
HAL Id: hal-01319066
https://hal.science/hal-01319066v1

Submitted on 20 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Definitional Side of the Forcing
Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu Sozeau,

Nicolas Tabareau

To cite this version:
Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu Sozeau, Nicolas Tabareau. The
Definitional Side of the Forcing. Logics in Computer Science, May 2016, New York, United States.
�10.1145/http://dx.doi.org/10.1145/2933575.2935320�. �hal-01319066�

https://hal.science/hal-01319066v1
https://hal.archives-ouvertes.fr

The Definitional Side of the Forcing

Guilhem Jaber
Gabriel Lewertowski

IRIF - Université Paris Diderot
πr2 - Inria

Pierre-Marie Pédrot
Inria

Matthieu Sozeau
IRIF - Université Paris Diderot

πr2 - Inria

Nicolas Tabareau
Inria

Abstract
This paper studies forcing translations of proofs in dependent type
theory, through the Curry-Howard correspondence. Based on a
call-by-push-value decomposition, we synthesize two simply-typed
translations: i) one call-by-value, corresponding to the translation
derived from the presheaf construction as studied in a previous pa-
per; ii) one call-by-name, whose intuitions already appear in Kriv-
ine and Miquel’s work. Focusing on the call-by-name translation,
we adapt it to the dependent case and prove that it is compatible
with the definitional equality of our system, thus avoiding coher-
ence problems. This allows us to use any category as forcing con-
ditions, which is out of reach with the call-by-value translation.
Our construction also exploits the notion of storage operators in or-
der to interpret dependent elimination for inductive types. This is
a novel example of a dependent theory with side-effects, clarifying
how dependent elimination for inductive types must be restricted in
a non-pure setting. Being implemented as a Coq plugin, this work
gives the possibility to formalize easily consistency results, for in-
stance the consistency of the negation of Voevodsky’s univalence
axiom.

Categories and Subject Descriptors F.4.1 [MATHEMATICAL
LOGIC AND FORMAL LANGUAGES]: Mathematical Logic

Keywords Forcing, Dependent type theory, Inductive types, Ef-
fects, Coq

1. Introduction
Forcing has been introduced by Cohen to prove the independence
of the Continuum Hypothesis in set theory. The main idea is to
build, from a model M , a new model M ′ for which validity is
controlled by a partially-ordered set (poset) of forcing conditions
living inM . Technically, a forcing relation p φ between a forcing
condition p and a formula φ is defined, such that φ is true in M ′

iff p φ is true in M , for some p approximating the new elements
of M ′. Categorical ideas have been used by Lawvere and Tierney

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

LICS ’16, July 05-08, 2016, New York, NY, USA
Copyright c© 2016 ACM 978-1-4503-4391-6/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2933575.2935320

[14] to recast forcing in terms of topos of (pre)sheaves. It is then
straightforward to extend the construction to work on categories
of forcing conditions, rather than simply posets, giving a proof
relevant version of forcing.

Recent years have seen a renewal of interest for forcing, driven
by Krivine’s classical realizability [9]. In this line of work, forc-
ing is studied as a proof translation, and one seeks to understand
its computational content [3, 12], through the Curry-Howard corre-
spondence. This means that p φ is studied as a syntactic transla-
tion of formulas, parametrized by a forcing condition p.

Following these ideas, a forcing translation has been defined
in [6] for the Calculus of Constructions, the type theory behind
the Coq proof assistant. It is based heavily on the presheaf con-
struction of Lawvere and Tierney. The main goal of [6] was to ex-
tend the logic behind Coq with new principles, while keeping its
fundamental properties: soundness, canonicity and decidability of
type checking. This approach can be seen, following [1], as type-
theoretic metaprogramming.

However, this technique suffers from coherence problems,
which complicate greatly the translation. More precisely, the trans-
lation of two definitionally equal terms are not in general defi-
nitionally equal, but only propositionally equal. Rewriting terms
must then be inserted inside the definition of the translation. If this
is possible to perform, albeit tedious, when the forcing conditions
form a poset, it becomes intractable when we want to define a forc-
ing translation parametrized by a category of forcing conditions.

In this paper, we propose a novel forcing translation for the
Calculus of Constructions (CCω), which avoids these coherence
problems. Departing from the categorical intuitions of the presheaf
construction, it takes its roots in a call-by-push-value [10] decom-
position of our system. This will justify to name our translation
call-by-name, while the previous translation of [6] is call-by-value.

“Call-by-name forcing provides the first effectful translation of
CCω into itself which preserves definitional equality.”

We then extend our translation to inductive types by exploiting
storage operators [8]—an old idea of Krivine to simulate call-by-
value in call-by-name in the context of classical realizability—to
restrict the power of dependent elimination in presence of effects.
The necessity of a restriction should not be surprising and was
already present in Herbelin’s work [5].

This provides the first version of Calculus of Inductive Con-
structions (CIC) with effects. The nice property of preservation of

definitional equality is emphasized by the implementation of a Coq
plugin1 which works for any term of CIC.

We conclude the paper by using forcing to produce various
results around homotopy type theory. First, we prove that (a simple
version of) functional extensionality is preserved in any forcing
layer. Then we show that the negation of Voevodsky’s univalence
axiom is consistent with CIC plus functional extensionality. This
statement could already be deduced for the existence of a set-based
proof-irrelevant model [16], but we provide the first formalization
of it, in a proof relevant setting, and by an easy use of the forcing
plugin. Finally, we show that under an additional assumption of
monotonicity of types, we get the preservation of (a simple version
of) the univalence axiom.

Plan of the paper. In Section 2, we derive, in a simply typed
setting, our call-by-name forcing translation using a call-by-push
value decomposition of the language. We then define the translation
for CCω , a language with dependent product (§ 3). Its soundness
relies on some equality holding definitionally, that we get using
a Yoneda construction (§ 4). The translation is then extended to
datatypes (§ 5), introducing a restriction on CIC to handle depen-
dent elimination. The generalization to recursive types is studied in
Section 6, relying on storage operators to deal with their dependent
eliminations. Finally, in Section 7, we use forcing to prove that the
negation of univalence is consistent with CIC, and discuss a re-
fined translation which enforces some naturality conditions, so that
univalence is preserved by the translation.

2. Call-by-Push-Value
In this section, we explain how the call-by-push-value language
(CBPV) of Levy [10] can be used to present two versions of the
forcing translation. To keep our presentation as simple as possible,
we will only use a small subset of it, although most of the results
can be adapted to a more general setting. The idea of CBPV is to
break up the simply-typed λ-calculus, leading to a more atomic
presentation distinguishing values and computations, and allowing
to add effects easily into the language. We use it as the source
language for a generic forcing translation thought of as adding
side-effects. Call-by-name and call-by-value strategies can then be
decomposed into CBPV, inducing in turn two forcing translations
for the λ-calculus.

2.1 Syntax of CBPV
CBPV’s types and terms are divided into two classes : pure values
v and effectful computations t, a dichotomy which is reflected in
the typing rules. The syntax and typing rules are given at Figure 1

We give some intuition behind those terms. The thunk prim-
itive is to be understood as a way of boxing a computation into a
value. Its dual force runs the computation. Note that this name has
nothing to do with forcing itself and is a coincidence. The return
primitive creates a pure computation from a value. The let bind-
ing first evaluates its argument, possibly generating some effects,
binds the purified result to the variable and continues with the re-
maining term. Intuitively, this language is no more than the usual
decomposition of a monad into an adjunction.

For technical reasons, we endow CBPV with reduction rules
that are weaker than what is usually assumed, by restricting sub-
stitution to strong values, i.e. values which are not variables, while
the standard reduction allows substitution for any value. Indeed,
the forcing translation which we present after only interprets this
restricted reduction.

1 Available at https://github.com/CoqHott/coq-forcing.

Definition 1 (Restricted CBPV reduction). Strong values ṽ are
simply defined as ṽ := thunk t. We define the restricted CBPV
reduction as the congruence closure of the following generators.

(λx : A. t) ṽ → t{x := ṽ}
let x : A := return ṽ in t → t{x := ṽ}
force (thunk t) → t

We write ≡ for the equivalence generated by this reduction.

2.2 Simply-Typed Decompositions
We recall here the decompositions of the simply-typed λ-calculus
into CBPV. They were actually the original motivation for the
introduction of CBPV itself. We will translate the usual λ-calculus
where types are described by the inductive grammar

A,B := α | A→ B

using the standard syntax. The results of this section are well-
known so we will not dwell on them.

Definition 2. The by-name reduction of the λ-calculus is the con-
gruence closure of the generator

(λx : A. t) u→n t{x := u}
while the restricted by-value reduction is the congruence closure of
the generator

(λx : A. t) v →v t{x := v}
where v is a λ-abstraction.

Definition 3 (By-value decomposition). The by-value decomposi-
tion is defined as follows.

[α]v := α

[A→ B]v := U ([A]v → F [B]v)

[x]v := return x

[t u]v := let f := [t]v in
let x := [u]v in force f x

[λx : A. t]v := return (thunk (λx : [A]v. [t]v))

Proposition 1. If Γ ` t : A then [Γ]v `c [t]v : F [A]v.

Proposition 2. If t→v u then [t]v ≡ [u]v.

Definition 4 (By-name decomposition). The by-name decomposi-
tion is defined as follows.

[α]n := Xα

[A→ B]n := U [A]n → [B]n

[x]n := force x

[t u]n := [t]n (thunk [u]n)

[λx : A. t]n := λx : U [A]n. [t]n

Proposition 3. If Γ ` t : A then U [Γ]n `c [t]n : [A]n.

Proposition 4. If t→n u then [t]n ≡ [u]n.

2.3 Forcing Translation
We now define the forcing translation from CBPV into a small
dependent extension of the simply-typed λ-calculus. Dependency
is needed because we have to be able to state in the type that some
relation holds between two elements. For simplicity, we can use
for instance the much richer system defined at Section 3. We use
implicit arguments and infix notation for clarity when the typing is
clear from context.

First of all, we need a notion of preorder in the target calculus.

Definition 5 (Preorder). A preorder is given by

https://github.com/CoqHott/coq-forcing

value types A,B ::= U X | α
computation types X,Y ::= A→ X | F A
environments Γ ::= · | Γ, x : A

value terms v ::= x | thunk t
computation terms t, u ::= λx : A. t | t v | let x : A := t in u | force t | return v

(x : A) ∈ Γ

Γ `v x : A

Γ `c t : X

Γ `v thunk t : U X
Γ `v v : U X

Γ `c force v : X

Γ, x : A `c t : X

Γ `c λx : A. t : A→ X

Γ `v v : A

Γ `c return v : F A

Γ `c t : F A Γ, x : A `c u : X

Γ `c let x : A := t in u : X

Γ `c t : A→ X Γ `v v : A

Γ `c t v : X

Figure 1. Call-by-push-value

• a type P;
• a binary relation ≤;
• a term id : Πp : P. p ≤ p;
• a term ◦ : Π(p q r : P). p ≤ q → q ≤ r → p ≤ r

subject to the following conversion rules.

idp ◦ f ≡ f f ◦ idq ≡ f f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h
We assume in the remainder of this section a fixed preorder that

we will call forcing conditions.

Definition 6 (Ground types). We assume given for every CBPV
ground type α:

• a type αp in the target calculus for each p : P;
• a lifting morphism θα : Π(p q : P). p ≤ q → αp → αq

subject to the following conversion rules.

θα idp x ≡ x θα (f ◦ g) x ≡ θα g (θα f x)

Definition 7 (Type translation). The forcing translation on types
associates to every CBPV type and forcing condition a target type
defined inductively as follows.

[[α]]p := αp

[[U X]]p := Πq : P. p ≤ q → [[X]]q

[[A→ X]]p := [[A]]p → [[X]]p

[[F A]]p := [[A]]p

Proposition 5 (Value lifting). The lifting morphisms of Definition 6
can be generalized to any value type A as θA with the same
distribution rules.

Proof. By induction onA. Our only non-variable value type is U X
where θU X is defined by precomposition.

Definition 8 (Term translation). The term translation is indexed by
an CBPV environment Γ and a preorder variable p and produces a
term in the target calculus. It is defined inductively as

[x]Γp := x

[thunk t]Γp := λ(q : P) (f : p ≤ q). θΓ (f, [t]Γq)

[force v]Γp := [v]Γp p idp

[λx : A. t]Γp := λx : [[A]]p. [t]
Γ,x:A
p

[t v]Γp := [t]Γp [v]Γp

[let x : A := t in u]Γp := (λx : [[A]]p. [u]Γ,x:A
p) [t]Γp

[return v]Γp := [v]Γp

where the θΓ (f, t) notation stands for t{~x := θ ~A f ~x} for each
(xi : Ai) ∈ Γ.

The only non-trivial case of this translation is the thunk case,
which requires to lift all the free variables of the considered term.
We need to do this because the resulting term is boxed w.r.t. the
current forcing condition by a λ-abstraction, so that there is a mis-
match between the free variables of [t]Γq which live at level q while
we would like them to live at level p. Dually, the force translation
resets a boxed term by applying it to the current condition.

Proposition 6 (Typing soundness). Assume Γ `c t : X, then
p : P, [[Γ]]p ` [t]Γp : [[X]]p and similarly for values.

Proposition 7 (Computational soundness). For all Γ `c t,u : A, if
t ≡ u then [t]Γp ≡ [u]Γp and similarly for values.

The interest of giving this translation directly in CBPV is that
we can recover two translations of the λ-calculus by composing it
with the by-name and by-value decompositions. This provides hints
about the source of the technical impediments encountered in [6].

To start with, we can easily observe that [[[A→ B]v]]p is equal
to Πq : P. p ≤ q → [[A]]q → [[B]]q , which is indeed the usual way
to translate the arrow type in forcing, as in [6]. The term transla-
tion is also essentially the same, except for the adaptations to the
dependently-typed case. The two following defects of the call-by-
value forcing translation are then obvious through this decomposi-
tion.

First, the translation only preserves call-by-value reduction,
and not unrestricted β-reduction. Indeed, through the by-value
decomposition, a redex translation [(λx : A. t) u]v is convert-
ible with let x := [u]v in [t]v, which is itself convertible with
[t]v{x := [u]v} only when [u]v is a value. Therefore, the interpre-
tation of the conversion rule of CIC by a plain conversion is not
possible. One has to resort to more semantical arguments, implying
the use of explicit rewriting in the terms.

Second, the very computational conditions imposed over θα are
highly problematic as soon as we have second-order quantifica-
tions. Indeed, we need to ship with each abstracted type Πα : �. A
a corresponding θα in the translation. But then we loose the defi-
nitional equalities required by Definition 6. The only thing we can
do is to enforce them by using propositional equalities, which will
imply in turn some explicit rewriting.

Meanwhile, the by-name variant is way more convenient to
use to interpret CIC conversion. Indeed, it interprets the whole β-
conversion, and furthermore it does not even require any θα for
abstracted variables. This is because all value types appearing in

the [−]n decomposition are of the form U X for some X , so that
we statically know we will only need the θUX function which is
defined regardless of X . Both properties make a perfect fit for an
interpretation of CIC.

3. Forcing Translation in the Negative Fragment
In this section, we first consider the forcing translation of CCω ,
a type theory featuring only negative connectives, i.e. Π-types. It
features a denumerable hierarchy of universes �i together with an
impredicative universe ∗, and is therefore essentially Luo’s ECC
without pairs nor cumulativity [11].

This translation builds upon the call-by-name forcing described
in the previous section. The main differences are that we handle
higher-order and dependency, as well as a presentation artifact
where we delay the whole-term lifting of the thunk translation
by using forcing contexts instead. Moreover, we now consider
categories of forcing conditions, rather than posets.

Definition 9 (Typing system). As usual, we define here two state-
ments mutually recursively. The statement ` Γ means that the envi-
ronment Γ is well-founded, while Γ ` M : A means that the term
M has type A in environment Γ. We write � for ∗ or �i for some
i ∈ N. The typing rules are given at Figure 2.

Definition 10 (Forcing context). Forcing contexts σ are given by
the following inductive grammar.

σ ::= p | σ · x | σ · (q, f)

A forcing context σ may be seen as a path from the initial
condition p to a current condition q. The forcing context σ · (q, f)
extends the path σ upto the new condition q through the path f
between p and q.

In the above definition, p, x, q and f are variables binding in the
right of the forcing context, and therefore forcing contexts obey the
usual freshness conditions obtained through α-equivalence.

We will often write σ · ϕ to represent the forcing context σ
extended with some forcing suffix ϕmade of any kind of extension.

Definition 11 (Forcing context validity). A forcing context σ is
valid in a context Γ, written Γ ` σ, whenever they pertain to the
following inductive relation.

· ` p
Γ ` σ

Γ ` σ · (q, f)

Γ ` σ
Γ, x : A ` σ · x

Definition 12 (Category). A category is given by:

• A term ` P : �0 representing objects;
• A term ` Hom : P→ P→ �0 representing morphisms;
• A term ` id : Πp : P. Hom p p representing identity;
• A term ` ◦ : Π(p q r : P). Hom p q → Hom q r → Hom p r rep-

resenting composition.

For readability purposes, we write idp for id p, Hom(p, q) for
Hom p q and we consider the objects for the composition as implicit
and write f ◦ g for ◦ p q r f g for some objects p, q and r.

Furthermore, we require that we have the following definitional
equalities.

Γ ` f : Hom(p, q)

Γ ` idp ◦ f ≡ f
Γ ` f : Hom(p, q)

Γ ` f ◦ idq ≡ f

Γ ` f : Hom(p, q) Γ ` g : Hom(q, r) Γ ` h : Hom(r, s)

Γ ` f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h

Note that asking that they are given definitionally rather than as
mere propositional equalities is, as we will see in Section 4, actually
not restrictive.

Definition 13. The last condition σe from a forcing context σ is a
variable defined inductively as follows.

pe := p (σ · x)e := σe (σ · (q, f))e := q

The morphism of a variable x in a forcing context σ, written
σ(x), is a term defined inductively as follows.

p(x) := idp (σ · x)(x) := idσe

(σ · y)(x) := σ(x) (σ · (q, f))(x) := σ(x) ◦ f

Notation 1. As it is a recurring pattern in the translation, we will
use the following macros.

λ(q f : σ).M := λ(q : P) (f : Hom(σe, q)).M

Π(q f : σ).M := Π(q : P) (f : Hom(σe, q)).M

Definition 14 (Forcing translation). The forcing translation is in-
ductively defined on terms as follows.

[∗]σ := λ(q f : σ).Π(r g : σ · (q, f)). ∗
[�i]σ := λ(q f : σ).Π(r g : σ · (q, f)).�i

[x]σ := x σe σ(x)

[λx : A.M]σ := λx : [[A]]!σ. [M]σ·x

[M N]σ := [M]σ [N]!σ

[Πx : A.B]σ := λ(q f : σ).Πx : [[A]]!σ·(q,f). [[B]]σ·(q,f)·x

[[A]]σ := [A]σ σe idσe

[M]!σ := λ(q f : σ). [M]σ·(q,f)

[[A]]!σ := Π(q f : σ). [[A]]σ·(q,f)

Note that the three last definitions are simple macros definable
in terms of the basic forcing translation that will be used perva-
sively to ease the reading. In particular, the [−]!σ and [[−]]!σ macros
correspond respectively to the interpretation of thunk and U in the
call-by-push-value decomposition.

Assuming that Γ ` σ, which we will do implicitly afterwards,
we now define the forcing translation on contexts as follows.

[[·]]p := p : P
[[Γ]]σ·(q,f) := [[Γ]]σ, q : P, f : Hom(σe, q)

[[Γ, x : A]]σ·x := [[Γ]]σ, x : [[A]]!σ

We now turn to the proof that this translation indeed preserves
the typing rules of our theory. As proper typing rules and conver-
sion rules are intermingled, we should actually prove it in a mutu-
ally recursive fashion, but this would be fairly unreadable. There-
fore, in the following proofs, we rather assume that computational
(resp. typing) soundness are already proved for the induction hy-
potheses, in an open recursion style. This is a mere presentation
artifact: the loop is tied at the end by plugging the two soundness
theorems together.

Proposition 8 (Condition Concatenation). For any Γ ` M : A,
and forcing contexts σ, ϕ, ψ with ϕ containing only conditions and
morphisms,

[[Γ]]σ·ϕ·ψ ` [M]σ·(q,f)·ψ{q := (σ · ϕ)e, f := (ϕ)} ≡ [M]σ·ϕ·ψ

where (ϕ) stands for the composition of all morphisms in ϕ.

A,B,M,N ::= ∗ | �i | x |M N | λx : A.M | Πx : A.B

` Γ i < j

Γ ` �i : �j

` Γ

Γ ` ∗ : �i

Γ ` A : �i Γ, x : A ` B : �j

Γ ` Πx : A.B : �max(i,j)

Γ ` A : �i Γ, x : A ` B : ∗
Γ ` Πx : A.B : ∗

Γ, x : A `M : B Γ ` Πx : A.B : �

Γ ` λx : A.M : Πx : A.B

Γ `M : Πx : A.B Γ ` N : A

Γ `M N : B{x := N}
Γ `M : B Γ ` A : �

Γ, x : A `M : B

` ·
Γ ` A : �

` Γ, x : A

Γ ` A : �i

Γ, x : A ` x : A

Γ `M : B Γ ` A : � Γ ` A ≡ B
Γ `M : A

Γ ` (λx : A.M) N ≡M{x := N}
Γ `M : Πx : A.B

Γ `M ≡ λx : A.M x
(congruence rules ommitted)

Figure 2. Typing rules of CCω

Proof. By induction over M . This property relies heavily on the
fact that the categorical equalities are definitional, and the proof
actually amounts to transporting those equalities.

Proposition 9 (Substitution Lemma). For any Γ `M : A,

[[Γ]]σ·ϕ ` [M{x := P}]σ·ϕ ≡ [M]σ·x·ϕ{x := [P]!σ}

Proof. By induction over M and application of the previous
lemma.

Theorem 1 (Computational Soundness). If Γ ` M ≡ N then
[[Γ]]σ ` [M]σ ≡ [N]σ .

Proof. The congruence rules are obtained trivially, owing to the
fact that the translation is defined by induction on the terms. The
β-reduction step is obtained by a direct application of the substi-
tution lemma, while the η-expansion rule is interpreted as-is in the
translation.

Theorem 2 (Typing Soundness). The following holds.

• If ` Γ then ` [[Γ]]σ .
• If Γ `M : A then [[Γ]]σ ` [M]σ : [[A]]σ .

Proof. By induction on the typing derivation. The only non-
immediate case is the conversion rule which is obtained by ap-
plying the computational soundness theorem.

Forcing Layer. We now explain how to use the forcing transla-
tion to extend safely CIC with new logical principles, so that type-
checking remains decidable and the resulting extended theory is
equiconsistent with Coq (i.e. if the empty type of Coq is not inhab-
ited, then neither is the empty type of the resulting theory) as soon
as the type P of objects is inhabited.

In the forcing layer, it is possible to add new symbols to the
system. Each symbol ϕ : Φ has to come with its translation
` ϕ• : Πp : P. [[Φ]]p in CIC. This is done in the Coq plugin using
the command

Forcing Definition ϕ : Φ using P Hom.

where P and Hom define the category of forcing conditions in use.
Note the similarity with forcing in set theory, where a new model is
obtained by adding a generic elementG to a ground model, and the
forcing relation describes inside the ground model the properties of
G in the new model.

The typing relation `F in the layer is defined by extending CIC
with the axiom Γ `F ϕ : Φ. By posing [ϕ]σ := ϕ• σe, it is easy
to derive that if Γ `F M : A then [[Γ]]σ ` [M]σ : [[A]]σ using

Theorem 2. The abovementioned equiconsistency result is just a
consequence of the fact that if Γ `F M : ⊥ then [[Γ]]p ` [M]p :
Π(q f : p).⊥, which shows that a proof of the empty type⊥ in the
forcing layer directly gives a proof of⊥ in CIC as soon as the type
P of objects is inhabited.

4. Yoneda to the Rescue
A key property in the preservation of typing is that the forcing
category implements category laws in a definitional way. This may
seem a very strong requirement. Indeed, any non-trivial operation is
going to block on variable arguments, which puts the convertibility
at stake. For instance, simply taking objects to be the unit type
and morphisms to be booleans equipped with xor already breaks
at least one of the two identity rules, depending on the order in
which xor is defined.

Luckily, we can rely on a folklore trick to build for any category
an equivalent category with laws that holds definitionally. The
soundness of the translation is no more than the good old Yoneda
lemma.

Definition 15 (Yoneda translation). Assume a category as given
in Definition 12 without assuming any equalities. We define the
Yoneda translation of this category as follows.

PY := P
HomY p q := Πr : P. Hom(q, r)→ Hom(p, r)
idY p := λ(r : P) (k : Hom(p, r)). k
◦Y p q r f g := λ(s : P) (k : Hom(r, s)). g s (f s k)

Proposition 10 (Yoneda lemma). The Yoneda translation of a
category is a category with laws that holds definitionally.

Proof. Immediate. Typing is straightforward and equalities are sim-
ple βη-equivalences.

The interesting subtlety of this proof is that we actually do not
even need the categorical laws of the base category to recover
definitional equalities in the Yoneda translation. What we have
done amounts to building the free category generated by objects
and morphisms, and definitional equalities follow just because the
meta-theory (here, our type theory) is computational. Although the
relation between the Yoneda lemma, CPS and free categories has
already been observed in the literature, we believe that our current
usecase is novel.

It remains now to prove that the Yoneda category is equivalent
to its base category. As there is no widely accepted notion of being
equivalent in type theory, we are going to allow ourselves to cheat
a little bit.

Definition 16 (Equivalence functors). We define two type-theoretic
functors Y (resp.

Y
) between a base category and its Yoneda trans-

lation (resp. the converse) as follows. On objects, the translation is
the identity

Yo := λp : P. p
Y
o := λp : PY . p

while on morphisms we pose

Yh p q f : HomY p q := λ(r : P) (k : Hom(q, r)). f ◦ kY
h p q f : Hom p q := f q idq

We need to reason about equality, so we suppose until the end
of this section that our target type theory features a propositional
equality = as defined usually, and furthermore that the functional
extensionality principle is provable.

Proposition 11 (Functoriality). Assuming that equalities of Defini-
tion 12 hold propositionally, the above objects are indeed functors,
i.e. they obey the usual commutation rules w.r.t. identity and com-
position propositionally.

Proposition 12 (Category equivalence). The above functors form
an equivalence in the following sense.

1. Assuming that equalities of Definition 12 hold propositionally,
then

Y
h p q (Yh p q f) = f propositionally.

2. Assuming parametricity over the quantification on the base
category, then Yh p q (

Y
h p q f) = f propositionally.

Proof. The first equality is straightforward. The second one is es-
sentially an unfolding of the definition of parametricity over the
categorical structure. We do not want to dwell too much on the
whereabouts of parametricity in this paper for the lack of space,
so that we will not insist on that property and let the reader refer
to the actual implementation (https://github.com/CoqHott/
coq-forcing/theories/yoneda.v).

Although this is not totally satisfying because of mismatches
between type theory and category theory, note that in the special
case where the base category is proof-irrelevant (i.e. a preorder)
the translation actually builds an equivalent category.

Disregarding these small defects, we will consider that by ap-
plying the Yoneda translation to any category, we recover a new
category which is essentially the same as the first one except that it
has definitional equalities. By plugging it into the forcing transla-
tion, we will consequently fulfill all the expected conditions for the
soundness theorems to go through.

5. Datatypes
We now proceed to extend the calculus with positives, that is
datatypes defined by their constructors and move towards a transla-
tion of CIC. In CIC, datatypes are defined using a generic schema
for declaring inductive types, using a generic eliminator construct
for pattern-matching.

We wish to apply the forcing translation to any inductive defini-
tion, however there are a number of issues to resolve before doing
so, having to do with dependent elimination. For the sake of con-
ciseness, we will focus on Σ-types, whose definition is given in
Figure 3. It is noteworthy to remark that we present Σ-types in a
positive fashion, that is through pattern-matching, rather than neg-
atively through projections. The latter is usually easier to interpret
in an effectful setting, but it is weaker and in general does not ex-
tend to other types that have to be interpreted positively such as
sums.

Whereas in the plugin our translation of inductive types builds
new inductive types, for the sake of simplicity, we will directly

translate Σ-types as Σ-types in this paper. There is little room left
for tinkering. As the translation is by-name, we need to treat the
subterms of pairs as application arguments by thunking them using
the [−]!σ macro and similarly for types.

Definition 17 (Forcing translation of Σ-types).

[Σx : A.P]σ := λ(q f : σ).Σx : [[A]]!σ·(q,f). [[P]]!σ·(q,f)·x

[(M,N)]σ := ([M]!σ, [N]!σ)

[matchM with (x, y)⇒ N]σ :=

match [M]σ with (x, y)⇒ [N]σ·x·y

Proposition 13. The translation enjoys computational soundness.

Against all expectations, typing soundness is not provable for
the whole CIC. While the typing rules of formation, introduction
and non-dependent elimination are still valid, the dependent elim-
ination rule needs to be restricted. Indeed, the conclusion of the
traditional dependent elimination rule for Σ-types is

matchM with (x, y)⇒ N : C{z := M}

This rule is not valid in presence of effects, because on the left-
hand side, M is directly evaluated, whereas on the right-hand side,
the evaluation of M is postponed. In particular, it is not valid in
the forcing layer, and thus cannot be interpreted by the forcing
translation. The translation of this sequent results effectively in

match [M]σ with (x, y)⇒ [N]σ·x·y : [[C]]σ·z{z := [M]!σ}

and it is clear that [M]!σ can have little to do with [M]σ . Intuitively,
a boxed term—i.e. a term expecting a forcing condition before
returning a value—of the translated inductive type can use the
forcing conditions to build different inductive values at different
conditions. It is for instance easy to build boxed booleans, i.e.
terms of type [[B]]!σ := Π(q f : σ).B that are neither [true]!σ nor
[false]!σ but whose value depends on the forcing conditions. There
is hence no reason for it to be propositionally equal to a constructor
application, let alone definitionally.

Therefore, we restrict the source type theory to dependent elim-
inations where a match has type match, forcing evaluation in the
result type as well. We denote this restricted theory CIC− and sum-
marize its typing rules at Figure 3.

Proposition 14. Typing soundness holds for the CIC− rules.

In this effectful setting, the usual dependent elimination of CIC
can be decomposed into a restricted elimination followed by an η-
rule for Σ-types which can be written:

matchM with (x, y)⇒ C{z := (x, y)} ≡η C{z := M}.

While this η-rule is actually propositionally valid in CIC, it is
not preserved by the forcing translation and can be disproved using
non-standard boxed terms. In general, assuming definitional η-rules
for positive datatypes makes conversion checking hard, in partic-
ular for sum types, requiring commutative conversions and very
elaborate algorithms even in the simply-typed case [13]. Of course
CIC− plus definitional η-rules for inductive datatypes is equivalent
to CIC plus those same rules, but an exact correspondence between
CIC− and CIC is harder to pin down.

Note that the translation also applies directly to the hidden
return type annotation found in CIC, which we did not expose here
for simplicity. The same technique can be applied to any algebraic
datatype.

https://github.com/CoqHott/coq-forcing/theories/yoneda.v
https://github.com/CoqHott/coq-forcing/theories/yoneda.v

A,B,M,N ::= . . . | Σx : A.B | (M,N) | matchM with (x, y)⇒ N

Γ ` A : �i Γ, x : A ` B : �j

Γ ` Σx : A.B : �max(i,j)

Γ `M : A Γ ` N : B{x := M} Γ ` Σx : A.B : �

Γ ` (M,N) : Σx : A.B

Γ `M : Σx : A.B Γ ` C : � Γ, x : A, y : B ` N : C

Γ ` matchM with (x, y)⇒ N : C

Γ `M : Σx : A.B Γ, z : Σx : A.B ` C : � Γ, x : A, y : B ` N : C{z := (x, y)}
Γ ` matchM with (x, y)⇒ N : matchM with (x, y)⇒ C{z := (x, y)}

Figure 3. Typing rules for Σ-types in CIC−

6. Recursive Types
The datatypes described in the previous section are all non-
recursive. Handling general inductive datatypes raises issues of
its own, because we need to be clever enough in the definition to
preserve both syntactical typing and reduction rules.

We will define our translation into CIC without giving all the
technical details usually imposed by recursive types, amongst oth-
ers positivity condition and guardedness. The reader can assume a
theory close to the one implemented by Coq and Agda for instance.
Our practical implementation uses Coq, so that we will use its par-
ticular syntax.

Rather than giving the generic translation, which would turn out
to be rather uninformative to the reader and too technical, we will
focus instead on a running example.2 This example should be rich
enough to uncover the issues stemming from recursive types. We
should stick to the list type, for it features a parameter. We recall
that it is defined as follows.

Inductive list (A : �) : � :=
| nil : list A
| cons : A→ list A→ list A

The above definition generates the typing rules below, plus fixpoint
and pattern-matching terms with the corresponding rules.

Γ ` A : �

Γ ` list A : �

Γ ` A : �

Γ ` nil A : list A

Γ ` A : � Γ `M : A Γ ` N : list A

Γ ` cons AM N : list A

6.1 Type and Constructor Translation
On the type itself, the translation is not that difficult. The only really
subtle part arises from the forcing translation of types as we have

[[�i]]σ := Π(q f : σ).�i

so that the translation of an inductive type must take a forcing
condition and a morphism as arguments.

Now, recursive types appear as arguments of their constructors,
and following the by-name discipline, it means that they must be
boxed. In particular, it implies that the forcing conditions change
at each recursive invocation. There are a lot of possible design
choices here when only following typing hints, but only one seems
to comply with the reduction rules. It consists in enforcing the fact
that the inductive does not depend on the current forcing conditions
by simply not taking them as arguments and only rely on one
condition.

2 The Coq plugin translates any (mutually) inductive type.

Formally, we define an intermediate inductive list•, and the
forcing translation for the list type is derived from it by applying
it to the last forcing condition. The whole translation is defined in
Figure 4. We use macros to show that the translation is straightfor-
ward, but they should really be thought of as their unfolding.

Proposition 15 (Typing soundness). The forcing translation of
Figure 4 preserves the three typing rules of list, nil and cons.

One important remark is that even thoughA is a uniform param-
eter of the list type, it is not anymore in its translation, because it
is lifted to a future condition at each recursive call. Indeed, the type
[[list A]]!p·A in the recursive call in cons• is convertible to

Π(q f : p). list• q (λ(r g : p · (q, f)). A r (f ◦ g))

where list• has a different argument than A. This is not really
elegant, but it does not cause more trouble than mere technicalities.

6.2 Non-dependent Induction
As in the non-recursive case, it is easy to define a non-dependent
recursor on the translation of a recursive inductive type, because
pattern-matchings are actually translated as pattern-matchings and
similarly for fixpoints. For our running example, we can indeed
build a function that folds over a forced list.

Definition 18 (Recursor). A recursor for lists is a term rec of type

Trec := Π(AP : �). P0 → Ps → list A→ P

with P0 := P and Ps := A→ list A→ P → P which is
subject to the conversions

rec A P H0 Hs (cons AM N) ≡Hs M N (rec A P H0 Hs N)

rec A P H0 Hs (nil A) ≡H0

assuming the proper typing requirements.

Proposition 16 (Recursor Translation). Assuming a recursor rec,
there exists a term rec• of type Πp : P. [[Trec]]p such that by posing

[rec A P H0 Hs M]σ := rec• σe [A]!σ [P]!σ [H0]!σ [Hs]
!
σ [M]!σ

the forcing translation interprets the reduction rules of Defini-
tion 18 definitionally.

Proof. This recursor is built out of the actual recursor on list• in
a straightforward way.

6.3 Storage Operators
Just as for the plain datatypes, dependent elimination is trouble-
some, because non-canonical terms can get in the way. It means
that we cannot reasonably aim for the usual induction principles
of inductive types, as we can simply disprove them by handcrafted

Inductive list• (p : P) (A : [[�]]!p) : � :=
| nil• : list• p A

| cons• : [[A]]!p·A → [[list A]]!p·A → list• p A

[list A]σ := λ(q f : σ). list• q [A]!σ·(q,f)

[nil A]σ := nil• σe [A]!σ

[cons AM N]σ := cons• σe [A]!σ [M]!σ [N]!σ

Figure 4. List translation

terms. The situation is actually even direr, because trying to take a
simple match-expansion trick is not enough to make the inductive
case go through. We need something stronger.

Luckily, we came up with a restriction inspired from another
context where forcing interacts with effects: classical realizability.
In order to recover the induction principle on natural numbers
in presence of callcc, Krivine introduced the notion of storage
operators [8]. Essentially, a storage operator, e.g. for integers, is
a term ϑN of type N → (N → R) → R which purifies an
integer argument by recursively evaluating and reconstructing it.
The suspicious (N → R) → R return type is actually a trick to
encode call-by-value in a call-by-name setting thanks to a CPS,
so that we are sure that the integer passed to the continuation is
actually a value.

Storage operators are somehow arcane outside of the realm of
classical realizability, but they are actually both really simple to
define from a recursor, computationally straightforward and invalu-
able to our translation. Once again, we only define here a storage
operator for the list type but this can be generalized.

Definition 19 (Storage operator). Assuming a recursor rec, we
define the storage operator for lists ϑ in Figure 5. We will omit the
A and R arguments when applying ϑ for brevity.

Storage operators are only defined by means of the non-
dependent recursor, so they have a direct forcing translation by
applying Proposition 16. Moreover, in a pure setting, they are pretty
much useless, as the following proposition holds.

Proposition 17 (Propositional η-rule). CIC proves that

Π(AR : �) (l : list A) (k : list A→ R). ϑ l k = k l.

This is proved by a direct dependent induction over the list.
This is precisely where the forcing translation fails, and the above
theorem does not survive the forcing translation.

6.4 Dependent Induction in an Effectful World
By using storage operators, we can nevertheless provide the effect-
ful equivalent of an induction principle on recursive types.

Theorem 3. There exists a term ind• of type Πp : P. [[Tind]]p
where

Tind := Π(A : �) (P : list A→ �).
P0 → Ps → Πl : list A. ϑ l P

P0 := P (nil A)
Ps := Π(x : A) (l : list A). ϑ l P → ϑ (cons A x l) P

which is subject to the conversion rules of Definition 18 (by replac-
ing rec by ind).

Proof. Once again, it is a straightforward application of the depen-
dent induction principle for list•.

In the usual CIC, the above theorem seems to be a very con-
trived way to state the dependent induction principle. By rewriting
the propositional η-rule, even its type is equal to the type of the
usual induction principle. Yet, in the effectful theory resulting from
the forcing translation, the two theorems are sharply distinct, as the
usual induction principle is disprovable in general.

6.5 Revisiting the Non-Recursive Case
Actually, even the restriction on dependent elimination from Sec-
tion 5 can be presented in terms of storage operators. As soon as a
non-recursive type is defined by constructors, one can easily define
storage operators over it by pattern-matching alone.

Definition 20 (Simple storage operator). We define a storage op-
erator ϑΣ for Σ-types in Figure 6.

It is now obvious that the match restriction when typing de-
pendent pattern-matching corresponds exactly to the insertion of
a storage operator in front of the type of the expression, i.e. the
typing rule of Figure 6 is equivalent to the one of Section 5 up to
conversion.

Therefore, we advocate for the use of storage operators as a
generic way to control effects in a dependent setting. Purity is
recovered by adding the η-law on storage operators as a theorem
in the theory, or even definitionally. To the best of our knowledge,
this use of storage operators is novel in a dependent type theory
equipped with effects, notwithstanding the actual existence of such
an object.

7. Forcing at Work: Consistency Results
In this section, we present preservation of (a simple version of)
functional extensionality and the fact that the negation of the uni-
valence axiom is compatible with CIC. Then, we show that (a sim-
ple version of) the univalence axiom is preserved for types which
respect a monotonicity condition.

7.1 Equality in CIC

Before stating consistency result, we need to look at the notion of
equality in CIC and in the forcing layer. As usual, equality in CIC
is given by the inductive eq with one constructor refl as follows:

Inductive eq (A : �) (x : A) : A→ � :=
| refl : eq A x x

We simply write x = y for eq A x y when A is clear from context.
Following the automatic translation of inductive types explained in
Section 6, eq is translated as

Inductive eq• (p : P) (A : [[�]]!p) (x : [[A]]!p) : [[A]]!p → � :=
| refl• : eq• p A x x

Actually, we can show that the canonical function from x = y to
eq• p A x y (obtained by eliminating over x = y) is an equiv-
alence3 for all forcing condition p. This means that the property
satisfied by eq in the core calculus can be used to infer properties
on eq in the forcing layer.

Using a storage operator, we can define a dependent elimination
that corresponds to the J eliminator of Martin-Löf’s type theory.
Nevertheless, we simply need here the following Leibniz principle,
which avoids the use of storage operators because the returned

3 In homotopy type theory, being an equivalence is defined as the predicate

IsEquiv := λ(AB : �) (f : A→ B).
Σg : B → A. (Πx. g (f x) = x) × (Πy. f (g y) = y).

ϑ : Π(AR : �). list A→ (list A→ R)→ R
:= λ(AR : �). rec A ((list A→ R)→ R)

(λk : list A→ R. k (nil A))
(λ(x : A) (_ : list A) (r : (list A→ R)→ R) (k : list A→ R). r (λl : list A. k (cons A x l)))

Figure 5. Storage operator for lists

ϑΣ : Π(A : �) (B : A→ �) (R : �). (Σx : A.B)→ ((Σx : A.B)→ R)→ R
:= λ(A : �) (B : A→ �) (R : �) (p : Σx : A.B) (k : (Σx : A.B)→ R). match p with (x, y)⇒ k (x, y)

Γ `M : Σx : A.B Γ, z : Σx : A.B ` C : � Γ, x : A, y : B ` N : C{z := (x, y)}
Γ ` matchM with (x, y)⇒ N : ϑΣ M (λz : Σx : A.B.C)

Figure 6. Storage operator for Σ-types

predicate does not depend on the equality:

ΠA (x y : A) (P : A→ �) (e : x = y). P x→ P y.

7.2 Preservation of Functional Extensionality
The precise statement of functional extensionality in homotopy
type theory is that the term f_equal of type:

ΠA (B : A→ �) (ϕψ : Πx.B x). ϕ = ψ → Πx. ϕ x = ψ x

is an equivalence. This term is obtained from Leibniz’s principle
and expresses that when two functions are equal, they are equal
pointwise.

Assuming functional extensionality in the core calculus, we can
define a weaker variant of functional extensionality.

Proposition 18 (Preservation of functional extensionality). Assum-
ing functional extensionality in the core calculus, one can define a
term of type

ΠA (B : A→ �) (ϕψ : Πx.B x). (Πx. ϕ x = ψ x)→ ϕ = ψ

in the forcing layer.

Proof. Once translated in the core calculus, using the equivalence
between eq and eq•, it remains to give a term of type ϕ = ψ for
all forcing condition p and ϕ and ψ in [[Πx : A.B x]]p, assuming
a term X of type [[Πx. ϕ x = ψ x]]!p. Now, ϕ and ψ are functions
that expect a forcing condition q, a morphism f : Hom p q and an
argument [[A]]!p·(q,f). Using functional extensionality in the core
calculus, this amounts to show ϕ q f x = ψ q f x. This can be
deduced by using f_equal on X p q x and applying it to q and
id.

The preservation of the complete axiom of functional extension-
ality would require some additional naturality conditions (similar to
parametricity) in the translation (see Section 7.5 for a discussion on
this point).

In the same way, we can prove the preservation of the Unique-
ness of Identity Proof axiom which says that any proof of x = x is
by reflexivity.

7.3 Negation of the Univalence Axiom
In homotopy type theory, Voevodsky’s univalence axiom is ex-
pressed by saying that the canonical map path_to_equiv of type

A = B → Σϕ : A→ B. IsEquiv A B ϕ

is an equivalence. This term is defined using Leibniz’s principle
on the identity equivalence. This axiom sheds light on the connec-
tion between CIC and homotopy theory—more specifically higher

topos theory. This axiom expresses that the only way to observe a
type is through its interaction with the environment. Actually, this
axiom can be wrong in presence of effects because types may per-
form effects that cannot be observed because a type A is always
observed uniformly at every possible future condition and not at a
given one.

Proposition 19 (Negation of the univalence axiom). There exists a
forcing layer in which the type

(Π(AB : �). IsEquiv _ _ (path_to_equiv A B))→ ⊥

can be inhabited.4

Proof. We define the forcing condition to be P := bool and for
all p, q : bool, Hom(p, q) := unit where bool (resp. unit) is
the inductive type with two (resp. one) elements. In this layer, it is
possible to define two new types (at level p)

A0 := λ(q f : p). if q then unit else ⊥ : [[�]]p

A1 := λ(q f : p). if q then ⊥ else unit : [[�]]p

Those two types are obviously different in the forcing layer.
However, it is possible to define a function from A0 to A1 by using
the fact that functions expect their arguments to be given for every
possible future forcing condition. Thus, to define the function at
condition, say p, one just has to use the argument at condition ¬p,
the negation of p. Symmetrically, it is possible to define a function
from A1 to A0, and to show that they form an equivalence.

Note that the univalence axiom has been shown to be consistent
with Martin-Löf’s type theory using a simplicial model [7], which
suggest the independence of the univalence axiom with CIC.

7.4 Preserving Univalence Axiom for Monotonous Types
In the previous section, we have been able to negate the univalence
axiom by using types that produce completely non-monotonous
effects. But if we restrict the univalence statement to types that
respect a monotonicity condition, it becomes possible to prove
the preservation of (a simple version of) univalence. Indeed, it is
possible to define a modality # on � by

#p : [[�→ �]]p := λX q f.Πr (g : Hom q r). X r (g ◦ f) r id

We get a modality in the sense of [15]5. A typeA is #-modal when
it is equivalent to #A. Those types are the types which satisfies

4⊥ is the inductive type with no constructor
5 Up to a missing equality that can be recovered using naturality conditions
of Section 7.5

a monotonicity condition. Restricting the univalence axiom to #-
modal types, we can recover (a simple form of) preservation of
univalence.

Proposition 20 (Preservation of the univalence axiom for #-modal
types). Assuming univalence in the core calculus, one can define a
term of type

(Σϕ : A→ B. IsEquiv A B ϕ)→ #A = #B

in the forcing layer.

Proof. The proof is similar to the proof of preservation of func-
tional extensionality. It also uses the fact that assuming univalence
in the core calculus also implies functional extensionality in the
core calculus. The crux of the proof lies in the fact that A and B
have only to be equal globally, and not pointwisely at each forcing
condition.

For instance, the types A0 and A1 of Proposition 19 satisfy
(#A0) = (#A1).

7.5 Towards Forcing with Naturality Conditions
Our forcing translation is much coarser than it could be, for it al-
lows really non-standard terms that can abuse the forcing condi-
tions a lot. Most notably, all boxed terms coming from the transla-
tion respect strong constraints that the current translation does not
account for, and which are the call-by-name equivalent to the natu-
rality requirement from the presheaf construction. For instance, all
closed boxed types A• : [[�]]!σ ≡ Π(q f : σ) (r g : σ · (q, f)).�
verify the equality

A• q f r g ≡ A• r (f ◦ g) r idr

for all q, f, r and g. The same goes for inductive types, as the
need to restrict dependent elimination in CIC− stems from the
existence of boxed terms that allow themselves to observe the
current conditions too much. By enforcing the fact that they must
coincide at each later condition, we could recover a propositional
η-rule and thus full dependent elimination.

Actually, it seems not that difficult to enforce such naturality
properties by means of an additional bit of parametricity in the
translation itself, in the style of Lasson [2]. Just as the call-by-value
translation requires natural propositional equalities on the value
types, we can do the same for values appearing in the CBPV de-
composition of call-by-name, i.e. in the [−]!σ and [[−]]!σ translations.
This also means that the translation of each type A must embed a
parametricity property A,σ : [[A]]!σ → � specifying what it is to
be natural at this type (i.e. parametric).

We believe that contrarily to the call-by-value forcing, this
should not prevent the translation to preserve definitional equal-
ity. Indeed, as in the parametricity translation of PTS, we never
rely on the additional equalities to compute, and merely pass them
along the translation. Even more, the unary parametricity transla-
tion should probably be equivalent to the forcing translation with
trivial conditions.

Such a translation would be in some sense purer. It would pre-
serve the monotonous univalence axiom from the previous section,
but also allow to prove propositionally the η-law for storage op-
erators. Therefore, it would be the best of by-value and by-name
forcing translations.

8. Conclusion and Future Work
In this paper, we have defined call-by-name forcing for the Calculus
of Inductive Construction. It provides the first effectful translation
of CIC into itself which preserves definitional equality and thus
avoids the so-called coherence issue. The definition of inductives

makes use of Krivine’s storage operators to give rise to the first
presentation of CIC with effects.

Our work allows to use any category to increase the logical
power of CIC just as considering presheaves allows to increase
the logical power of a topos. This is a first step towards the use of
the category of cubes as the type of forcing conditions to give a
computational content to the cubical type theory [4] of Coquand et
al and in particular to the univalence axiom.

It also shed some new light on the difficult problem of combin-
ing dependent types with effects. Indeed, our translation is really
close to a reader monad, the forcing conditions corresponding to
some states that can be read, and locally modified in a monotonic
way. It would be interesting to see if some of the techniques intro-
duced here, notably the use of storage operators, could be applied
to handle more general effects.

9. Acknowledgments
This work has been funded by the CoqHoTT ERC Grant 637339.

References
[1] T. Altenkirch and A. Kaposi. Type theory in type theory using quotient

inductive types. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2016.

[2] J.-P. Bernardy and M. Lasson. Realizability and Parametricity in Pure
Type Systems. In Foundations of Software Science and Computa-
tional Structures, volume 6604, pages 108–122, Saarbrücken, Ger-
many, Mar. 2011. doi: 10.1007/978-3-642-19805-2.

[3] A. Brunel. Transformations de «forcing» et algèbres de «monitoring».
PhD thesis, 2014.

[4] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. Cubical Type
Theory: a constructive interpretation of the univalence axiom, 2015.
Preprint.

[5] H. Herbelin. A constructive proof of dependent choice, compatible
with classical logic. In LICS, pages 365–374. IEEE Computer Society,
2012.

[6] G. Jaber, N. Tabareau, and M. Sozeau. Extending Type Theory with
Forcing. In LICS 2012 : Logic In Computer Science, pages 0–0,
Dubrovnik, Croatia, June 2012.

[7] C. Kapulkin, P. L. Lumsdaine, and V. Voevodsky. The simplicial
model of univalent foundations. arXiv preprint arXiv:1211.2851,
2012.

[8] J.-L. Krivine. Classical logic, storage operators and second-order
lambda-calculus. Ann. Pure Appl. Logic, 68(1):53–78, 1994. doi:
10.1016/0168-0072(94)90047-7.

[9] J.-L. Krivine. Realizability in classical logic. Panoramas et synthèses,
27:197–229, 2009.

[10] P. B. Levy. Call-by-push-value. PhD thesis, Queen Mary, University
of London, 2001.

[11] Z. Luo. ECC, an extended calculus of constructions. In LICS, pages
386–395. IEEE Computer Society, 1989.

[12] A. Miquel. Forcing as a program transformation. In LICS, pages 197–
206. IEEE Computer Society, 2011. ISBN 978-0-7695-4412-0.

[13] G. Scherer. Multi-focusing on extensional rewriting with sums.
In T. Altenkirch, editor, 13th International Conference on Typed
Lambda Calculi and Applications, TLCA 2015, July 1-3, 2015, War-
saw, Poland, volume 38 of LIPIcs, pages 317–331. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015. ISBN 978-3-939897-87-3.

[14] M. Tierney. Sheaf theory and the continuum hypothesis. In Toposes,
algebraic geometry and logic, pages 13–42. Springer, 1972.

[15] Univalent Foundations Project. Homotopy Type Theory: Univa-
lent Foundations for Mathematics. http://homotopytypetheory.
org/book, 2013.

[16] B. Werner. Sets in types, types in sets. In Theoretical aspects of
computer software, pages 530–546. Springer, 1997.

http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

	Introduction
	Call-by-Push-Value
	Syntax of CBPV
	Simply-Typed Decompositions
	Forcing Translation

	Forcing Translation in the Negative Fragment
	Yoneda to the Rescue
	Datatypes
	Recursive Types
	Type and Constructor Translation
	Non-dependent Induction
	Storage Operators
	Dependent Induction in an Effectful World
	Revisiting the Non-Recursive Case

	Forcing at Work: Consistency Results
	Equality in CIC
	Preservation of Functional Extensionality
	Negation of the Univalence Axiom
	Preserving Univalence Axiom for Monotonous Types
	Towards Forcing with Naturality Conditions

	Conclusion and Future Work
	Acknowledgments

