‖x‖2−
γτ
2 ‖y‖2. These functions lead to constants λ̃ = λ(1+ τ), γ̃ = γ(1+ τ)

and L̃ = L/(1 + τ), σ̃ = σ(1 + τ)2. We thus get the iteration, for a single selected operator,

(x, y)← proxσ̃
M̃

[

(x, y)− σ̃
(1/λ̃ 0

0 1/γ̃

)(

B̃(x̃, ỹ) +
{ 1

πi
B̃i(x, y)−

1

πi
B̃i(x̃, ỹ)

})]

.

A short calculation shows that proxσ̃
M̃
(x, y) = prox

σ(1+τ)/(1+στ(1+τ))
M ((x, y)/(1+στ(1+ τ))), leading

to the update (with σ the step-size from the regular SVRG algorithm in Section 3):

(x, y)← proxσ̃
M̃

[

(x, y) + στ(1 + τ)(x̄, ȳ)− σ(1 + τ)
(1/λ 0

0 1/γ

)(

B(x̃, ỹ) +
{ 1

πi
B̃i(x, y)−

1

πi
B̃i(x̃, ỹ)

})]

.

This leads to Algorithm 3, where differences with the SVRG algorithm, e.g., Algorithm 1, are
highlighted in red. Given the value of τ , the estimate (x̄, ȳ) is updated every log(1 + τ) epochs of
SVRG. While this leads to a provably better convergence rate, in practice, this causes the algorithm
to waste time solving with too high precision the modified problem. We have used the simple
heuristic of changing (x̄, ȳ) one epoch after the primal-dual gap has been reduced from the previous
change of (x̄, ȳ).

Proof of Theorem 3 using monotone operators. We consider τ > 0, and we consider the
following algorithm, which is the transposition of the algorithm presented above. We consider a
mini-batch m = 1 for simplicity. We consider a set of SVRG epochs, where z̄ remains fixed. These
epochs are initialized by z̃ = z̄.

For each SVRG epoch, given z and z̃, and starting from z = z̃, we run t iterations of:

z ← (I + σ(τI +A))−1
(

z − σ[Bz̃ +
1

πi
(Biz −Biz̃)− τ z̄]

)

,

20

Algorithm 3 Accelerated Stochastic Variance Reduction for Saddle Points

Input: Functions (Ki)i, M , probabilities (πi)i, smoothness L̄(π) and L, iterate (x, y)
number of epochs v, number of updates per iteration m, acceleration factor τ

Set σ =
[

L2 + 3L̄2/m
]−1

and (x̄, ȳ) = (x, y)
for u = 1 to v do

If u = 0 mod ⌈2 + 2 log(1 + τ)/(log 4/3)⌉, set (x̄, ȳ) = (x̃, ỹ)
Initialize (x̃, ỹ) = (x, y) and compute B(x̃, ỹ)
for k = 1 to log 4× (L2 + 3L̄2/m)(1 + τ)2 do

Sample i1, . . . , im ∈ I from probability vector (πi)i with replacement

z ← (x, y)+στ(1 + τ)(x̄, ȳ)− σ(1 + τ)
(1/λ 0

0 1/γ

)(

B(x̃, ỹ) +
{

1
πi
B̃i(x, y)− 1

πi
B̃i(x̃, ỹ)

})

(x, y)← prox
σ(1+τ)/(1+στ(1+τ))
M (z/(1 + στ(1 + τ)))

end for
end for

Output: Approximate solution (x, y)

and then update z̃ as z at the end of the SVRG epoch. It corresponds exactly to running the SVRG
algorithm to find (τI+A+B)−1(τ z̄) approximately, we know from the proof of Theorem 1 that after

log 4
(

1+ L2

µ2(1+τ)2 +
L2

µ2(1+τ)2

)

iterations, we have an iterate z such that E‖z−(τI+A+B)−1(τ z̄)‖2 6

3
4E‖z̃− (τI +A+B)−1(τ z̄)‖2. Thus, if we run s epochs where we update z̃ (but not z̄) at each start
of epoch, we get an iterate z such that E‖z−(τI+A+B)−1(τ z̄)‖2 6 (34)

s
E‖z̄−(τI+A+B)−1(τ z̄)‖2,

and thus

E‖z − (τI +A+B)−1(τ z̄)‖2 6

(3

4

)s

E‖z̄ − (τI +A+B)−1(τ z̄)‖2

=
(3

4

)s

E‖z̄ − z∗ − (τI +A+B)−1(τ z̄) + (τI +A+B)−1(τz∗)‖2

using z∗ = (τI +A+B)−1(τz∗),

=
(3

4

)s

E‖z̄ − z∗ − (I + τ−1(A+B))−1(z̄) + (I + τ−1(A+B))−1(z∗)‖2.

We may now use the fact that for any multi-valued maximal monotone operator C, I − (I +C)−1 =
(I + C−1)−1, which shows that I − (I + C)−1 is 1-Lipschitz-continuous. Thus

E‖z − (τI +A+B)−1(τ z̄)‖2 6

(3

4

)s

E‖z̄ − z∗‖2.

This implies, by Minkowski’s inequality,

(E‖z − z∗‖2)1/2 6 (E‖z − (τI +A+B)−1(τ z̄)‖2)1/2 + (E‖(τI +A+B)−1(τ z̄)− z∗‖2)1/2

6

(3

4

)s/2

(E‖z̄ − z∗‖2)1/2 + (E‖(τI +A+B)−1(τ z̄)− (τI +A+B)−1(τz∗)‖2)1/2

=
(3

4

)s/2

(E‖z̄ − z∗‖2)1/2 + (E‖(I + τ−1(A+B))−1(z̄)− (I + τ−1(A+B))−1(z∗)‖2)1/2

6

(3

4

)s/2

(E‖z̄ − z∗‖2)1/2 +
1

1 + τ−1µ
(E‖z̄ − z∗‖2)1/2

=
(3

4

)s/2

(E‖z̄ − z∗‖2)1/2 +
τ

τ + µ
(E‖z̄ − z∗‖2)1/2,

using the fact that the contractivity of resolvents of strongly monotone operators. Thus after s =

2 + 2
log(1+ τ

µ
)

log 4
3

, we get a decrease by (1− µ
τ+µ), and thus the desired result.

21

D.4 Factored splits and bi-linear models

In the table below, we report the running-time complexity for the factored splits which we used in
simulations. Note that SAGA and SVRG then have different bounds. Moreover, all these schemes
are adapted when n is close to d. For n much different from d, one could imagine to (a) either
complete with zeros or (b) to regroup the data in the larger dimension so that we get as many
blocks as for the lower dimension.

Algorithms Complexity

Stochastic FB-non-uniform (1/ε) ×
(

max{n, d}‖K‖2F/(λγ)
∣

∣

∣

)

Stochastic FB-uniform (1/ε) ×
(

max{n, d}2‖K‖2max/(λγ)
∣

∣

∣

)

SVRG-uniform log(1/ε) ×
(

nd+max{n, d}2‖K‖2max/(λγ)
∣

∣

∣

)

SAGA-uniform log(1/ε) ×
(

max{n, d}2 +max{n, d}2‖K‖2max/(λγ)
∣

∣

∣

)

SVRG-non-uniform log(1/ε) ×
(

nd+max{n, d}‖K‖2F/(λγ)
∣

∣

∣

)

SAGA-non-uniform log(1/ε) ×
(

max{n, d}2 +max{n, d}‖K‖2F/(λγ)
∣

∣

∣

)

SVRG-non-uniform-acc. log(1/ε) ×
(

nd+max{n, d}3/2‖K‖F/
√
λγ

∣

∣

∣

)

Table 2: Summary of convergence results for the strongly (λ, γ)-convex-concave bilinear saddle-
point problem with matrix K and factored splits, with access to a single row and a single column
per iteration. The difference with the individual splits from Table 1 is highlighted in red.

E Surrogate to Area Under the ROC Curve

We consider the following loss function on R
n, given a vector of positive and negative labels, which

corresponds to a convex surrogate to the number of misclassified pairs [13, 14]:

ℓ(u) =
1

2n+n−

∑

i+∈I+

∑

i−∈I−

(1 − ui− + ui+)
2

=
1

2n+n−

∑

i+∈I+

∑

i−∈I−

{

1 + u2
i− + u2

i+ − 2ui− + 2ui+ − 2ui−ui+

}

=
1

2
+

1

n+

∑

i+∈I+

ui+ −
1

n−

∑

i−∈I−

ui− +
1

2n−

∑

i−∈I−

u2
i− +

1

2n+

∑

i+∈I+

u2
i+ −

1

n+n−

∑

i+∈I+

∑

i−∈I−

ui−ui+

=
1

2
+

1

n+
e⊤+u−

1

n−
e⊤−u+

1

2
u⊤Diag(

1

n+
e+ +

1

n−
e−)u−

1

2n+n−
u⊤(e+e

⊤
− + e−e

⊤
+)u

=
1

2
− a⊤u+

1

2
u⊤Au,

with e+ ∈ R
n the indicator vector of I+ and e− ∈ R

n the indicator vector of I−. We have A =
Diag(1

n+
e+ + 1

n−
e−) − 1

n+n−

[

e+e
⊤
− + e−e⊤+

]

and a = e+/n+ − e−/n−. A short calculation shows

that the largest eigenvalue of A is 1
M = 1

n+
+ 1

n−
.

We consider the function h(u) = 1
2u

⊤Au. It is (1/M)-smooth, its Fenchel conjugate is equal to

1

2
v⊤A−1v,

22

and our function g will be equal to v 7→ 1
2v

⊤A−1v − M
2 ‖v‖2. Given that 1 is a singular vector of A,

g(v) is finite only when v⊤1n = 0.

We need to be able to compute g(v), i.e., solve the system A−1v, and to compute the the proximal
operator

min
v

1

2
‖v − v0‖2 + σg(v) = min

v

1

2
‖v − v0‖2 +

σ

2
v⊤(A−1 −MI)v,

which leads to to the system: (A−1 −MI + σ−1I)v = σ−1v0, which is equivalent to: (I −MA +
σ−1A)v = σ−1Av0 We thus need to compute efficiently Aw, and (I + κA)−1w with κ > −M . We
have

I + κA = Diag((1 + κ/n+)e+ + (1 + κ/n−)e−)−
κ

n+n−

[

e+e
⊤
− + e−e

⊤
+

]

= Diag((1 + κ/n+)e+ + (1 + κ/n−)e−)
1/2

[

I − κ

n+n−

([1
√

1 + κ/n+

e+
][1
√

1 + κ/n−
e−

]⊤ −
[1
√

1 + κ/n−
e−

][1
√

1 + κ/n+

e+
]⊤)]

Diag((1 + κ/n+)e+ + (1 + κ/n−)e−)
1/2

= D1/2(I − αu+u
⊤
− − αu−u

⊤
+)D

1/2,

with u⊤
+u− = 0 and u+ = e+√

n+
, u− = e−√

n−
of norm 1 and D = Diag((1 + κ/n+)e+ + (1 + κ/n−)e−).

We have:

I − αu+u
⊤
− − αu−u

⊤
+ = I − u+u

⊤
+ − u−u

⊤
− + (u+, u−)

(1 −α
−α 1

)

(u+, u−)
⊤

(I − αu+u
⊤
− − αu−u

⊤
+)

−1 = I − u+u
⊤
+ − u−u

⊤
− +

1

1− α2
(u+, u−)

(1 α
α 1

)

(u+, u−)
⊤

= I + (1/(1− α2)− 1)u+u
⊤
+ + (1/(1− α2)− 1)u−u

⊤
− +

α

1− α2
(u+u

⊤
− + u−u

⊤
+)

= I + (1/(1− α2)− 1)
1

n+
e+e

⊤
+ + (1/(1− α2)− 1)

1

n−
e−e

⊤
−

+
α

1− α2

1
√
n+n−

(e+e
⊤
− + e−e

⊤
+).

We have here α = κ
n+n−

√

n+

1+κ/n+

√

n−

1+κ/n−
. Thus

(I + κA)−1 = D−1/2
[

I − u+u
⊤
+ − u−u

⊤
− +

1

1− α2
(u+, u−)

(1 α
α 1

)

(u+, u−)
⊤]D−1/2,

which can be done in O(n).

Moreover, we have

A = Diag((1/n+)e+ + (1/n−)e−)
1/2

[

I − 1

n+n−

([√
n+e+

][√
n−e−

]⊤ −
[√

n−e−
][√

n+e+
]⊤)]

Diag((1/n+)e+ + (1/n−)e−)
1/2

= D1/2(I − u+u
⊤
− − u−u

⊤
+)D

1/2

with u⊤
+u− = 0 and u+, u− of norm 1. Thus we have

I − u+u
⊤
− − u−u

⊤
+ = I − u+u

⊤
+ − u−u

⊤
− + (u+, u−)

(1 −1
−1 1

)

(u+, u−)
⊤

(I − u+u
⊤
− − u−u

⊤
+)

−1 = I − u+u
⊤
+ − u−u

⊤
− +

1

0
(u+, u−)

(1 1
1 1

)

(u+, u−)
⊤.

23

Thus, if v⊤1n = 0, we get:

v⊤A−1v = v⊤ Diag(n+e+ + n−e−)v − (v⊤e+)
2 − (v⊤e−)

2,

which has running-time complexity O(n).

Optimization problem. With a regularizer f(x) + λ
2 ‖x‖2, we obtain the problem:

min
x∈Rd

λ

2
‖x‖2 + f(x) +

1

2
− a⊤Kx+

1

2
(Kx)⊤A(Kx)

min
x∈Rd

max
y∈Rn

λ

2
‖x‖2 + f(x) +

1

2
− a⊤Kx+ y⊤Kx− M

2
‖y‖2 − 1

2
y⊤(A−1 −MI)y,

with g(y) = 1
2y

⊤(A−1 −MI)y.

F Additional Experimental Results

We complement the results of the main paper in several ways: (a) by providing all test losses, the
distance to optimum Ω(x− x∗, y− y∗) in log-scale, as well as the primal-dual gaps in log-scale, as a
function of the number of passes on the data. We consider the three machine learning settings:

– Figure 1: sido dataset, AUC loss and cluster norm (plus squared-norm) regularizer (both non
separable).

– Figure 2: sido dataset, square loss and ℓ1-norm (plus squared-norm) regularizer (both separable).

– Figure 3: rcv1 dataset, square loss and ℓ1-norm (plus squared-norm) regularizer (both separable).

We consider the following methods in all cases (all methods are run with the step-sizes proposed in
their respective convergence analysis):

– fb-acc: accelerated forward-backward saddle-point method from Section 2.2,

– fb-sto: stochastic forward-backward saddle-point method from Section 2.3,

– saga: our new algorithm from Section 4, with non-uniform sampling, and sampling of a single row
and column per iteration,

– saga (unif): our new algorithm from Section 4, with uniform sampling, and sampling of a single
row and column per iteration,

– svrg: our new algorithm from Section 3, with non-uniform sampling, and sampling of a single row
and column per iteration,

– svrg-acc: our new accelerated algorithm from Section 3, with non-uniform sampling, and sampling
of a single row and column per iteration,

– fba-primal: accelerated proximal method [11], which can be applied to the primal version of our
problem (which is the sum of a smooth term and a strongly convex term).

Moreover, for the separable cases, we add:

– saga-primal: SAGA with non-uniform sampling [28], which can only be run with separable losses.

24

0 100 200 300 400 500

10
−5

10
0

sido − distance to optimizers − λ/λ
0
=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500
10

−4

10
−3

10
−2

10
−1

10
0

sido − primal−dual gap − λ/λ
0
=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

sido − test error − λ/λ
0
=1.00 − min = 0.140

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500
10

−5

10
0

sido − distance to optimizers − λ/λ
0
=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500

10
0

sido − primal−dual gap − λ/λ
0
=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

sido − test error − λ/λ
0
=0.10 − min = 0.177

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal

Figure 1: sido dataset. Top: λ = λ0 = ‖K‖2F/n2, Bottom: λ = λ0/10 = 1
10‖K‖2F/n2. AUC loss

and cluster-norm regularizer. Distances to optimum, primal-dual gaps and test losses, as a function
of the number of passes on the data. Note that the primal SAGA (with non-uniform sampling)
cannot be used because the loss is not separable. Best seen in color.

We can make the following observations:

– Non-uniform sampling is key to good performance.

– The distance to optimum (left plots) exhibits a clear linear convergence behavior (which is pre-
dicted by our analysis), which is not the case for the primal-dual gap, which does converge, but
more erratically. It would be interesting to provide bounds for these as well.

– When λ decreases (bottom plots, more ill-conditioned problems), the gains of accelerated methods
with respect to non-accelerated ones are unsurprisingly larger. Note that for two out of three
settings, the final test loss is smaller for the smaller regularization, and non-accelerated methods
need more passes on the data to reach good testing losses.

– Primal methods which are not using separability (here “fba-primal”) can be run on all instances,
but are not competitive. Note that in some situations, they achieve early on good performances
(e.g., Figure 2), before getting caught up by stochastic-variance-reduced saddle-point techniques
(note also that since these are not primal-dual methods, we compute dual candidates through the
gradient of the smooth loss functions, which is potentially disadvantageous).

– Primal methods that use separability (here “saga-primal”) cannot be run on non-separable prob-
lems, but when they can run, they are still significantly faster than our saddle-point techniques.
We believe that this is partly due to adaptivity to strong convexity (the convergence bounds for
the two sets of techniques are the same for this problem).

25

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

sido − distance to optimizers − λ/λ
0
=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

sido − primal−dual gap − λ/λ
0
=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

sido − test error − λ/λ
0
=1.00 − min = 0.114

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500

10
−5

10
0

sido − distance to optimizers − λ/λ
0
=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500

10
−5

10
0

sido − primal−dual gap − λ/λ
0
=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

sido − test error − λ/λ
0
=0.10 − min = 0.110

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

Figure 2: sido dataset. Top: λ = λ0 = ‖K‖2F/n2, Bottom: λ = λ0/10 = 1
10‖K‖2F/n2. Squared loss,

with ℓ1-regularizer. Distances to optimum, primal-dual gaps and test losses, as a function of the
number of passes on the data. Note that the primal SAGA (with non-uniform sampling) can only
be used because the loss is separable. Best seen in color.

26

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

rcv1 − distance to optimizers − λ/λ
0
=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

rcv1 − primal−dual gap − λ/λ
0
=1.00

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

rcv1 − test error − λ/λ
0
=1.00 − min = 0.247

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

rcv1 − distance to optimizers − λ/λ
0
=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

rcv1 − primal−dual gap − λ/λ
0
=0.10

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

rcv1 − test error − λ/λ
0
=0.10 − min = 0.243

fb−acc
fb−sto
saga
saga (unif)
svrg
svrg−acc
fba−primal
saga−primal

Figure 3: rcv1 dataset. Top: λ = λ0 = ‖K‖2F/n2, Bottom: λ = λ0/10 = 1
10‖K‖2F/n2. Squared loss,

with ℓ1-regularizer. Distances to optimum, primal-dual gaps and test losses, as a function of the
number of passes on the data. Note that the primal SAGA (with non-uniform sampling) can only
be used because the loss is separable. Best seen in color.

27

	Introduction
	Composite Decomposable Saddle-Point Problems
	Examples in machine learning
	Existing batch algorithms
	Existing stochastic algorithms
	Sampling probabilities, convergence rates and running-time complexities

	SVRG: Stochastic Variance Reduction for Saddle Points
	SAGA: Online Stochastic Variance Reduction for Saddle Points
	Acceleration
	Extension to Monotone Operators
	Experiments
	Conclusion
	Formalization through Monotone Operators
	Proof for Deterministic Algorithms
	Forward-backward algorithm
	Accelerated forward-backward algorithm

	Proof for Existing Stochastic Algorithms
	Proof for New Stochastic Algorithms
	SVRG: Stochastic-Variance reduced saddle-point problems (Theorem 1)
	SAGA: Online stochastic-variance reduced saddle-point problems (Theorem 2)
	Acceleration
	Factored splits and bi-linear models

	Surrogate to Area Under the ROC Curve
	Additional Experimental Results

