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AN INVERSE PROBLEM FOR THE MAGNETIC SCHRODINGER EQUATION IN INFINITE
CYLINDRICAL DOMAINS

M. BELLASSOUED, Y. KIAN, AND E. SOCCORSI

ABSTRACT. We study the inverse problem of determining the magnetic field and the electric potential entering
the Schrodinger equation in an infinite 3D cylindrical domain, by Dirichlet-to-Neumann map. The cylindrical
domain we consider is a closed waveguide in the sense that the cross section is a bounded domain of the
plane. We prove that the knowledge of the Dirichlet-to-Neumann map determines uniquely, and even Holder-
stably, the magnetic field induced by the magnetic potential and the electric potential. Moreover, if the maximal
strength of both the magnetic field and the electric potential, is attained in a fixed bounded subset of the domain,
we extend the above results by taking finitely extended boundary observations of the solution, only.

Keywords: Inverse problem, magnetic Schrodinger equation, Dirichlet-to-Neumann map, infinite cylindrical
domain.

1. INTRODUCTION

1.1. Statement of the problem. Let w be a bounded connected domain of R? with C? boundary dw, and
set 2 := w x R. For T' > 0, we consider the initial boundary value problem (IBVP)

(10 +Aa+q@u=0, inQ:=(0,T) xQ,

u(0,-) =0, in 2, (1.1)
u=f, onY :=(0,7) x T,
where A 4 is the Laplace operator associated with the magnetic potential A € W1>°(Q)3,
3
A= (O, +ia;)* = A+20A-V +i(V-A) - AP, (1.2)
j=1
and g € L>°(Q)). We define the Dirichlet-to-Neumann (DN) map associated with (1.1), as
Aag(f) = @y +iA-v)u, f € L} (D), (1.3)

where v(z) denotes the unit outward normal to OS2 at x, and w is the solution to (1.1).
In the remaining part of this text, two magnetic potentials A; € Whee(Q)3, j = 1,2, are said gauge
equivalent, if there exists ¥ € W2 () obeying ¥|r = 0, such that

In this paper we examine the uniqueness and stability issues in the inverse problem of determining the
electric potential ¢ and the gauge class of A, from the knowledge of A 4 4.

1.2. Physical motivations. The system (1.1) describes the quantum motion of a charged particle (the vari-

ous physical constants are taken equal to 1) constrained by the unbounded domain 2, under the influence of

the magnetic field generated by A, and the electric potential ¢q. Carbon nanotubes whose length-to-diameter

ratio is up to 10%/1, are commonly modeled by infinite waveguides such as 2. In this context, the inverse

problem under consideration in this paper can be rephrased as to whether the strength of the electromagnetic
1
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quantum disorder (namely, the magnetic field and the electric impurity potential g, see e.g. [21, 29]) can be
determined by boundary measurement of the wave function w.

1.3. State of the art. Inverse coefficients problems for partial differential equations such as the Schrodinger
equation, are the source of challenging mathematical problems, and have attracted many attention over the
last decades. For instance, using the Bukhgeim-Klibanov method (see [14, 35, 36]), [3] claims Lipschitz
stable determination of the time-independent electric potential perturbing the dynamic (i.e. non stationary)
Schrodinger equation, from a single boundary measurement of the solution. In this case, the observation
is performed on a sub boundary fulfilling the geometric optics condition for the observability, derived by
Bardos, Lebeau and Rauch in [2]. This geometrical condition was removed by [8] for potentials which are
a priori known in a neighborhood of the boundary, at the expense of weaker stability. In the same spirit,
[22] Lipschitz stably determines by means of the Bughkgeim-Klibanov technique, the magnetic potential
in the Coulomb gauge class, from a finite number of boundary measurements of the solution. Uniqueness
results in inverse problems for the DN map related to the magnetic Schrodinger equation are also available
n [24], but they are based on a different approach involving geometric optics (GO) solutions. The stable
recovery of the magnetic field by the DN map of the dynamic magnetic Schrodinger equation is established
in [9] by combining the approach used for determining the potential in hyperbolic equations (see [5, 7,
11, 28, 44, 47, 49]) with the one employed for the idetification of the magnetic field in elliptic equations
(see [23, 45, 50]). Notice that in the one-dimensional case, [1] proved by means of the boundary control
method introduced by [4], that the DN map uniquely determines the time-independent electric potential of
the Schrodinger equation. In [10] the time-independent electric potential is stably determined by the DN
map associated with the dynamic magnetic Schrédinger equation on a Riemannian manifold. This result was
recently extended by [6] to simultaneous determination of both the magnetic field and the electric potential.
As for inverse coefficients problems of the Schrédinger equation with either Neumann, spectral, or scattering
data, we refer to [23, 25, 26, 32, 37, 38, 45, 46, 50, 53].

All the above mentioned results are obtained in a bounded domain. Actually, there is only a small number
of mathematical papers dealing with inverse coefficients problems in unbounded domains. One of them,
[43], examines the problem of determining a potential appearing in the wave equation in the half-space.
Assuming that the potential is known outside a fixed compact set, the author proves that it is uniquely
determined by the DN map. Unique determination of compactly supported potentials appearing in the
stationary Schrodinger equation in an infinite slab from partial DN measurements is established in [39].
The same problem is addressed by [37] for the stationary magnetic Schrodinger equation, and by [54] for
bi-harmonic operators with perturbations of order zero or one. The inverse problem of determining the
twisting function of an infinite twisted waveguide by the DN map, is addressed in [17]. The analysis carried
out in [28, 44, 47, 49] is adapted to unbounded cylindrical domains in [17] for the determination of time-
independent potentials with prescribed behavior outside a compact set, by the hyperbolic DN map. In [34],
electric potentials with suitable exponential decay along the infinite direction of the waveguide, are stably
recovered from a single boundary measurement of the solution. This is by means of a specifically designed
Carleman estimate for the dynamic Schrédinger equation in infinite cylindrical domains, derived in [33]. The
geometrical condition satisfied by the boundary data measurements in [34] is relaxed in [12] for potentials
which are known in a neighborhood of the boundary. In [18], time-dependent potentials that are periodic in
the translational direction of the waveguide, are stably retrieved by the DN map of the Schrodinger equation.
In [30], periodic potentials are stably retrieved from the asymptotics of the boundary spectral data of the
Dirichlet Laplacian. Finally, we refer to [19, 20], for the analysis of the Calderén problem in a periodic
waveguide.

1.4. Well-posedness. We start by examining the well-posedness of the IBVP (1.1) in the functional space
C([0,T], HY(Q)) N C ([0, T], H~(£2)). Namely, we are aiming for sufficient conditions on the coefficients
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A, q and the non-homogeneous Dirichlet data f, ensuring that (1.1) admits a unique solution in the trans-
position sense. We say that u € L>(0,T; H~!(2)) is a solution to (1.1) in the transposition sense, if the
identity

(uy F) poo (0,75 17-1.()), L1 (0,751 () = (5 Ovv) r2(3)),

holds for any F' € L*(0,T; H}(2)). Here v denotes the unique C([0, 7], H'(£2))-solution to the transposi-
tion system

(i0w+Aa+qu=F, inQ,
(T, ) =0, in 2, (1.5)
v =0, on X.

We refer to Subsection 2.3 for the full definition and description of transposition solutions to (1.1).
Since 0f2 is not bounded, we introduce the following notations. First, we set

H®*(09Q) := H (R, L*(0w)) N L2, (R, H*(0w)), s > 0,
where x3 denotes the longitudinal variable of €. Next, we put
H™((0,T) x X) := H"(0,T; L*(X)) N L*(0, T; H*(X)), r,5 > 0,

where X is either © or 0. For the sake of shortness, we write H"*(Q) (resp., H"*(X)) instead of
H™*((0,T) x Q) (resp., H"*((0,T) x 012)). Finally, we define

Hy' (5) = {f € H*'(); f(0.) = 0.f(0,) = 0},
and state the existence and uniqueness result of solutions to (1.1) in the transposition sense, as follows.
Theorem 1.1. For M > 0, let A € W (Q,R)? and ¢ € WH>°(Q, R) satisfy the condition
[Allweo @ + [lallwioc ) < M. (1.6)

Then, for each f € Hg’l(E), the IBVP (1.1) admits a unique solution in the transposition sense u €
HY(0,T; HY(Q)), and the estimate
[l 0,151 (@) < CNf 20 (55 (1.7)
holds for some positive constant C' depending only on T, w and M. Moreover, the normal derivative
Oyu € L*(X), and we have
10vull 25y < Cll fll 20 (5)- (1.8)
It is clear from the definition (1.3) and the continuity property (1.8), that the DN map A 4 4, belongs to
B(Hg71 (%), L?(X)), the set of linear bounded operators from Hg’l(E) into L2(X).

1.5. Non uniqueness. There is a natural obstruction to the identification of A by A4 g4, arising from the
invariance of the DN map under gauge transformation. More precisely, if ¥ € W2°°(Q) verifies ¥|r = 0,
then we have u 4 vy = e~ "W 4, where u 4 (resp., ua+wvw) denotes the solution to (1.1) associated with the
magnetic potential A (resp., A+ VV), g € L>®(Q) and f € HS’I(Z). Further, as

0y +i(A+ V) - Vusrve = e Y (d, +iA-v)ua = (0, +iA - v)uson S,

by direct calculation, we get that A4 ; = A4 vw 4, despite of the fact that the two potentials A and A+ VW
do not coincide in €2 (unless ¢ is uniformly zero).
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This shows that the best we can expect from the knowledge of the DN map is to identify (A, ¢) modulo
gauge transformation of A. When Ay is known, this may be equivalently reformulated as to whether the
magnetic field defined by the 2-form

3
dA = Z (axjai - (%iaj) dﬂt’j A dx;,
i,j=1
and the electric potential g, can be retrieved by A 4 ,. This is the inverse problem that we examine in the
remaining part of this text.

1.6. Main results. We define the set of admissible magnetic potentials as
A= {A = (a;)1<i<3; a1,a2 € L3 (R, Hi (w)) NW>*(Q) and a3 € C*(Q) satisfies (1.9) — (1.10)}

where

sup Z (23)40%a3(x)| | < oo for some d > 1, (1.9)
TEL \ 4eN,[a]<3
and
d%az(x) =0, x € 0Q, a € N? such that |a| < 2. (1.10)

Here HZ(w) denotes the closure of C§°(w) in the H?(w)-topology, and (x3) := (1 + x2)1/2.

The first result of this paper claims stable determination of the magnetic field d A and unique identification
of electric potential g, from the knowledge of the full data, i.e. the DN map defined by (1.3), where both the
Dirichlet and Neumann measurements are performed on the whole boundary 3.

Theorem 1.2. Fix A, = (a;)1<i<s € W>*(Q,R)3, and for j = 1,2, let ¢; € WH(Q), and A; =
(aij)1<i<3 € As + A, satisfy the condition:

2
Zaxi (Ors(ai1 — ai2) — Og,(az1 —agz2)) =0, in Q. (1.11)
i—1

Then, Aa, g, = Na,,q, yields (dA1,q1) = (dA2, g2).
Assume moreover that the estimate
2
> (145w (@) + lgillwroeay + lejlws.s(@y) + [Adlweeo) < M, (1.12)
j=1
holds for some M > 0, with

T3
ej(2', x3) = / (as;(2',y3) — as (', y3))dys, (2',x3) € Q.

Then there exist two constants o € (0,1) and C > 0, both of them depending only on T, w and M, such
that we have

[dAL = d Azl e (r,12(w)) < CliAALG — Aas g0l (1.13)

In (1.13) and in the remaining part of this text, || - || denotes the usual norm in B(H?*(X), L?(X)). Notice
that in Theorem 1.2 we make use of the full DN map, as the magnetic field dA and the electric potential ¢ are
recovered by observing the solution to (1.1) on the entire lateral boundary X. In this case we may consider
general unknown coefficients, in the sense that the behavior of A and ¢ with respect to the infinite variable
is not prescribed (we only assume that these coefficients and their derivatives are uniformly bounded in
Q). In order to achieve the same result by measuring on a bounded subset of > only, we need some extra
information on the behavior of the unknown coefficients with respect to x3. Namely, we impose that the
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strength of the magnetic field generated by A = (a;)1<i<3, reaches its maximum in the bounded subset
(=r,r) X w of Q, for some fixed r > 0, i.e.

100; 05 = O, aill Lgg (v, 12(w)) = 02,05 = Orjaill Lgg (—riri2(w))y 15 = 1,2,3. (1.14)
Thus, with reference to (1.14), we set I';, := dw x (—r,r), introduce the space
HYMN(0,T) x T,) := {f € H**(2); f(0,-) = 8:£(0,-) = 0 and supp f C [0,T] x dw x [—r,7]},
and define the partial DN map A 4 4, by
Angr(f) = (B +iAd-v)ugoryxr,, | € Hy ((0,T) x Iy),

where u denotes the solution to (1.1). The following result states for each » > 0, that the magnetic field
induced by potentials belonging (up to an additive W2 ({2, R)3-term) to

A = {A = (a;)1<i<3 € A satisfying (1.14)},
can be retrieved from the knowledge of the partial DN map A 4 ,,, provided we have ' > r.

Theorem 1.3. For j = 1,2, let ¢j € WH°(Q,R), and let Aj € W»>(Q,R)3 satisfy A1 — As € A,, for
some r > 0. Suppose that there exists r' > r, such that Az, 4, »» = M4, 4o.7. Then, we have dA; = dAs.
Furthermore, if

lar = @allpgs -1y = o = @2llngg (—rrsr-1(w))»

we have in addition q1 = qs.
Assume moreover that (1.11)-(1.12) hold. Then, the estimate

ldA1 = dAslLgs (,22(w))3 < CllAay g1 = Mg o M (1.15)
holds with two constants C > 0, and p11 € (0,1), depending only on T, w, M, r and r!

We stress out that Theorem 1.3 applies not only to magnetic (resp., electric) potentials A; (resp., ¢;),
j = 1,2, which coincide outside w x (—r,r), but to a fairly more general class of magnetic potentials,
containing, e.g., 2r-periodic potentials with respect to x3. More generally, if g € W2°(R, R, ) (resp.
g € WH*°(R,R,)) is an even and non-increasing function in R, then it is easy to see that potentials of the
form g x A; (resp., g x g;), where A; (resp., g;) are suitable 2r-periodic magnetic (resp., electric) potentials
with respect to x3, fulfill the conditions of Theorem 1.3.

Notice that the absence of stability for the electric potential ¢, manifested in both Theorems 1.2 and 1.3,
arises from the infinite extension of the spatial domain €2 in the x3 direction. Indeed, the usual derivation
of a stability equality for ¢, from estimates such as (1.13) or (1.15), requires that the differential operator
d be invertible in €2. Such a property is true in bounded domains (see e.g. [53]), but, to the best of our
knowledge, it is not known whether it can be extended to unbounded waveguides. One way to overcome
this technical difficulty is to impose certain gauge condition on the magnetic potentials, by prescribing their
divergence. In this case, we establish in Theorem 1.4, below, that the electric and magnetic potentials can
be simultaneously and stably determined by the DN map.

1.6.1. Simultaneous stable recovery of magnetic and electric potentials. We first introduce the set of diver-
gence free transverse magnetic potentials,

Ag = {A = (al, as, 0); ai,as € LJO;(R, Hg(w)) N WQ’OO(Q), 0301(11 + &Ezag =0in Q},
in such a way that we have V- A = V - A, forany A € A, + Ag. Here A* € W2>°(Q)? is an arbitrary

fixed magnetic potential. Since identifying A € A, + Ap from the knowledge of the DN map, amounts to
determining the magnetic field dA, we have the following result.
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Theorem 1.4. Let M > 0, and let A, € W>*(Q,R)3. For j = 1,2, let ¢ € WH*°(Q,R), and let
Aj € A, + Ag satisfy (1.12). Then, there exist two constant iz € (0,1) and C = C(T,w, M) > 0, such
that we have

A1 = Azllzge 22 (w))® + 10 = @2llgg ror—1(w)) < CliAALg — Aas g [ (1.16)
Assume moreover that the two following conditions
141 = Azl Les (R L2(w))s = 141 = A2llLes (—rrL2(w))3s (1.17)
and
g — qZHLgcg(]R,H—l(w)) = |lq1 - QQHLg‘é(fr,T;H—l(w))a (1.18)
hold simultaneously for some v > 0. Then, for each r' > r, we have
A1 = Al g r,L2(w)) + lar = @2llgg r 1)) < CliAALG = Dasgor 172 (1.19)
where C is a positive constant depending only on T, w, M, r and r’.

1.6.2. Comments. The key ingredient in the analysis of the inverse problem under examination is a suitable
set of GO solutions to the magnetic Schrodinger equation appearing in (1.1). These functions are specifically
designed for the waveguide geometry of {2, in such a way that the unknown coefficients can be recovered by a
separation of variables argument. More precisely, we seek GO solutions that are functions of z = (2, z3) €
Q, but where the transverse variable ' € w and the translational variable x3 € R are separated. This
approach was already used in [31], for determining zero order unknown coefficients of the wave equation.
Since we consider first order unknown coefficients in this paper, the main issue here is to take into account
both the cylindrical shape of 2 and the presence of the magnetic potential, in the design of the GO solutions.

When the domain 2 is bounded, we know from [9] that the magnetic field dA is uniquely determined
by the DN map associated with (1.1). The main achievement of the present paper is to extend the above
statement to unbounded cylindrical domains. Actually, we also improve the results of [9] in two directions.
First, we prove simultaneous determination of the magnetic field dA and the electric potential q. Second, the
regularity condition imposed on admissible magnetic potentials entering the Schrédinger equation of (1.1),
is weakened from W3°°(Q) to W2 (Q).

To our best knowledge, this is the first mathematical paper claiming identification by boundary mea-
surements, of non-compactly supported magnetic field and electric potential. Moreover, in contrast to the
other works [12, 18, 33] dealing with the stability issue of inverse problems for the Schrodinger equation
in an infinite cylindrical domain, available in the mathematics literature, here we no longer require that the
various unknown coefficients be periodic, or decay exponentially fast, in the translational direction of the
waveguide.

Finally, since the conditions (1.14) and (1.17)-(1.18) are imposed in w x (—r,r) only, and since the
solution to (1.1) lives in the infinitely extended cylinder (0, T") x 2, we point out that the results of Theorems
1.3 and 1.4 cannot be derived from similar statements derived in a bounded domain.

1.7. Outlines. The paper is organized as follows. In Section 2 we examine the forward problem associated
with (1.1), by rigorously defining the transposition solutions to (1.1), and proving Theorem 1.1. In Section
3, we build the GO solutions to the Schrodinger equation appearing in (1.1), which are the key ingredient
in the analysis of the inverse problem carried out in the two last sections of this paper. In Section 4, we
estimate the X-ray transform of first-order partial derivatives of the transverse magnetic potential, and the
Fourier transform of the aligned magnetic field, in terms of the DN map. Finally, Section 5 contains the
proofs of Theorems 1.2, 1.3, and 1.4.
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2. ANALYSIS OF THE FORWARD PROBLEM

In this section we study the forward problem associated with (1.1), that is, we prove the statement of
Theorem 1.1. Although this problem is very well documented when (2 is bounded (see e.g. [9]), to our best
knowledge, it cannot be directly derived from any published mathematical work in the framework of the
unbounded waveguide {2 under consideration in this paper.

The proof of Theorem 1.1, which is presented in Subsection 2.4, deals with transposition solutions to
(1.1), that are rigorously defined in Subsection 2.3. As a preliminary, we start by examining in Subsection
2.1, the elliptic part of the dynamic magnetic Schrodinger operator appearing in (1.1), and we establish an
existence and uniqueness result for the corresponding system in Subsection 2.2.

2.1. Elliptic magnetic Schrédinger operator. For A € W1 (Q, R)3, we set V4 := V + i A, where 1A
denotes the multiplier by i A, and notice for all u € H*(£), that

IV au(z)? > (1 - €)|Vu(z)| + (1 — e H]Au(z)|?, e >0, € Q. (2.1)

Next, for ¢ € L>(€2; R), we introduce the sesquilinear form
hyq(u,v) = / Vau(x) - Vavu(x)de — / q(2)u(z)v(z)dz, u,v € D(hay,) := HJ(Q),
Q Q

and consider the self-adjoint operator 7 4 in L?(Q), generated by h A,q- In light of [34, Proposition 2.5],
Hp 4 acts on its domain D (7 ) := HE(2) N H?(K2), as the operator —(A4 + q), where Ay :=V 4-V4
is expressed by (1.2).

Further, for all € () fixed, taking ¢ = |A(x)|?/(1 + |A(z)[?) in (2.1), we get that |V su(z)|? >
[Vu(@)[?/(1 + |A(2)[?) — Ju(z)|?, whence
HVUH2L2(Q)3

1
Z T A2 u € Ho(Q),
R VY

huo(u,w) + [lull72 g

where h 4 o stands for h4 , when ¢ is uniformly zero. Thus, we deduce from the Poincaré inequality and
Lax Milgram’s theorem, that for any v € H~1({2), there exists a unique ¢, € H} () satisfying

—Appy + Py = . 2.2)
Next, for v and v in H~1(£), we put

(u,v)_1 = Re ( [ Vaouta) Taditaran+ [ %(x)%(w)dx) ,

and check that the space H~1(£2), endowed with the above scalar product, is Hilbertian. Having said that,
we may now prove the following technical result.

Lemma 2.1. For each A € W1°(Q, R)3, the linear operator B4 := A 4, with domain D(#B ) := H} (),
is self-adjoint and negative in H=*(Q).
Proof. We proceed as in the proof of [16, Proposition 2.6.14 and Corollary 2.6.15]. Namely, we pick v and
vin C§°(2), and write

(Bau,v)-1 = (w,v)_1 + (u,v) 1,

with w := % su — u. Taking into account that ¢, = —u, we obtain that

(Bau,v)_1 = —Re < /Q Vau(z) - Vagy,(z)de + /Q u(m)qbv(q:)daz) + (u,v)_1. (2.3)
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Next, integrating by parts, we get that

Re ([ Vaule) Vadads + [ alw)fua)dn ) = —Relu,~Aay + 62y = ~Relus bz,
Q Q
so (2.3) yields
(Bau,v) 1 = —Re(u,v) 2y + (u,v) 1. 2.4
Further, since (u,u)-1 = Re(du, (—Aa + 1)du) 2(0) = Re(pu, u)2(q) and ||<Z>UH%2(Q) < (u,u)y_q1, we
see that (u, u)_1 < [|ull?, ()- Therefore, we obtain
(Bau,u)y_1 = —||u||%2(9) + (u,u)—q1 <0, (2.5)

by taking v = w in (2.4).

By density of C§°(Q2) in H{(£2), both estimates (2.4) and (2.5) remain valid for all u and v in H} ().
As a consequence, the operator %4 is dissipative. Furthermore, 1 — %4 being surjective from H}(Q) onto
H~1(Q), by (2.2), we get that %4 is m-dissipative. Moreover, as it follows readily from (2.4) that

(Bau,v)_1 = (u, Bav)_1, u,v € HH(Q),

we see that the graph of %4 is contained into the one of its adjoint %% . Therefore, %, is self-adjoint, in
virtue of [16, Corollary 2.4.10]. O]

2.2. Existence and uniqueness result. For further use, we establish the following existence and uniqueness
result for the system

(IO +Aa+qv="F, inQ,
v(0,-) =0, in €0, (2.6)
v =0, on X,
with homogeneous Dirichlet boundary condition and suitable source term F'.
Lemma 2.2. Let M, A and q be the same as in Theorem 1.1.
(i) Assume that F € L'(0,T; H}(R)). Then, the system (2.6) admits a unique solution v € C([0,T], H}(2)),
satisfying
[vlleqo.rrm1 (@) < CIF L2 (0.1;H5 () 2.7

for some constant C' > 0, depending only onT', w and M.
(ii) If F € WHL(0,T; L?(2)), then (2.6) admits a unique solution

v e 2= CY([0, T, I3(52)) N (0, T], HL(2) 0 (@),
and there exists C = C(T,w, M) > 0, such that
lvllz < ClIFlwao,m:02(9)- (2.8)

Proof. The proof boils down on the following statement, borrowed from [18, Lemma 2.1].

Let X be a Banach space, U be a m-dissipative operator in X with dense domain D(U) and B €
C([0,T],B(D(U))). Then for all vg € D(U) and f € C([0,T],X) N LY(0,T; D(U)) (resp. f €
WH1(0,T; X)) there is a unique solution v € Zy = C([0,T], D(U)) N C'([0,T], X) to the following
Cauchy problem

v'(t) = Uv(t) + B(t)v(t) + f(1),
v(0) = vy,
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such that

vl zo = vl oo,y + IVl o,m,x) < Clllvoll oy + 1)
Here C' is some positive constant depending only on 7" and || B¢ (jo,11,8(p(v)))> @and || f||+ stands for the
norm || f||c(jo,11.x)nz1 (0.1:0w)) (resp- || flwraorx))-

Notice that the operator %4 is skew-adjoint, since %, is self-adjoint in H~1(Q). Hence i%4 is m-
dissipative with dense domain in H (). Further, the multiplier by ig being bounded in C[0, T'|, H} (),
we obtain (i) by applying the above result with X = H=1(Q), U = i%Ba,, f =iF, B(t) = ig, and vo = 0.

Similarly, as .7, , is self-adjoint in L?(2), then the operator —i.%¢} , is m-dissipative with dense domain
in L2(12), so we derive (ii) by applying [18, Lemma 2.1] with X = L*(Q), U = —ista,, f = iF,
B(t) =0, and vg = 0. O

Remark 2.3. Since w(t,z) :=v(T —t,z), for (t,x) € Q, is solution to

(10 + Aa+qQw =F, inQ,
w(T,-) =0, in ), (2.9)

w=70 on,

whenever v is solution to the IBVP (2.6), where the function (t,x) — F(T —t,x) is substituted for F,
we infer from Lemma 2.2 that the transposed system (2.9) admits a unique solution w in C°([0, T, H} (Q2))
(resp., Z) provided F is in L*(0,T; H}(Q)) (resp., W11(0,T; L?(2))).

2.3. Transposition solutions. As a preamble to the definition of transposition solutions to (1.1), we estab-
lish that the normal derivative of the C([0, 7], HZ (2))-solution to (2.6) is lying in L?(X).

Lemma 2.4, Let M, A and q be as in Lemma 2.2. Then, the linear map F +— 0,v, where v denotes the
C([0,T), HE(Q))-solution to (2.6) associated with F € L*(0,T; H}(Q)), given by Lemma 2.2, is bounded
from LY(0,T; HY(Q)) into L*(X).

Proof. Since |[v||c(o1),51 ) < CIF L1001 (02))> bY (2.7), we may assume without loss of generality
that A =0and ¢ = 0.

Assume that F' € W1(0,T; L3(9)) in such a way v € Z, in virtue of Lemma 2.2. Let N; € C?(w)? sat-
isfy N1 = v1 on Ow, where v; denotes the unit outward normal vector to dw. Put N (z/, z3) := (N1(2’),0)
for all 2/ € w and z3 € R, so that N € C?(Q2)3 N W2°°(Q)? verifies N = v on 9. Then, we have

(10w + Av, N - V) 12(gy = (F, N - Vv) 120 (2.10)
By integrating by parts with respect to ¢, we get
(O, N -Vo)raq) = (W(T,),N-Vu(T,")) 2 — (v, N - Vo) 12(q)
= (u(T,),N-Vu(T,")) 2 + (N - Vv,0v) 121y — 1, (2.11)

where [ := |, 0 N -V (vdpv)dzdt. Taking into account that N -V = Nj -V, where Vs denotes the gradient
operator with respect to ' € w, we have [ = f 0 N1 -V (v@)dxdt, hence

I = / Vo - (v(t, 2)0(t, z) Ny (2'))dx'dzgdt — ((V - N)v,001v) 12(@)
Q

= / v(t, z)Opv(t, x) N1 (2) - v1(2))da'dzgdt — ((V - N)v, o) 12(Q)
%
= _<(v ’ N)Ua at”)LQ(Q)a (2.12)
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by Green’s formula, since vy, = 0. Putting (2.11)-(2.12) together, we obtain that
2Re(i0yv, N - V) 12(q)

= i(u(T,),N - Vo(T, )2 — (V- N)v,i0w)r2(q)

= i(o(T,-), N -Vu(T,")) 2 + (V- N)v,Av)12qy = (V- N)v, F) 12(0). (2.13)
Applying the Green formula with respect to 2’ € w and integrating by parts with respect to z3 € R, we find
that

(V- N)v, Av) 20y = = (V- N)Vu, V) 123 — (0V(V - N), V) 123,
so (2.13) entails

2Re(i0v, N - V) 2y = i{v(T,-), N - Vu(T, ")) 2y — (V- N)Vv, V) 2y
—(WV(V - N),Vv)r2gys — (V- N)v, F)r2q)-

This and (2.7) yield

|Re(idv, N - Vv) 20| Cllvlleqo.ry,mr @) (IWlleqor,m@)) + 1F L 070 )

<
< ClIFIE o, (@)
From this and (2.10), it then follows that

[Re(Av, N - Vo) 12| < ClIFI[T107.51 () (2.14)

On the other hand, we get upon applying the Green formula with respect to 2’ € w and integrating by parts
with respect to x3 € R, that

<A'U,N : VU>L2(Q) = —<V’U, V(N : VU>>L2(Q)3 + <VU -V, N - VU)LQ(E)
= —(Vu,V(N - V) 2y + 10001725, (2.15)

Moreover, since Re (Vv - V(N - Vv)) = Re (HVv) - Vv) + N -V Vol with H = (8,,N;)1<ij<3
and N := (NNj)1<;j<3, we infer from (2.15) that

1
Re(Av, N - V) 2y = ||6Z,UH%2(E) —Re(HVv,Vv) 29y — 2/QN .V |Vo|* dzdt. (2.16)

Further, by applying once more the Green formula with respect to 2’ € w, we find for a.e. (¢,z3) €
(0,T) x R, that

Vv(t,x/,:cg)’2 dx’

/ N(2' z3)-V |Vv(t7:c',a:3)’2dx’ = / Ny(2') -V
= ||Vv(t,',x3)||2L2(aw)3 - <(v'N)V’U(t,',$3),vv(t,-,$3)>L2(w)3. (217)
Bearing in mind that vy, = 0, we have |Vo|* = 18,v]* on £, so we deduce from (2.17) that
/QN -V Vol dzdt = H&,UH%Q(E) — (V- N)Vv,Vv) 2.
From this and (2.16), it then follows that
||8,,v||%2(2) = 2Re(Av, N - V)12 + 2Re(HVv, Vv) 12(0)s — ((V - N)Vv, V) 12(9)3,
and hence

10u] 2¢sy) < C (IF N L2 0,12 9)) + N0lleqo.r,mr@))) < CUF L o.7:01 @)

according to (2.7) and (2.14). By density of W1(0,T; H}(2)) in L'(0,T; H}(Q)), it is clear that the
above estimate extends to every ' € L1(0,T; H}(2)), which proves the desired result. O
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Armed with Lemma 2.4, we may now introduce the transposition solution to (1.1). For F' € L*(0,T; H}(2)),

we denote by v € C°([0, 7], H}(€2)) the solution to (2.9), given by Remark 2.3. Since (¢, z) — v(T — t,z)
is solution to (2.6) associated with the source term (¢,z) — F(T —t,z), we infer from Lemma 2.4, that
the mapping F' — d,v is bounded from L!(0, T; H(9)) into L?(X). Therefore, for each f € L?(%), the
mapping

Ef cF = <f7 8VU>L2(E)7

is an anti-linear form on L*(0, T'; H}(€2)). Thus, there exists a unique u € L>(0,T; H~(92)) such that we
have

(u, F) poo 0111 (@), (0,133 () = £ (F)s F € LH0, T Hy (), (2.18)
according to Riesz’s representation theorem. The function u, characterized by (2.18), is named the solution
in the transposition sense to (1.1).

2.4. Proof of Theorem 1.1. Let w € L>(0,T; H(£2)) be the solution in the transposition sense to the
system

(Zat+AA+Q)w:0> inQ7
w(07 ) = O, in Q,
w = 0?f, on X.

Forany t € (0,7), puto(t,-) := fot w(s, -)ds, in such a way that v is the solution in the transposition sense
to the system

(i +Ax+q)v=0, inQ,
v(0,-) =0, in £, (2.19)
v=20f, on X.

We have v = 0, f € H"'/2(X) by [41, Section 4, Proposition 2.3], and since H/2(X) ¢ L2(0, T; H'/?(99)),

and —A 4v = iw +qv in Q, from the first line of (2.19), then v € L2(0, T; HY(Q))NW1°(0,T; H=(Q)).
Moreover, we have the following estimate
vl 220,711 () < C <”wHL2(O,T;H*1(Q)) + llqvll 20,751 () + HatfHLQ(O,T;H1/2(6Q))) ;o (2.20)
where the constant C' > 0 depends only on 7', w, and M.
On the other hand, from the very definition of the transposition solution w, we obtain
lwl r2omm-1@)) < T2 [wll om0 < ClIOE ey < Cllflm2acs), (2.21)
with the aid of Lemma 2.4. As a consequence we have
lqvll 20,751 ()) < lallwro@Tllwll L2051 0)) < Cllf |21 x)- (2.22)
Putting (2.20)—(2.22) together, we find that
vl 20,11 () < Cllf 21 ()5 (2.23)

for some constant C' = C(T,w, M) > 0.
Finally, as u(t) = fg v(s)ds is solution to (1.1) in the transposition sense, we have

el e 0,758 () < (1 + T)1/2HU”L2(O,T;H1(Q))a
hence (1.7) follows from this and (2.23).
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We turn now to proving (1.8). To do that, we pick f € C*([0,7] x 0Q2) N Hg’l(Z), and proceed as in
the derivation of Lemma 2.4. We get that

10uull L2y < C (lull o rm)) + 1 lm21cs)) 5
for some constant C' = C'(T',w, M) > 0, so we deduce from (1.7) that
10vull 2y < Cll fll 20 (s)-
The desired result follows from this by density of C*°([0,T] x 992) N Hg’l(E) in H02’1(Z).

3. GO SOLUTIONS

In this section we build GO solutions to the magnetic Schrodinger equation in 2. These functions are
essential tools in the proof of Theorems 1.2, 1.3 and 1.4. As in [32], we take advantage of the translational
invariance of {2 with respect to the longitudinal direction x3, in order to adapt the method suggested by
Bellassoued and Choulli in [9] for building GO solutions to the magnetic Schrodinger equation in a bounded
domain, to the framework of the unbounded waveguide 2. Moreover, as we aim to reduce the regularity
assumption imposed on the magnetic potential by the GO solutions construction method, we follow the
strategy developed in [23, 37, 38, 45] for magnetic Laplace operators, and rather build GO solutions to the
Schrodinger equation associated with a suitable smooth approximation of the magnetic potential.

Throughout the entire section, we consider two magnetic potentials

Aj = (4,a;3) € WHX(Q,R)? x W2S(Q,R), j=1,2,
and two electric potentials ¢; € W1°°(Q, R), obeying the conditions
[Ajlwzee @y + llg5llwre@ < M, j=1,2, (3.1

and
%Ay = 0% Ay on 99, for all a € N? such that || < 1. (3.2)

For o > 0, we denote by A?U a suitable C°°(R3,R)% N W°>°°(R3, R)2-approximation of Ag, we shall
specify in Lemma 3.3, below. We seek solutions u; , to the magnetic Schrodinger equation of (1.1), where
(A;, g;) is substituted for (A, g), of the form

Ujp(t,l’,,l‘g) = <I>j(2crt,m)bjp(QUt,:L‘)ew(xl'e_”t) +Yjo(t,z), teR, x = (o' 23) ew xR, (3.3)

Here, § € S' := {y ¢ R? : |y| = 1} is fixed,

t
bjo(t, ) :=exp <—Z/ 0 - Ag»a(a;’ — 56, x;;)ds) ,tER, z=(2/,23) €Ew xR, (3.4)
0 :
®; is a solution to the following transport equation
(8,:+9-V$/)<I>j :OinRxQ, (3.5)
and we imposed that the remainder term t; , € L?(Q) scales at best like o~'/? when ¢ is large, i.e.

lim 01/2||¢j,g||L2(Q) = 0. (3.6)

o——+00

Such a construction requires that Ag. - be sufficiently close to Ag, as will appear in the coming subsection.
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3.1. Magnetic potential mollification. We aim to define a suitable smooth approximation Ag’g € C*°(R3,R)%N
W (R3, R)? of Ag = (a1,j,a2,;), for j = 1,2. This preliminarily requires that AE be appropriately ex-
tended to a larger domain than €2, as follows.

Lemma 3.1. Let Ag, for j = 1,2, be in W?>(Q,R)? and satisfy (3.2). Let & be a smooth open bounded
subset of R?, containing @. Then, there exist two potentials fli and flg in W2 (R3,R)2, both of them
being supported in ) ;= @ X R, such that we have

AL = AL inQ, forj =1,2, and A} = A5 inQ\ Q. (3.7)
Moreover, the two estimates
1A [l y2.00 )2 < C max (||A§\|W2,m(m2, ||A§HW2,OO(Q)2) L i=1,2, (3.8)
hold for some constant C > 0, depending only on w and &.

Proof. By [48, Section 3, Theorem 5] and [34, Lemma 2.7], there exists fl’i e W2> (R3, R)2, such that
Ab = in €2, an . olds true for j = 1. en, upon possi substituting A" for A , Where
A% = A in ©, and (3.8) hold fi 1. Then, upon possibly sub g YA for A%, wh
X € C5°(R3,R) is supported in € and verifies x(z) = 1 for all z € Q, we may assume that flﬁ is supported
in  as well.

Next, we put

5 Al(z), ifz e,
Ag(x) = ~2(a:) v (3.9)
Al(z), itz eR3\ Q.

Then, it is clear from (3.2) that Ag € W2>°(R3,R)? and that it satisfies (3.8) with j = 2. O

Having seen this, we define for each o > 0 the smooth approximation a, € C (R3,R) N W (R3, R)
of a function @ € W2°°(R3, R), supported in €2, by

a(e) = [ xolo = 9) (@) + (@~ ) - V) dy, = € B, (3.10
R
Here we have set x, (2) := ox(c/3z) for all 2 € R3, where x € C§°(R?, R, is such that

supp x C {z € R3; |z| <1} and / x(z)dx = 1.
R3

This terminology is justified by the fact that a,, gets closer to a as the parameter o becomes larger, as can be
seen from the following result.

Lemma 3.2. Let & € W2°(R3,R) be supported in Q and satisfy @200 sy < M, for some M > 0.
Then, there exists a constant C' > 0, depending only on w, @, and M, such that for all o > 0, we have

lag — @llyroomsy < Co®2/3 k=0,1, (3.11)
where W% (Q) stands for L*°(Q), and
ag|ypecomsy < Co®*=2/3 k> 2. (3.12)

Proof. We only establish (3.11), the estimate (3.12) being obtained with similar arguments. For z € R3
fixed, we make the change of variable n = ¢''/3(z — y) in (3.10). We get

as(x) = a(z — o~ V3 o 1/3 Va(z — o V3 . .
o () /Rg x(ma( n)dn + /RS x(n) (77 Va( n)) dn (3.13)
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On the other hand, we have

/Rg x(ma(z — o~y — a(z) = /Rd x(1) (d@r — o 3y) — d(w)) dn

1
= —0‘1/3/ x(n) </ n-Va(z - 80‘1/377)d8> dn,
R3 0
so we infer from (3.13) that

ao(z) —a(z) = o /3 /R3 x(n) </01 n- (Vd(m — o 3y) — Va(z — 80'_1/3’!’])> ds) dn.  (3.14)

By the Sobolev embedding theorem (see e.g. [27, Theorem 1.4.4.1] and [51, Lemma 3.13]), we know that
a € CY'(IR3) satisfies the estimate laller1(rsy < Cllal|w2 .00 ws), where C' > 0 is independent of G. From
this and (3.14), it then follows that

o) = 2(0)] < Clalhyasegesy [ xOnlaan) a2,

which, together with the estimate || [|yy2,00(r3) < M, yields (3.11) with k& = 0. Further, upon differentiating
(3.14) with respect to x;, for i« = 1,2, 3, and upper bounding the integrand function (7, s) — V;a(x —
o /°n) — ia\x — so” /°n Q|| 172,00 (R3), UNITOTMILY OVer X (U, 1), we obtain (3. ork = L.

1/3 Voia 1/31) by 2||al|yy2.00 (gs). uniformly R3 x (0,1 btain (3.11) for k = 1
O

We notice for further use from (3.10) and the expression of ., that
0o@) = [ (ole=9) = - (o= oo = ) alu)dy

= [ (19305 =) + 03— ) - Vx(o"(a — ) aly)dy. @ € B,
R3
Making the change of variable z = o'/3 (z — y) in the above integral, we find that
as(x) = / (4x(2) + 2z - Vx(2)) alo V32 — z)dz, z € R,
R3

Since y is compactly supported in R, this entails that
lao || msy < Cllall o (rsy, o >0, (3.15)

where the constant C' > 0 depends only on .
Let Ag = (a1,4,a2,), j = 1,2, be given by Lemma 3.1. With reference to (3.10), we define the smooth
magnetic potentials

AL = (0150, 02,50) € C°(R%, R)? N W2(RY, R)?,
by setting
o) = / Yol = 9) (@55 (y) + (& —9) - Vais(y) dy, 2 € R, i, j = 1,2, (3.16)
R
Thus, applying Lemma 3.2 with @ = & ; for i, j = 1,2, we obtain the following result.

Lemma 3.3. For j = 1,2, let Ag be the same as in Lemma 3.1, and satisfy (3.1). Then, there exists a
constant C > 0, depending only on w and M, such that for each j = 1,2, and all ¢ > 0, we have

1AL, — Abllwroo iz < 1A%, — Abllypkce sy < Co™=2/3 k= 0,1, (3.17)
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where flﬁ is given by Lemma 3.1, and
1AL o syz < CoF=2/3) Al o0 ey < Co®=2/3 > 2. (3.18)
For further use, we notice from (3.4) and from (3.18) with k£ = 2, that the following estimate

105.0 [lw2.0mx0) + [|0tbj ollw20omxy < Cy = 1,2, (3.19)

holds uniformly in o > 0, for some constant C' > 0 which is independent of o. Moreover, it can be checked
through direct calculation from (3.4), that

2 t 2
0 -Vaybjs(t,x) = —i <Z Hm/o Z 010, Ojm.o (' — 50, xg)ds> bi(t,x)
m=1 k=1

2 t
= (; ek/o %ag‘,k,a(x' - 89,563)(15) bj(t, )

= (a AE (2 — 10, 23) — 0- A% (o, mg)) b;(t, x),
for all (t,x) € @, from where we see that b; ., is solution to the transport equation
(O +0- Vo +i0- AL Ybjo=0,inQ, 0 €RY, j=1,2. (3.20)
We turn now to building suitable GO solutions to the magnetic Schrédinger equation of (1.1).

3.2. Building GO solutions to magnetic Schrodinger equations. For j = 1,2, we seek GO solutions

to the magnetic Schrodinger equation of (1.1) with (A, g) replaced by (A;, ¢;), obeying (3.3)-(3.6), where
the function A? »» appearing in (3.4), is the smooth magnetic potential described by Lemma 3.3. This
requires that the functions @, appearing in 3.3, be preliminarily defined more explicitly. To do that, we set
B(0,7) := {2’ € R?% |2| < r} forall r > 0, and take R > 1 so large that © C B(0, R — 1), where @ is
the same as in Lemma 3.1. Next, we pick ¢; € C§°(R3), such that

supp ¢;(-,x3) C D := B(0, R+ 1)\B(0, R), z3 € R, (3.21)
and put
Di(t,x) == ¢j(x’ —t0,x3), (t,x) € R x R>. (3.22)
It is apparent from (3.21) and the embedding w C B(0, R — 1), that
supp ¢;(-,z3) Nw =10, z3 € R, (3.23)

and from (3.22), that ® is solution to the transport equation (3.5).
In the sequel, we choose o > o, := (R + 1)/T, in such a way that

supp ®;(+20t, -, x3) Nw = supp ¢;(- F 20t0, z3) Nw =0, (t,23) € [T, +00) x R. (3.24)

Notice that upon possibly enlarging R, we may assume that o, > 1, which will always be the case in the
remaining part of this text.
Next, for k € N, we introduce the following subspace of H k (R3),

7—[5 = {p € HYR?); 0-Vy - ¢ € H*(R®) and supp ¢(-, x3) C D forae. z3 € R},
endowed with the norm
Nico(9) := 16l greqrsy + 10 - Var @l i rsy, ¢ € Hg. (3.25)

For notational simplicity, we put

Ny o(¢) = Nag(¢) + o'/*No (). (3.26)
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The coming statement claims existence of GO solutions u; ., expressed by (3.3), with L2(0,T; H*(12))-
norm of correction term ) , bounded by Np ,(¢;)/o' % for k = 0, 1.

Proposition 3.1. Let M > 0, and let A; € W?>®(Q,R3) and qj € WH°(Q,R), j = 1,2, satisfy (3.1)-
(3.2). Then, for all o > o, there exists uj, € C1([0,T],L*(Q2)) N C([0,T], H*(2)) obeying (3.3)-(3.6),
where @ ; is defined by (3.21)-(3.22), such that we have

(10 + Aa; + q5) ujo = 0in Q,
and the correction term satisfies 1j , = 0 on ¥, for j = 1,2, and 1 (T, -) = 12,,(0,-) = 0in Q.
Moreover, the following estimate

ollvjollzz@) + IVYjollLe@ps < CNoo(d;), j = 1,2, (3.27

holds for some constant C' > 0 depending only on T, w, and M, where the function ¢; € CS°(R3) fulfills
(3.21).

Proof. We prove the result for j = 2, the case j = 1 being obtained in the same way.
In light of (3.3)—(3.5) and the identity (i0; + A 4, +¢2)u2 » = 0 imposed on uz , in ), we seek a solution
12 » to the following IBVP

(/Lat + AAz + QQ) rly[)2,0' = Yo, in Q7

2(0,-) =0, in ©, (3.28)
o =0, on X,
where
go ‘= — (Zat + AAz + QQ) (wacpa) s
with
we(t, 2 = elo(@'0-at) and ©o(t,x) :=Vy(20t, ), where ¥, := Pob . (3.29)

Next, taking into account that (i0; + A 4, + q2)w, = (iV - Ay — | Ag]? — 206 - Ag + q2)w,, and recalling
from (3.5) and (3.20) that i(0; + 2060 - V1 ), = 200 - Agy ~¥o» We get by straightforward computations that

9o (t,x) = —wy(t, x) Z Im,o(20t,x), with go o = (A4, +¢2)V0, 910 = 209~(Aﬁ270—Aﬁ2)790. (3.30)
m=0,1

As g, € WH(0,T; L?(Q)), by (3.21)-(3.22), we know from Lemma 2.2 that (3.28) admits a unique
solution 92 , € C*([0, T, L%(2)) N C([0, T, H} (£2) N H?(£2)). Moreover, since

t
Yoo (t,2) = —i / e a5, 0)ds, (,2) € Q.
0
where 7}, 4, is the self-adjoint operator acting in L?(£2), which is defined in Subsection 2.1, we have
t N
12,6t )20 < /0 le= =9 a202 g (5, )| L2 (@ ds < Nlgoll Lt 0.7:2(0)

uniformly in ¢ € (0,7). This entails |20l z2(g) < T"l|90 |21 (0.7.22()> Which together with (3.30),
yields

T
[b2.0llre@) < TV > /0 gm.o(20t, M r2@ydt < o T2 > " lgmollpmiz@y. (331
m=0,1 m=0,1
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We are left with the task of bounding each term ||gim, o[/ 11 (R, 12(q)), for m = 0,1, separately. We start with
m = 0, and obtain

lgooll i@ oy = /R 1Ay + ) (@22 0)(5, ) [ 2y ds

< COllbeollw2oomxa) P2l 23y < Cllg2ll g2 ®s), (3.32)

by combining estimate (3.19) with definitions (3.21)-(3.22) and (3.30). Next, applying (3.17) with £ = 0,
we get that

o101, 220 < CollAb , — Abll oo (@) ll02]l 2 @sy < Co2 b2l L2 (ms), (3.33)
Putting (3.31)—(3.33) together, and recalling (3.25), we find that
ollaslliq) < C (I02lles) + o Pllo2llame) ) < C (Nao(2) + 0 Noo(e2)) . (334)

It remains to bound ([Vtb2 ;| 11(r 12(0)) from above. To do that, we apply [10, Lemma 3.2], which is
permitted since g, (0,-) = 0, with ¢ = o~ !, getting

IVipoo(t, M2y < C(ollgollirorzz) + 0 10ugolliror:r2(0))

T T
<oy (a /0 |9 (20t )| 2yt + /0 uatgm,a(zat,~>||Lz(mdt)

m=0,1

< C D (lgmoliw 2 + 109molli @ r2@)) (3.35)
m=0,1

for every t € (0,7"), according to (3.29)-(3.30). Further, as we have
0900 (t, 1) = —(Aa, +¢2)0 - (vml@ + z’Agp@) (@ — 10, 23)by o (t, 7),
fora.e. (t,z) € R x Q, by direct computation, we obtain
109001121 (R, 2(0)) < CNap(92), (3.36)
from (3.4), (3.18) with k = 2, (3.19) with j = 2, (3.21)-(3.22) and (3.29)-(3.30). Similarly, as
Oug1,0(t,2) = =200+ (A§ = A5 ) (@)0 - (Vartho + 45 10 ) (2 — t0,23)bao (1, 2),
fora.e. (t,z) € R x Q, we find that
1009101l 11 (m,r20)) < Col| A5 — A |l L (@) Noa(h2) < Co'/* Nog(2), (3.37)
according to (3.17) with j = 2 and k = 0. Thus, we infer from (3.32)-(3.33) and (3.35)—(3.37), that
[Vihoo(t, )l L2y < C <N2,9(¢2) + 01/3N0,9(¢2)) ,1€(0,T), 0> 04
This and (3.34) yield (3.27) with 5 = 2, upon recalling the definition (3.26). ]

Let us now establish for further use that we may substitute o1/ 6uj10 for v} , in the estimate (3.27).

Corollary 3.4. For j = 1,2, let qj, A, ¢;, and u; ,, be the same as in Proposition 3.1. Then, there exists a
constant C > 0, depending only on T, w and M, such that the estimate

oMol @) + IVuioll2@p < Co'/ONoo(95), j = 1.2, (338)
holds for all o > o,.
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Proof. Notice from (3.22) and (3.24) that

T +00 2R
| 1ot Mt = [ 10,0t Byt = o) [ 1950

so we have
1920, ) 20,7 () < R0 165 ey, 5= 1,2, k € N. (3.39)
From this, (3.3), (3.19) and (3.25)—(3.27), it follows for each 7 = 1, 2, that

lujollzz@) < Nbjollree@xa)|®i (20 ) L2@) + 1Y) llz2(q)

< O (07265l 2@y + 0" Nao(65)) < Com N o(65),

and
||Vuj,o||L2(Q)3
< bjollwreemxa) (018520, ) r20) + 19520+, M2 0,mm102)) + VY50l 12003
< C (20050 + 0 Pllsllis oy + Noo(85)) < O/ Ny (65),
which yields (3.38). ]

In the coming subsection we probe the medium with the GO solutions described in Proposition 3.1 in
order to upper bound the transverse magnetic potential in terms of suitable norm of the DN map.

3.3. Probing the medium with GO solutions. Let us introduce

Af = A — Af and A = A — Al

100 0 >0, (3.40)
where the functions flg- and Ag}a, j = 1,2, are defined in Lemma 3.1 and Lemma 3.3, respectively. Evi-
dently, A? is the function Aﬂ2 — A’i, extended by zero outside {2, and we have
1A% — Al ppriceqray: < Y 1AL, — AL lrooreye < 200713, 0 >0, (3.41)
j=1,2

from (3.17) with k& = 1. Thus, writing Al = (a1,6,02,) and Al = (a1, as), it follows readily from (3.16)
that

aio () = /3 Xo(@ —y) (@i(y) + (z —y) - Vai(y) dy, = € R?, i = 1,2. (3.42)
R
The main purpose of this subsection is the following technical result.

Lemma 3.5. Let M > 0 and 0 € S! be fixed. Forj = 1,2, let Aj € W2(Q,R)3, q; € Whee(Q,R3),
obey (3.1)-(3.2), and let ¢; be defined by (3.21). Then, for every o > 0y, there exists a constant C > 0,
depending only on T, w, and M, such that we have

(o)

/ 0. JE(2)(8100) (2" — 2010, 5) (Br by ) (20t, 2)da’ dussdt
(0,T)xR3

< C (O'SHAAMH - AAN]Q H + 0'_5/6> N970(¢1)N9,0(¢2)7 (3~43)

where || - || stands for the usual norm in B(H*' (%), L*(X)), and At is given by (3.40).
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Proof. We proceed in two steps. The first step is to establish a suitable orthogonality identity for A :=
Ay — Ayand V =iV - A — (|A2|? — |A1|?) + q2 — q1, which is the key ingredient in the derivation of the
estimate (3.43), presented in the second step.

Step 1: Orthogonality identity. We probe the system with the GO functions u;,, j = 1,2, given by
Proposition 3.1, and recall for further use that u; , € C*([0, T, L*(22)) N C([0, T, H%(f2)) is expressed by
(3.3) and satisfies the following equation

(0 + Aa, + ¢j) ujo =0, in Q. (3.44)
Since Ag,c, € W2(Q)? and ¢y € C°(R3), it follows readily from (3.3)-(3.4) and (3.22) that ug , —
Vo, € C([0,T], W2°(Q)). Thus, F := — (id; + Aa, + 1) (u25 — ¥2,) € WHE(0,T; L*(2)), and
there is consequently a unique solution z € C*([0, T, L%(Q)) N C([0, T, H}(2) N H?(£2)) to the IBVP
(10 +Ax, +q1)2z=F, inQ,
2(0,+) =0, in Q, (3.45)
z =0, on X,
in virtue of Lemma 2.2. Further, as (u2,, — ¥2,5)(0,-) = 0in £, by (3.22)-(3.23), we infer from (3.45) that
vi= 2+ Uz, — P € CH[0,T), L2(Q)) NC([0,T], H?()) verifies
(10 + Ax, +q1)v =0, inQ,
v(0,-) =0, in Q, (3.46)
v = fo, on X,
where we have set
fo(t,2) = tn o (t, ) = U o (t, ) — Poo(t,x) = (Poba ) (20t, 2)e 0D (t2) e . (3.47)
From this and Proposition 3.1, it then follows that w := v—wusg , is the C1 ([0, T], L*(22))NC([0, T], HE ()N
H?(£2))-solution to the IBVP
(10 + Aa, +q1)w =2iA-Vug s + Vs, inQ,
w(0,-) = 0, inQ, (3.48)
w =0, on X,
In light of (3.48), we deduce from (3.44) with 7 = 1, upon applying the Green formula, that
(20A - Vug s + Vug g, U1,0>L2(Q) = ((10 +Ax, +q1) w, U1,0>L2(Q)
= ((Oy +id1-v)w,u10)12(5)- (3.49)
Next, taking into account that A; = As on 0f2, from (3.2), we see that
(O +iA1 - v)w = (0y+iA1-v)v— (0, +1A1 - V)us,
= (O, +iA1 - v)v—(0y, +iA2-V)us,
= (AAMh - AA27Q2)fGa
according to (3.47) and the last line of (3.46). This and (3.49) yield the following orthogonality identity

22<A : vu?,ay U1,0>L2(Q) + <Vu2,07 Ul,a)LQ(Q) = <(AA1,q1 - AAQ,qQ)fmga>L2(Z)7 (3.50)
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with
9o(t, ) == u15(t, ) = w1 0(t, ) — Y16(t, ) = (P1b1,s) (201, x)el@ 0200 (4t pyew. (3.51)
Having established (3.50), we turn now to proving the estimate (3.43).

Step 2: Derivation of (3.43). In light of (3.3), we have
(A Vugg,u10)12(g) = Is + ic /Q 0 - A*(2)(D1D2) (20t ) (b1.o b2 ) (20t, 2)dzdt, (3.52)
with
I, = /Q AV (®aby o) (20t 2) (m(zat, z) + e 0=y m)) dedt

+ / A Vipao(t,z) (ei"(xl'e_(’t)(<I>1b17g)(20t,x)—i—ﬁ(t,m)) dzdt
Q

tio / 0. A2(2)(Daby o) (20, )15 (1, 2)e@@ 0= dadt.
Q

We infer from (3.19), (3.27), and (3.39), that
15| < Co /5Ny o (61)Ny o (02), 0 > 0.
Putting this together with (3.50) and (3.52), we find that

g

/ 0 - A ()(p26b1) (2" — 206, 3) (b2.o b1 o ) (20t z)da’da3dt
Q

< C (‘<Vu2,mu1,a>L2(Q)’ + }<(AA1,II1 - AAQ,QQ)fa‘ng'>L2(E){ + 0_5/6N9,a(¢1)N9,0(¢2))(3-53)
Next, we notice from (3.38) that

| <VU2,0'7 ul,0'>L2 () ‘ < 00_5/3N9,cf (¢1 )NG,U (¢2) . (3.54)
Moreover, in view of (3.47) and (3.51), we have

}<(AA1,q1 - AAz,qg)fmga>L2(E)| < Aayg — AAQ,(I2||||fU||H271(E)HgU||L2(E)
< Aang — Mg glllluz,e — o0 H21(%) [u1,6 — ¢1,0HL2(2)>
with
[ut,e = V1ollze) < lute = ¥1ollzeorm @)
< Col[®1(20+, )| L2 (0,111 () 101,000 (R 2)
< 001/2N9,0(¢1)7
and

|uz,e — @Z)Q,UHH?J(Z) < C (HUZJ - 1/)2,0HH2(0,T;H1(Q)) + [lug,e — 7/}27U||L2(0,T;H2(Q))
< Co®||Py(20, M rzo,r:m200)) (1b2,0
< Co” Ny (¢2),
according to (3.3), (3.19), (3.25), and (3.39). As a consequence, we have
((Aayqr — Mogo) for 9oV 12(s) | < CO°[AAs 0 — Ay oI Noo (1) Ny 0 (92). (3.55)
This and (3.53)-(3.54) yield (3.43). O

w2 ®xq) + 10:b2.0 lw2.c rxq))
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4. PRELIMINARY ESTIMATES

4.1. X-ray transform. In this subsection we estimate the partial X -ray transform in R?, of the functions

pi(a x3) =0 %(x) = izzmei(f;ﬁ;(m), r€R3, j=1,2,3, (4.1)
in terms of the DN map. We recall that the partial X -ray transform in the direction § € S!, of a function
feZ ={pc Ll (R; 2’ — o' x3) € L}(R?) for ae. 23 € R}, 4.2)
is defined as
P(f)0, 2, 23) := /Rf(x/ + 50, x3)ds, ' € R?, 23 € R. 4.3)

The X -ray transform stability estimate is as follows.

Lemma 4.1. Let M > 0, and let Aj and qj, for j = 1,2, be as in Proposition 3.1. Then, there exists a
constant C > 0, depending only onT', w and M, such that for all 0 € SYoall ¢ e R2, and all ¢ € CSO(R?’)
satisfying supp ¢(-,x3) C D (0) := {2’ € Dg, 2’ - § < 0} for every x3 € R, the estimate

*(x)P(p;)(0, 2", x3) exp (—z/ 0 - Al (z' + 50, :Eg)ds> dz
R3 R

< C <U5||AA1,Q1 - AA2,¢I2 H + 0_5/6> NO,U((JS)NO,U(axj ¢)7 (4-4)

holds uniformly ino > o, and j = 1,2, 3.

Proof. Let ¢; € C§°(R3), j = 1,2, be supported in D x R. Bearing in mind that & C B(0, R—1), we infer
from (3.42) that A and A% are both supported in B(0, R) x R. Further, as |2/ — 20t0| > 20,T—R > R+1
forall 2/ € B(0,R) and ¢t > T, we see that

AN2)(Py o) (2! — 2010, 23) = AP (2)(d o) (&' — 200, 23) = 0, & = (2, x3) € R®, t > T,

As a consequence we have

T
/ / 0. (Aﬁ(x)—Ag(x)) (Brh2) (&' — 2010, x3) (b15b2.0 ) (20t )dadt
0 R3

- /+OO/ 0- (Aﬁ(x) - Ag(x)) (P1¢2) (2" — 2010, 23) (b1 5b2,5) (20t, x)dxdt.
0 R3

Next, making the substitution s = ot in the above integral, we get that

g

T
/ / - (@) - 44(x) (qﬁl@)(x'—2@9,:cg)(bl,gbg,o)(gat,x)dxdt‘
0 R3

/ = / 6. (Aﬁ(x) - Ag(x)) (B162) (2" — 250, 23)(broba.o ) (25, x)dads
0 B(0,R)xR

N

5 R+1 -
14— Al [ [ @0’ 256,20) dads
0 B(0,R)xR

N

_ R+1 L
| At _A§*,||L<><,(R3)2/0 /R |(B162) (o' — 250, 23)] dads

< (RA+ DA — ALl poo moy2 b1 ]| L2 oy | B2l 2 r3)-
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From this and (3.17) with £ = 0, and (3.25), it follows that

T
/ / 0- (flﬁ(x) - AE,(:E)) (p1p2) (2’ — 200, x3) (b1 5b2.5) (20, l‘)dZEdt‘
0 R3

< Co P dull pame) B2l r2rey < Co™ PNy o (61) Ny o (02). (4.5)

On the other hand, since

g

20t
(b1oboo)(20t, 2’ +20t0,3) = exp <—z/ 0 - Ak (2 + (20t — s)0, x;;)ds)
0
20t
= exp <—2/ 6 - A% (2 + s, xg)ds) ,
0
fora.e. (t,z) € (0,T) x R3, we have
T
a/ / 0 - A% (2)(h1¢p2) (2’ — 2010, 23)(b1 o b2.5) (20t, 2)da’dx3dt
0 R3

T
= 0/ / 0 - A% (2 + 200, 3) (P1¢2) () (b1 o 02,0 ) (20t, 2 + 2010, 23)da’dxzdt
0 R3

T 20t
= / (p162)(z) </ 06 - A% (' + 2016, 23) exp (—z/ 0- A (z' + 89,1‘3)d3> dt> da'dxs
R3 0 0

) T 20t
— ;/R3(<Z51¢2)(1’) (/0 %exp (—z‘/o 9'Ag(x’+39,x3)ds) dt) de'des

) 20T
= ;/IR?’ ($1¢2)($) <€Xp <—7,/0 0 . Ag.(ﬂ?/ + 89,$3)d8> — ]_> dx/dxg' (46)

As A% is supported in B(0, R) x R and |/ + 50| > 20, T — (R+1) > R, forall2/ € Dp and all s > 257,
we have

20T +00
/ 0 - A' (2 + s0,x3)ds = / 0 - Af (2 + s6,23)ds, 2’ € Dg, z3 € R. (4.7)
0 0
Similarly, as |2/ + s6]* = |2/|> + s> + 252’ - § > R, for every 2’ € D (0) and s < 0, we have
0
/ 0 - Af (2 + 56, 23)ds = 0, 2 € Dy (0), 3 € R.
This and (4.7) entail
20T
/ 0 - AF (2 + s6,23)ds = / 0- AL () + s0,23)ds, 2’ € DR(0), 3 € R. (4.8)
0 R
Having seen this, we take ¢1 := 8%6, for j = 1,2, 3, and ¢9 := ¢, in (4.6), and find
T
- / 0. A2 (2)(B10) (@ — 2010, 23) (B b ) (20, &) da dagdt
0o Jrs
i 20T
= 1 8mj¢2(aﬁ) (exp <—z/ 0 AF (2 + s@,m)ds) - 1) da’dzs
R3 0

20T 20T
= —i/ 2 (z) (/ g - 395]./1?7(3:' + 50,x3)d5> exp <—2/ 0- A (2 + 50,x3)d5> dat4.9)
0 0
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upon integrating by parts. Taking into account that ¢ is supported in Dy (#) x R, we deduce from (4.8) and
(4.9), that

T
0/ / 0 - A% (2)(h1¢) (' — 2010, 13) (b1 52,0 (20t, 2)da’dx3dt
R3

= / *(2) (/ 6 - &CJAIi (2" + s6 $3)ds> exp (—z/ 0 Af (2 + 89,x3)d5> da'dzs

- _/ ¢*(z) P(pjo)(0,2', x3) exp (—1/9 Ati (2" + 56, a:;;)ds) da'dxs. (4.10)
Here we used (4.3) and the notation
Pj,a()—9 89”]"4jj Zeaxjaza 7«T€R3j—123
1=1,2

Finally, using once more that the functions A?, and A! are supported in B(0, R), we infer from (3.41) and
(4.1)-(4.3), that

[(P(pjo) = P(3)) (6,2, 23)| < Co™/%, (2, 23) € B(0, R) x R
for some positive constant C', depending only on w and M. This entails that
() (P(ps) ~ P(3) 0. aw)exp (i [ 024500+ 50,0000 )
R3 R
which, together with (3.43),(4.5), and (4.10), yields (4.4). ]

< Co™3|6)17 2@y,

As will be seen in the coming section, the result of Lemma 4.1 is a key ingredient in the estimation of the
partial Fourier transform of the aligned magnetic field, in terms of the DN map. To this purpose, we recall
forall f € 27, where 2" is defined in (4.2), that the partial Fourier transform with respect to 2’ € R? of f,
expresses as

F(€ xs) = (2m)7! /R f@ zg)e™ ¥ da’, & €R?, 23 €R. (4.11)

Further, setting 6+ := {2/ € R?; 2/ -6 = 0}, we recall for further use from [9, Lemma 6.1], that 2/
P(f)(0,2',x3) € L' (6+4) for ae. 23 € R, and that

P06, a3) = (2m) "% | PO, 2 ws)e ™ ¢ da! = (2m) 2 F(€, w5), € €65, w5 € R. (4.12)
L

4.2. Aligned magnetic field estimation. Let us now estimate the Fourier transform of the aligned magnetic
field

B(x) i= (On, a2 — 0z,d1) (z), T € R?, (4.13)
with the aid of Lemma 4.1. More precisely, we aim to establish the following result.

Lemma 4.2. Let M > 0, and let A; and qj, for j = 1,2, be as in Proposition 3.1. Then, there exist two
constants € € (0,1) and C > 0, both of them depending only on T, w, and M, such that the estimates

IBE M@y < CENT (01Aarq — Mgl +07°), (4.14)
and

1025 B(E", ooy < CUEN (051 A As g — Aol +07°) (4.15)
hold for all o > o and all €' € R2, with (¢/) == (1 + |&']2)"/>.
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Proof. We shall only prove (4.14), the derivation of (4.15) being obtained in a similar fashion.
Fix § € S' N ¢+, We first introduce the following partition of B(0, R) N 6+. For N € N* := {1,2,...}
fixed, we pick 2, ..., 2y in B(0, R+ 1/2) N6+, and choose 1, . .., ¢x in C§°(R2,[0,1]), such that

N
supp ¢ C B(z},1/8)N@+fork =1,...,N, and ngk(x’) =1forz’ € B(O,R) N6+, (4.16)
k=1

1/2
Next, we set ;= ((R +3/4)? — |x§€|2> ,in such a way that

B(x}, —140,1/4) C DR(0), k=1,...,N. 4.17)

In order to define a suitable set of test functions ¢, x, & = 1,..., N, we fix z3 € R, pick a function
a € C§°(R,R.) which is supported in (—1, 1) and normalized in L*(R), and put

ay(s) == ocla (02”(x3 —3s)), s€R, (4.18)

for some positive real parameter y, we shall make precise below. Then, the test function ¢, ;. is defined for
ally = (v, y3) € R, by

Y Z
Dery) i=h (v 0414 ) 3021 — (- 0)6) exp (2 Lo ast+ 50 y3>ds> o (ys), (4.19)

where h € C§°(R) is supported in (0, 1/8), and normalized in L?(R).
For every y' € R?\ B(z}, — 72 0,1 /4), it is easily seen from the basic inequality
Y — (@) =1 O < |y — (¥ - 0)0 — af| + |y -0 + 7y ],
that either of the two real numbers |y’ — (y' - 0)0 — x| or [y" - 0 4 r,, | is greater than 1/8, and hence that
h(y -0+ Tx;g)golim(y’ — (y' - 0)0) = 0. As a consequence, we have

supp (b*,k('v y3) cB (x;c - rmkev 1/4> - D]?i(e): Y3 € Ra k= 17 ceey N7 (420)
directly from (4.17) and (4.19). Moreover, since

d
0-Vy ( Loz + 897y3)d3> =0+ [ A . =0, () € R
we derive from Lemma 3.3 for all m € N, that
<§/> ||(Z)*,kHHm(R3) + He : vl"d)*,kHHm(Ri“) < C <§/>m+1 O.2um+max(0,(m—2)/3),

where C'is a positive constant, independent of o. Therefore, we have Ny g(¢x 1) < C (£') and No g(¢s 1) <
C (')’ o**, whence

Ny o (duge) < C (€Y o413, 4.21)
Similarly, we find that

<§/> Ha:c]-¢*,kHHm(R3) + H9 ’ Vz’aa:j(b*,k

H™(R3) <C <€/>m+2 02um+max(0,(m—1)/3)’ j=1,2,

and
C <£/>m+1 0_2u(m+1)+max(0,(m—1)/3) )

<£/> Haﬂcsgb*,k’

Thus, we have Nog(9y;¢.) < C(€)° 0 and Nog(dy,dsp) < C () 0O F1/3, for j = 1,2,3, and
consequently

am®3) + 10 VarOu b gl prm 3y <

Ny o (B, bups) < C () H13) = 1,23,
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according to (3.25). From this and (4.21), it then follows that
7 .
Noo (64 k) No.o (O b0 k) < C (&) o'W H23 j=1,2,3. (4.22)

Having seen this, we turn now to estimating j;, where j; is defined by (4.1). As Al € W0 (R3 R)2,

we infer form (4.19) that ¢, . € C5°(R3), and from (4.20) that supp ¢. x C Dg x R. Thus, by performing
the change of variable 3y = 2’ 4 t0 € 6 @ R4, in the following integral, we deduce from (4.18)-(4.19) that
/]R/R2 &7 (', y3)P(p;) (0,9, y3) exp <—i/R9 ALY + se,yg)ds> dy'dys
= / / , qSik(x/ + t0,y3)P(p;)(0,2" + 10, y3) exp (—i/RH - Ab (2 + 897y3)ds> dz’dtdys
= [ L] R e a2 )P ) 0.0 )b i
= [ el )P ) 0ot ) s “23)

Thus, taking x> 0 so small that x := 1/6 — 10 > 0, we deduce from this, (4.4), and (4.22), that

W o) (y3)P(5;) (0, ys)dy'dys

) (o 6HAA1,q1 Ay goll +077), x5 €R. (4.24)

QL

Moreover, we see from (4.1) that p; € C%1(R3). Since supp p; C B(0,R) x R, by Lemma 3.1, then
z = P(p;)(0,z) € CO(R3), and we deduce from (3.18) upon making the substitution s = o2*(z3 — ys3)
in the following integral, that

eV oy )P(5;)(0, Y, y3)evg (ya)dy dys — /

N eV oy YP(5,)(0, Y, xs)dy/’

R JoL

eV o (y)a () (P(5) (0,4, 25 — o~ s) — P(p;)(0, 9/, w3)) dy'ds

R Jo+

1
/ / 02(s) |P(7,) (6,4, 3 — 0~ 2s) — P(3;)(0, /' x3)| dy/ds < Co2",
~1.J6LnB(0,R+1

for some constant C' > 0 depending only on w and M. Here, we used the fact that ¢, j and « are supported
in B(0, R+ 1) and (—1, 1), respectively. This and (4.24) yield

/0 V)P0 (0.9 w3y | S CUENT (0%|Aar g — Al o7 H07F), (425)

for all z3 € R and k = 1,..., N. Further, as A? is supported in B(0, R) x R by assumption, it holds true
that 0, Aﬁ(y + 86, x3) = () for all s € R, z3 € R, and all ¢/ € 6+ such that |3//| > R. Therefore, we have

P(p;)(0,y,x3) =0, ¥ € - N (R*\ B(0,R)), z3 € R,
J

in virtue of (4.1), and hence

/ eV EP(5;) (0, x3)dy = / eV EP(p;)(0, Y, x3)dy’, w3 € R,
0L 01nB(0,R)
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In light of (4.12) and (4.16), this entails that

pilels ) QWZ/MBOR) YPGB (426)

Taking 1 € (0,1/72], in such a way that we have x > 2u, we infer from (4.25)-(4.26) that

/(QL e~ o (W YP(5,)(0, 9/, fvs)dy/‘)

< C<£l>7 (UGHAAMH - AA2,q2H + 072”) , T3 € R. 4.27)
The last step of the proof is to notice from (4.1), (4.11), and the identity Zm:m Ombm = 0 - & =0, that
Pi(€ws) =i Y On&iam(€ws) =i D O (&m — Emds) (€s), w3 € R, j=1,2.
m=1,2 m=1,2

Thus, assuming that &’ = (&1,&2) € R2\ {0}, we get from (4.13) upon choosing 6 = (&/ €], —&1/ 1€)),
that

N
13, My < Z(sup
k=1 z3€ER

/ﬁ\j(glv‘r:’)) é/| (g ‘T3) x3 € R.
From this and (4.27), it then follows that

z < Gl + %]z -
1B(E", )l oo () @l IBE )o@y < CENT (01 Anrgr — Ayl +072)
which yields (4.14) for £ # 0. Since B(O, x3) = 0 for every 3 € R, from (4.13), then (4.14) holds for
¢’ = 0 as well, and the proof is complete. U

Armed with Lemma 4.2, we turn now to proving the three main results of this paper.

5. PROOF OF THEOREMS 1.2, 1.3 AND 1.4

Let us start by reducing the analysis of the inverse problem under investigation to the case of transverse
magnetic potentials. To do that, we consider A’ = (a})1<i<3 € A, and put A := (a1, ag,0), where

3
a;(z',x3) == aj(z', x3) — / Op,as(x,s)ds, v = (2/,23) Ew xR, i =1,2. (5.1)
—00

Since afy € C*(Q) fulfills (1.9)-(1.10), from the very definition of A, we have a4 € L. (R, Hj(w)),
where H(w) denotes the closure of C5°(w) in H?(w). Thus, e(z) := [*2_aj(a’, s)ds lies in LW ()N
LZ (R, H3(w)), and we deduce from the identity A = A’ — Ve, arising from (5.1), that
dA/ = dA, and AA*-i-A’,q = AA*+A,q7

for all A, € W2>°(Q)3 and all ¢ € W1°(Q). Moreover, it is easy to see that A obeys (1.9), in the sense
that we have

IA(x) =0, 2 € 0Q, a € N3, |a] < 1. (5.2)
Therefore, for each A, € W»°(Q,R)3 and any A; € A, + A, j = 1,2, we may assume without loss of
generality, that the difference Ao — A; reads

A = (a1,a2,0), (5.3)

and fulfills (5.2). We shall systematically do that in the sequel. For further reference, we put A := (a1, as),
where aj, j = 1,2, are extended by zero outside €2. Summing up, we have
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5.1. Proof of Theorem 1.2. We establish the uniqueness result (dA;, g1) = (dA2, g2) in Subsection 5.1.1,
while the proof of the stability estimate (1.13) can be found in Subsection 5.1.2.

5.1.1. Uniqueness result. For & = (£1,&) € R\ {0}, we set & = (—[¢'|7 &, [¢'|71¢1), and we
decompose A? into the sum (A* - &')|¢/|72¢" + (A* - € )€/, in such a way that the partial Fourier transform
of Gngﬁ, reads

o 1 Pl ) ! 0, B(¢!
Ous AL(E 3) = </ e g, A2 ) -§/d$/> é; 5 T1 $35(€ 7x3)§ﬁ_, x3 € R. (5.4)
21 Jre '] ']
Next, recalling the hypothesis A4, 4, = A4, g,, We get
6 = amag - axzal =0in Q, (55)

upon sending o to infinity in (4.14). Moreover, we have V. - 831;314ﬁ =V .0,,A =0, in virtue of (1.11),
whence

/6"I/'glangﬁ(a:/,xS)'ﬁldx' = i szefm/{/‘axaAﬁ(me)
R2 R2

= —i/ e—ix/.g’vwl -8x3Aﬁ(x',a:3)dx' =0. (5.6)
]RQ

Putting this together with (5.4)-(5.5), we find that |¢/|0,,, A*(¢', 3) = 0 for a.e. x3 € R. Since ¢’ is arbitrary
in R%\ {0}, this entails that ,, A* = 0, and hence that ,,a; = 0, a2 = 0 in R2. From this, (5.5), and the
fact that ag is uniformly zero, it then follows that dA; = dAs.

Further, taking into account that 92A4; = %Ay = 0% A, on 0S), for every a € N? such that |a| < 1,
we infer that A € W2°°(R3,R)3. This and the identity dA = 0, yield A = VW, where the function
U(z) = fol x - A(tz)dt lies in W3 (R3 R). Moreover, since A vanishes in R? \ 2, we may assume
upon possibly adding a suitable constant, that the same is true for V. Therefore, ¥ |5 = 0, and we find
Aaygo = My4vw,g = Aa, g, by combining the identity A1 = A + VW with the gauge invariance
property of the DN map. From this and the assumption A4, 4, = A4, 4., it then follows that

AAMIQ = AAl#h . (5.7)

It remains to show that the function ¢ = g2 — ¢y, duly extended by zero outside €2, is uniformly zero in R3.
This can be done upon applying the orthogonality identity (3.50) with A; = As,i.ewith A =0and V =gq.
In light of (5.7), we obtain that

<qu2,0'7u1,0'>L2(Q) =0, 0 > 0.. (5.8)

Here u; ,, for j = 1,2, is given by (3.3), and we have (b1 ,b2,)(t,z) = 1 forall (t,z) € (0,T) x R3, from
(3.4), since A; = A,.

Next, pick ¢ € C§°(R3), with support in {z € R3;|z| < 1}, and such that ||¢||%2(R3) = 1. We fix
y € Dr(6) x R, and choose § > 0 so small that ¢1(z) = ¢o(x) := §3/2¢(6~(x — y)) is supported in
Dr x R. Thus, upon multiplying (5.8) by o, and then sending o to infinity, we find with the aid of (3.19)
and (3.27), that

+oo
/ (/ q(0z' + v + 50, 0z3 + y3)|P(2, x3)|2dx/dx3> ds=0,0>0. (5.9)
0 R3
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Actually, if ' € D (6), then we have |y +s6| > R for any s < 0, and hence ¢(d2' +y'+s0, 6x3+y3) = 0,
uniformly in |z| < 1, provided § € (0,1). This and (5.9) yield that

/ (/5 q(02" + 3y + s0,0x3 + y3)|p(2, acg)lzdx’dxg) ds=0,6€(0,1), (v,y3) € Dr(0) x R.
R \JR

(5.10)
By performing the change of variable t = —s in the above integral, and then substituting (—#) for ¢ in the
resulting identity, we get that

/ (/3 q(6x" + 1y + 50, 0w3 + yg)]¢(x’,x3)\2dx’dx3) ds=0,6¢€(0,1), (v,ys3) € Dg(—0) x R.
R \JR

This and (5.10) yield that
/ </ q(0x" + 3y + s0,0w3 + y3)|¢(x’,x3)|2d9:/dx3) ds=0,6€(0,1), (,y3) € Dg x R.
R \JR3

Next, sending § to zero in the above identity, and taking into account that ¢ is normalized in L?(R3), we
obtain for each § € S', that

P(a)(0,y',y3) = /RQ(y’ +s0,y3)ds = 0, (y',y3) € Dr x R.
This entails ¢ = 0, since the partial X-ray transform is injective.
5.1.2. Proof of the stability estimate (1.13). We have
€] {00, AK€, 23)| = |02aBIE', 3)
by (5.4) and (5.6), so we infer from (4.14)-(4.15) that
B 3)] + [€]100, AH(E 23)] < CLEN (091 Any g1 — Atnull +07), € €, 23 € R, (5.11)

for all ¢ > oy, the constants C' and € being the same as in Lemma 4.2.
Fix p € (1,+00) and put C, := {¢ € R% p~! < |¢/| < p}. Then, upon applying the Plancherel
theorem, we obtain

10z5a;(- 23) |72y < |’8x3¢?j(§/7$3)“%2(3(0,p1))+P2/ (€ 10nsaj (€', x3)[*dE!
B2\ B(0,0)

02y @5 (€, 23)I72(c, ) v3 €R, j=1,2. (5.12)

7§,€R27 $3€R,

Further, as ||amsd}(§,a 153)”%2(3(0@71)) < |W|P_2||aj||12/vl,oo(g) and fRQ\B(O,p) <§’>2|3x3d}(§’, $3>|2d‘f/ <
||la; H%,[,LOO(Q), then there exists a constant C' > 0, depending only on M and w, such that we have
~ _ . M
1025 05(€', x3)H%2(B(O,p71)) +p 2/ <§,>2’a$3aj(§,a w3)|Pd¢’ < 3 (5.13)
R2\B(0,p) P
according to (1.12). On the other hand, we derive from (5.11) that
00y @ (€, 23)|* < Cp!(0™20% +07), £ €C, N B(0,p), 23 €R, 0> 00, j =12,

where 0 := [|A4, 4 — A4, g || Putting this and (5.12)-(5.13) together, we get for every o > o, that

y|ax3aj||%g.§(R,L2(w)) < C (p'%120% + p'%0 2 +p7?), 23 €R, j =1,2. (5.14)

/8

Now, choosing p so large that p > o3/°, we get upon taking o = p3/¢ > o, in (5.14), that

102505 (. 23)|[ 720y < C (06" +p72), w3 € R, j=1,2, (5.15)



AN INVERSE PROBLEM FOR THE MAGNETIC SCHRODINGER EQUATION IN INFINITE CYLINDRICAL DOMAINS 29

M6 hen we have §-2/(Me+2) > 58 and we may

where M, := 16 + 96/¢. Thus, if 6 < §p := o
apply (5.15) with p = §=2/(Mc+2) getting
2

M+ 2

From this and the fact, arising from (1.12), that ||0,a; Hng (RI2(w) S (2M<50_2“°)52“0* for all § > d, it
then follows that (5.16) remains valid for every § > 0.
Finally, arguing as before with /3 instead of d,, A", we obtain in a similar way from (5.11), that || 3| L5, (R,L2(w))

is upper bounded, up to some multiplicative constant depending only on M and w, by §#°, and hence (1.13)
follows from this and (5.16).

||5xsajH%g§(R,L2(w)) < 2C6%, with pig := €(0,1), j=1,2. (5.16)

5.2. Proof of Theorem 1.3. The proof is an adaptation of the one of (1.2), where the adaptation is to take
into account the extra information given by (1.14). Actually, since A; = (a1 ;, a2, a3.) and A = (A% 0)
with A* = (a1, as), by (5.3), then (1.14) yields

10z a2 = Ozy 01| Lgg (R, 22(w)) = (02102 = Oy 01| Lgs (—rpiL2(w)) (5.17)
and

||aﬂ£3ajHLg§(R,L2(w)) = ”aﬂf?,ajHng(fr,r;L?(w))v J=12 (5.18)
More precisely, we still consider GO solutions u1 , and us s, defined by (3.3)-(3.4) and (3.22), with ¢1 =
8%. ¢, for j = 1,2, 3, and ¢2 = ¢, where ¢ is given by (4.18)-(4.19). The parameter x5 appearing in (4.18),
is taken in (—r,7), and we impose o > (r’ — r)~24, in such a way that ¢ € C§°(Dy(0) x (—r',7")).
Moreover, the functions
fo(t,z) = ®3(20t, 2)ba (20, )@= and g, = &1 (20t, )by (20, 2)e 0D | (t,2) € %,

lie in HO2 1((0,T) x I',v), and we infer from (3.50) upon arguing as the derivation of Lemma 4.2, that

Hﬁ(flv ')HL‘X’(fr’,r’) < C<€/>7 (0—6||AA11¢]1,7" - AA27¢I277“’H + 0-76) )
and that
Haﬂﬁaﬁ(gla ')HLOO(r’,r’) < C<§/>8 (UGHAALqm" - AA2,q2,T’H + O_E) :

for all ¢’ € R? and some ¢ > 0. Here, the constant C' depends only on w, T, M, r, v’ and €. The desired
result follows from this and (5.17)-(5.18) by arguing in the same way as in the proof of Theorem 1.2.

5.3. Proof of Theorem 1.4. We only prove (1.16), the derivation of (1.19) being quite similar to the one
of (1.15). To this end, we fix & € R?, and remind that A = (A*,0) € Ag, with A* = (a1, ao), satisfies
Oz a1 + Op,a0 = 0 in R?, so we get

AR 23) - € = i(277)_1/ A¥(2! x3) - Ve @€ da!
R2
= _i(Qﬂ-)_l/ 6_iz/.€/ (azlal + axQCLQ) (l‘,,xg)dx, = 07 T3 = R7
R2

upon integrating by parts. Thus, remembering that | = (—|¢'|71&2, €| 71¢1) whenever £ # 0, we obtain

!/

AKE 23) = (AK(E 23) - €)€ = (—&adi + a@)(s',ms)%,, v €R,

and consequently
€| AR (¢’ 23) = —iB(¢ x3), w3 €R, (5.19)
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from (4.13), the above identity being valid for & = 0 as well. Therefore, arguing as in the derivation of
(1.13) from (4.14), we infer from (4.15) and (5.19) that

HAH%;;%(R,LQ(M)) S Ol Aay g — Magee|l™ (5.20)

where C' > 0 and p; € (0, 1) are two constants depending only on 7', w, and M.
We turn now to estimating ||QHLg<§ (R,H~1(w))3> Where ¢ = q1 — g — 2. With reference to (4.16)-(4.17), we

fixxzg € Rand k € {1,..., N}, and pick a function ¢, ;, expressed by (4.18)-(4.19) in the particular case
where Ag is uniformly zero, i.e.

bury) = h (V0470 ) G2 — () 00)an(us), v €RL peR. (521)

In view of Proposition 3.1, we consider a GO solution u;,, j = 1,2, to the magnetic Schrodinger equation
(10 + Aa; + gj)uje = 0in Q, described by (3.3) with

Oy =D, Dy = D, p, and O, (L, 7) 1= by p(2' — t0,23), t €R, 2’ € R?, 23 € R. (5.22)
Bearing in mind that V - A = 0, we then apply (3.50) with V' = ¢ — A - (A; + A3), getting

<QU2,U, U1,0>L2(Q) = (A : ((A1 + AQ)UZ,O' - 2iVU2,a) 7u1,J>L2(Q) + <(AA1,q1 - AA27q2)f0'7 ga>L2(Z)a
where f, and g, are given by (3.47) and (3.51), respectively. Thus, we have

[(qu,o,u1,0) 2(q)| < Cll ANl Loo(ys 1ol 2@ U0l L2 0,151 () + [{(Marr = Dasgo) fors 9o ) L2y | 5

and consequently

6
[(qua.o, u10)12(0)| < Co™ (HAHLOO(Q)3 + 0" 3 Aay g — AAz,q2H> €, (5.23)

by (3.38), (3.55), and (4.21).
On the other hand, it follows readily from (3.3) and (5.22), that

<qu2,av ul,a)LQ(Q) - / Q(y)‘l’z,k@‘fﬁ y)(bl,on,U)(QUtu y)dydt + Rk,oa (524)
Q
where b; ,, j = 1,2, is given by (3.4), and

Ry, = / q(y) .k (20, y) (bz,o(%t,y)ei”(y"a_”t)ﬁ(t,y)+wz,a(t,y)ﬂ(20t,y)€_w(y"0_at)> dydt
Q

+ / q(y) (V2,001 o) (t, y)dydt.
Q

Therefore,

Ry, »| is majorized by

lallzoe @) (15207, )22 (@) (W1,0llz2(Q) + 120 ll2(Q)) + W10l L2 Y201 L2(0))
< 00_11/6N9,o<¢*,k)27

in virtue of (3.25)—(3.27) and (3.39), so we infer from (4.21) that

Riol < Co®T/0(¢)° (5.25)
We turn now to examining the first term in the right hand side of (5.24). In light of (3.4), we have
/ q(y)®2 1 (20t, ) (b1,5b2,0 ) (20t, y)dydt = / q(y) @7 1 (20t,y)dydt + o, (5.26)
Q Q

with
. 20 /
Tho = /Q a(y)®2 (201, y) (7T BT OARW =000 1) dyar. (5.27)
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Next, as e*iftfat@'Ag(y/*S(”yS)ds —1=—1 fo%t - Ag(y’ —70,y3)e”" Jo B‘Ag(y'*597y3)dsd7, we have
;20 B
et o " 0-AG(Y —s0ys)ds _ 1‘ < 20T || AL oo maye < Col|All Loy, (ty) € Q.

Here we used the fact, arising from (3.9) and (3.15)-(3.16), that for any o > 0, ||A?7HLOQ(R3)2 is majorized,

up to some multiplicative constant that is independent of o, by || A#|| ;.o (0)2- Therefore, we infer from (1.12),
(3.39), and (4.21), that

Pl < OOl All oo (asys |82 (20, Y320y < CllAN o 295l ot 2zt < ClIAN oo asys (€)™

(5.28)
We are left with the task of examining the integral
/ q(y)®2 1. (20t,y)dydt = / / k(Y — 2010, y3)dy'dysdt
Q
20T
= 5 / q(y' + 8, y3) 6% 4 (y)dy'dysds, (5.29)

appearing in the right hand side of (5.26). To do that, we notice for all o > o, that
Q(y, + 807y3)¢3,k(y) =0,s¢€ (—OO, 0) U (2UT7 —|—OO), y, € R27 Y3 € R,

since ¢ and ¢, j, are supported in B(0, R) x R and D (#) x R, respectively, and that |y’ 4 s#| > R whenever
y' € Dp(f) and s € (—o0,0) U (20T, 4+00). In view of (4.3) and (5.29), this entails that

1
/ a(y)®% (20t y)dydt = o~ / / q(y’ + 50, y3)92 . (y)dy'dysds
Q 0 Jr JR3

1
= 5 [ P@O.1. 196 0 dn
g JR3
Thus, arguing in the same way as in the derivation of (4.23), we infer from (5.21) that
@€', 25)] < CEN (218100 — Aol + | All ooy + 0% ) . (5.30)

for every o > o,.

The next step of the proof is to upper bound || A| ;.00 ()3 in terms of [[A 4, 4, — A4, g, |- To do that, we pick
p > 2 and apply Sobolev’s embedding theorem (see e.g. [13, Corollary IX.14]), getting || A(+, 23) || oo ()3 <
Cl|A(; z3)[lw.p(wys for a.e. z3 € R, where the constant C' > 0 depends only on w. Interpolating, we thus
obtain that

G, 23) | ey < CIAC, 23) 132 sl AC, 23) [ 7,000 73 € R
This and (5.20) yield

1/2 1
lAllz= s < CIAIILS &, 2o < OMAILE @ 12y < ClAam — Aasarl .

for some constant C' > 0 depending only on w, M and T'. Then, we find by substituting the right hand side
of the above estimate for || A| 1o ()3 in (5.30), that

N 6 _

@€, 23)] < C(€)° (0™ 1M Arar = Azl + 0 Ay — AP +0%7) 0> g

(5.31)
With the notations of Subsection 5.1.2, we infer from (5.31) and the estimate

9~ M
Lo (€ HAE 2 < T s e,
P
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which holds true for any p € (1, +00), that

HQHng(R,H*l(w)) <0 (,06020/3(5“1/p 4+ g®1/6 4 pfl) , 0> 0y, (5.32)

where 0 = ||A4, g, — Adyq0ll € (0,1). Thus, for p € (0,1/48) and 6 € <0, a*_(41_48”)p/(6“1)), we obtain
(1.16) with pp := (1 — 48u) 1/ (Tp(41 — 48)) by taking p = 6#2 and ¢ = §—*2#2/(1=481) jp (5.32).
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