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Abstract 

 

Brain dynamics at rest depend on the large-scale interactions between oscillating cortical 

microcircuits arranged into macrocolumns. Cytoarchitectonic studies have shown that the structure 

of those microcircuits differs between cortical regions, but very little is known about interregional 

differences of their intrinsic dynamics at a macro-scale in human. We developed here a new method 

aiming at mapping the dynamical properties of cortical microcircuits non-invasively using the 

coupling between robotized transcranial magnetic stimulation and electroencephalography. We 

recorded the responses evoked by the stimulation of 18 cortical targets largely covering the 

accessible neocortex in 22 healthy volunteers. Specific data processing methods were developed to 

map the local source activity of each cortical target, which showed inter-regional differences with 

very good interhemispheric reproducibility. Functional signatures of cortical microcircuits were 

further studied using spatio-temporal decomposition of local source activities in order to highlight 

principal brain modes. The identified brain modes revealed that cortical areas with similar intrinsic 

dynamical properties could be distributed either locally or not, with a spatial signature that was 

somewhat reminiscent of resting state networks. Our results provide the proof of concept of 

“functional cytoarchitectonics”, that would guide the parcellation of the human cortex using not 

only its cytoarchitecture but also its intrinsic responses to local perturbations. This opens new 

avenues for brain modelling and physiopathology readouts. 
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1 Introduction 

 

Brain dynamics at rest depend on the large scale interactions between local oscillators that 

correspond to cortical microcircuits arranged into macrocolumns (Jones, 2000). Cytoarchitectonic 

studies have shown that the structure of those microcircuits differs between cortical regions 

(Brodmann, 1909; Economo and Koskinas, 1925), but very little is known experimentally about 

interregional differences of their intrinsic dynamics at a macro-scale. In animal studies, there are 

some data relating specific cell types or processes to specific brain oscillations, e.g. giant pyramidal 

cells to beta oscillations in the motor cortex of the cat (Bouyer et al., 1987) or synaptic synchrony 

between excitatory pyramidal neurons and inhibitory interneurons to gamma oscillations in mouse 

entorhinal cortical slices (Salkoff et al., 2015). In humans, indirect evidence between brain 

dynamics and cytoarchitectonics from post-hoc correlation analysis of cortical maps has been 

suggested from analysis of resting state functional MRI spectral properties (Song et al., 2014). A 

significant association between cytoarchitectonic features of human cortical organization, in 

particular the size of layer 3 neurons, and whole-brain cortico-cortical connectivity has been 

recently identified, and suggests existing relationships between microscale cytoarchitectonics and 

macroscale connectomics (van den Heuvel et al., 2015). Because knowing how cytoarchitectonics 

influence brain dynamics is of outmost importance to increase our understanding of brain 

functioning, for example by developing more biologically grounded neuronal models in silico (Roy 

et al., 2014), we develop here a new experimental method using transcranial magnetic stimulation 

(TMS) to map the dynamical properties of human local cortical microcircuits non invasively. We 

mainly assume that the dynamical properties of neuronal responses to direct local perturbations 

depend on the way neurons are interconnected within cortical macrocolumns, i.e. local 

cytoarchitecture, and beyond, i.e. interregional laminar pattern of connections (Crick and Koch, 
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1998). Operationally, we propose that spatio-temporal decoding of local responses to distributed 

focal brain stimulations may give rise to the possibility of studying functional cytoarchitectonics, 

that is the study of intrinsic dynamics of cortical microcircuits in vivo. 

 

TMS consists of the generation of a transient magnetic field by a coil placed over the scalp, which 

induces electrical currents on the cortical surface (Wassermann et al., 2012) that activate responsive 

neurons (Mueller et al., 2014). Originally designed in order to better understand the actual effect of 

TMS and repetitive TMS on the ongoing neural activity, the coupling between TMS and 

electroencephalography (EEG) has recently given new insights regarding the nature and the 

properties of both the local neuronal microcircuits as well as their long-range connectivity 

(Bortoletto et al., 2015; Gosseries et al., 2015; Miniussi and Thut, 2010). These features can be 

assessed by the study of TMS evoked potentials (TEPs) (Casarotto et al., 2010; Ilmoniemi et al., 

1997; Lioumis et al., 2009). TMS-EEG coupling also allows to study local and distributed brain 

oscillations at rest (Rosanova et al., 2009) or during sensorimotor (Fuggetta et al., 2005; Löfberg et 

al., 2013; Picazio et al., 2014) or cognitive tasks (Mattavelli et al., 2013; Rogasch and Fitzgerald, 

2013; Vernet et al., 2015). TEPs were recorded over a large diversity of cortical areas including M1, 

frontal, parietal, and occipital lobes. As expected from the heterogeneity of cortical microcircuits 

and long range connectivity, TEPs showed distributed spatio-temporal patterns specific to each 

stimulated area, in terms of both spectral and spatial signatures (Cona et al., 2011; Rosanova et al., 

2009; Thut et al., 2011). However, existing literature suffers from the diversity of the TMS 

parameters and of the EEG signal processing methods employed, which prevents any accurate 

understanding of the spatial organization of local cortical microcircuits’ properties amongst cortical 

regions.  
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In this study, we fully revisited the methods required to obtain an accurate mapping of dynamical 

properties of local microcircuits. Our methodology was based on the coupling of EEG recordings 

with neuronavigated and robotized TMS. Robotized TMS was critical because it allowed the 

automatic and precise positioning of the coil over a series of cortical targets (Ginhoux et al., 2013), 

thereby making possible the stimulation of a large number of cortical targets within a unique 

recording session. EEG processing methods were developed to estimate the early components of 

cortical current densities generating TEPs, locally for each cortical target, leading to a local source 

activity (LSA) map. Further spatial clustering on time-frequency properties of such local source 

activity was finally used to estimate the main cortical modes supposedly generated by the regional 

differences in cytoarchitecture and local microcircuitry. 

 

 

2 Materials and methods 

 

2.1 Subjects 

 

This study was approved by the ethical committee of Grenoble University Hospital (ID RCB: 2013-

A01734-41), and registered on ClinicalTrials.gov (number NCT02168413). Twenty-two French 

native-speaker healthy volunteers (14 males, aged 29.6±10.1 years old) gave their written consent 

prior to the experiment and received payment for their participation. None of them had either 

history of psychiatric or neurological disorders, or history of alcohol or substance abuse. They were 

free of any medicinal treatment likely to modulate their cortical excitability levels. 
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2.2 Acquisition parameters 

 

Protocol design 

 

MRI and TMS acquisitions were performed at IRMaGe MRI and Neurophysiology facilities 

(Grenoble, France). First, cerebral anatomical T1-weighted MRIs were acquired at 3T (Achieva 

3.0T TX, Philips, Netherlands). The subjects were then prepared for the TMS-EEG experiment 

(EEG cap hanging), while their MRI were being processed in order to define the cortical targets. A 

co-registration step, necessary for the neuronavigation system, was performed. The resting motor 

threshold (rMT) was assessed during a classical motor CE session (see below). Finally, one TMS-

EEG mapping session per hemisphere was performed (30 min each), separated by a 15 min break. 

The order of the stimulated hemispheres was counterbalanced between subjects. 

 

TMS parameters 

 

Biphasic TMS pulses were delivered on a posterior to anterior direction using a Magpro Cool B65-

RO butterfly coil (MagVenture A/S, Denmark) plugged in a MagPro x100 TMS stimulator 

(MagVenture A/S, Denmark), and guided by a Localite neuronavigation system (Localite GmbH, 

Germany). The coil was handled automatically using a TMS-robot (Axilum Robotics, France). The 

rMT was assessed on the position eliciting the greatest motor evoked potential (MEP) on the 

contralateral first dorsal inter-osseous muscle. The MEPs were recorded using a Dantec Keypoint 

portable EMG recording system (Natus Medical Inc., USA). Using the threshold hunting method 

(Awiszus, 2003), the rMT was defined as the stimulation intensity that evoked a 50 µV MEP with a 

50% probability.  
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Both hemispheres were symmetrically stimulated. TMS-EEG mapping of a single hemisphere was 

performed in one session by recording the EEG activity evoked by the successive stimulation of 9 

cortical targets defined in the standard Montreal Neurological Institute referential ([±x y z] in mm). 

The coil followed a predefined robotized sequence of stimulation, going from the anterior to the 

posterior parts of the brain (Figure 1): inferior frontal gyrus (IFG, [±60 24 13]), dorso lateral 

prefrontal cortex (DLPFC, [±42 42 30]), middle frontal gyrus (MFG, [±34 14 62]), anterior part of 

the supplementary motor area (SMA, [±6 8 72]), primary motor cortex (M1, [±36 -33 64]), superior 

temporal gyrus (STG, [±67 -23 10]), superior parietal lobule (SPL, [±8 -62 70]), inferior parietal 

lobule (IPL, [±53 -52 51]), and superior occipital lobe (SOL, [±25 -87 33]). The target coordinates 

were projected back on each subject’s individual anatomy using the inverse spatial transform given 

by the MRI normalization procedure of SPM8 software (www.fil.ion.ucl.ac.uk/spm8). The coil was 

placed on a posterior to anterior direction, with an angle of 45° to the nasion-inion axis, except for 

M1 (perpendicular to the primary motor gyrus), SMA (5°), STG and SOL (perpendicular to the 

axial plane). These angles were used according to the mechanical constrains introduced by robot’s 

motion, while keeping standard coil orientations used in the literature if possible (Janssen et al., 

2015). The sham condition consisted of stimulating 3 to 5 cm above one of the cortical targets 

(randomly distributed between subjects) at the highest intensity used within each subject (see 

below), in order to produce a click sound of maximum intensity. Each cortical target was stimulated 

during 2 min 30 s at instantaneous frequency around 0.5-0.7 Hz in a random manner, so that no 

phase effect could build up as demonstrated by others on corticospinal excitability (van de Ruit et 

al., 2015). This led to an average number of 90 trials per stimulation point. The intensity was fixed 

at 120% of rMT, and adjusted according to the scalp-cortex distance measured from subject’s 

anatomical MRI using the Stokes formula (Stokes et al., 2007; 2005). During each stimulation 
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sequence, the subject was told to relax (resting state) and to stare at a black cross located on the 

opposite wall. Subjects were also listening to white noise through active noise cancellation intra-

auricular earphones (Bose QC 20, USA) in order to limit the influence of the auditory processing of 

the TMS click on the ongoing EEG activity. The sound level was adjusted individually to each 

subject, until the TMS click delivered at 95% of the stimulator output became barely audible. A thin 

layer of soft plastic was placed on the coil surface in order to limit both sensory and auditory 

feedbacks to the subject.    

 

EEG acquisition 

 

EEG was recorded using a 64 channels TMS compatible system (BrainAmp DC amplifiers and 

BrainCap EEG cap, Brain Products GmbH, Germany). The EEG cap was placed at the beginning of 

the experiment following the 10-20 standard system. Electrooculogram of the right eye was 

recorded using one of the 64 electrodes. The electrode impedances were adjusted and kept under 5 

kOhms using conduction gel. The impedance levels were checked and corrected if needed before 

the two TMS-EEG sessions. The signal was recorded using the amplifier in DC mode, filtered using 

a 500 Hz anti-aliasing low-pass filter, and finally digitized at 1 kHz sampling frequency. Electrode 

Fz was used as reference during the recording. The channel coordinates relative to the subject’s 

scalp were measured at the end of the experiment using the neuronavigation system. 
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Figure 1: Cortical mapping procedure. A: Cortical targets used for the mapping procedure. Entry points and coil 

orientations are shown in green; cortical targets are in blue. Targets are symmetrically distributed on both hemispheres. 

B: Robotized sequence of stimulations. The snapshots show the position of the robotized arm throughout the mapping 

procedure of the left hemisphere, from the anterior to the posterior sites. Snapshots are sorted into time order from top 

left to bottom right, except for Sham condition performed above M1 in this example (see main text). 

 

2.3 EEG processing 

 

EEG signals were processed using  Fieldtrip (Oostenveld et al., 2011) and Brainstorm 3 (Tadel et 

al., 2011) softwares, and other custom scripts written in Matlab (The MathWorks Inc., USA).    
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Preprocessing 

 

EEG signals were pre-processed semi-automatically based on the methodology described in 

(Rogasch et al., 2014), for each condition (18 targets and 1 sham) and each subject. First, the 

channels showing electrical noise (flat signal or peak-to-peak amplitude superior to 100 µV) 

spanning more than 15% of the trials were discarded from the analysis (on average, 1.53±2.08 

channels per condition). EEG signals were then epoched around the TMS pulse, using a -200 to 

+1000 ms time window of interest. TMS artifacts were discarded by cutting out the -5 to +15 ms 

period surrounding the TMS pulses. Two rounds of independent component analysis (ICA) were 

then applied in order to remove noise remaining in the signal. The first ICA suppressed the muscle 

artifacts, while the second aimed at removing the decay artifact, ocular activity, auditory-evoked 

potentials and other noise-related artifacts (Rogasch et al., 2014). Before the second ICA, the signal 

was spline interpolated over the -5 to +15ms period, band-pass filtered (1-80 Hz), re-referenced 

using the average reference, and cleaned from bad trials (leading to a mean of 77.7±7.2 trials left 

per condition). The ocular components were automatically identified using a threshold of 0.7 on the 

correlation product ρ between the spatial topographies of the components and a template of typical 

horizontal eye movements and blinks build from our own database by averaging over subjects. 

Other artifact components (decay, auditory-evoked potentials and other noises) were detected by 

thresholding the z-score (above 4) of their mean activity against the pre-stimulus period, and by 

visual inspection. On average, 19.2 (+/- 7.7) components were removed from the signal. Cleaned 

EEG time series were reconstructed using the remaining components and any isolated channel still 

showing remaining noise was discarded from further analysis. Time series of rejected channels were 

finally inferred using the activity averaged over their neighboring channels. 
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TMS evoked potentials (TEPs) 

 

TEPs were computed for each condition and subject by averaging over trials, using a baseline 

normalization (z-scoring) over the -200 to -5 ms period. The grand average TEP was obtained for 

each TMS target by averaging across subjects. 

 

TEP source reconstruction 

 

TEP source reconstruction was performed following the default procedure proposed in Brainstorm 3 

software (Tadel et al., 2011). First, the cortex and head meshes (15000 and 10000 vertices 

respectively) of each individual were generated using the automated MRI segmentation routine of 

FreeSurfer (Reuter et al., 2012). The locations of EEG electrodes were co-registered on each 

subject’s anatomical MRI. The forward model was then computed using the symmetric Boundary 

Element Method developed in the openMEEG freeware, using default values for conductivity and 

layer thickness (Gramfort et al., 2010). The full noise covariance matrix was then computed for 

each subject using the temporal concatenation of the baseline periods of all conditions. Sources 

were distributed orthogonally to the cortical surface and their amplitudes were estimated using the 

default values of the Brainstorm implementation of the whitened and depth-weighted linear L2-

minimum norm solution. The source amplitudes were finally normalized (z-score against pre-

stimulation baseline). 
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Local source activity map  

 

The LSA map was constructed in order to represent the cortical response to TMS within the region 

of interest (ROI) centred on each target, for all the 18 stimulated sites simultaneously (Figure 2). 

ROIs were created on each individual anatomy using a mean spatial extent of 10 cm2, covering 

about 50-60 vertices of cortical mesh. The LSA time series of ROI i and subject k, Si
k, was obtained 

by extracting the first mode of the principal component analysis decomposition of the source time 

series evoked by the stimulation of the corresponding stimulation target over all the vertices within 

ROI i. This corresponds to a single LSA time series per ROI. For display purposes, the LSA map 

was created by projecting back the group average (grand average of absolute values) of LSA time 

series of each ROI on a canonical brain (using Colin27 template). LSA values were interpolated in 

between ROIs using the Shepard’s weighting of 3D nearest-neighbor interpolation in order to assign 

a LSA value to every node of the cortical mesh. 
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Figure 2: Generation of the LSA map. Sources of TEPs to each stimulated region (red cross) are first estimated. Local 

cortical responses (LSA time series Si
k) are then inferred from source time series averaged from ROIs centered on each 

cortical target (black circles). The LSA map is finally generated using spatial interpolation of the group average (grand 

average of absolute values) of LSA time series. 

 

 

LSA mode analysis 

 

In order to attempt to connect LSA responses to underlying cytoarchitectonic properties through the 

identification of brain modes, we proceeded to a group ICA analysis. We assumed here that the 

neuronal populations participating to the same modes show the same dynamical signatures because 

of shared cytoarchitectonics. The group ICA was performed on the LSA time series Si
k of each ROI 

i and subject k on the TEP period of interest (from -50 to +400 ms). Here, we assumed no 

interhemispheric differences, and thus considered the left and right LSA responses as a repeated 

measurement of the same process. The LSA group (over subjects and hemispheres) ICA was 
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performed after the concatenation of LSA matrices along the temporal dimension (Calhoun et al., 

2009), leading to a group LSA matrix Mi= [Si
1… Si

k … Si
K] of size [L/2 2NK], where L is the number 

of targets (18), N the number of time bins and K the number of subjects (22). The matrix Mi was 

thus decomposed into L/2 (9) independent components (data dimension) using the logistic infomax 

ICA algorithm (Bell and Sejnowski, 1995) with the natural gradient feature from Amari, Cichocki & 

Yang (Makeig et al., 1996). The dynamical signature of each component in each individual was 

finally assessed by means of its time/frequency (TF) decomposition obtained using Morlet wavelet 

transform between 9 and 50 Hz (window width of 7 cycles, 0.5 Hz bandwidth). Individual TF maps 

were normalized (z-score against baseline) and averaged across subjects. The output of the LSA 

mode analysis results are maps showing ROIs sharing common neuronal signatures, as exemplified 

by their time frequency decomposition. 

 

Statistics 

 

Significant spatial differences in the LSA map across stimulated areas were assessed over time 

using the Skillings-Mack test (Chatfield and Mander, 2009). This test is derived from the Friedman 

test (non-parametric equivalent of the repeated measures ANOVA test) and can handle missing data. 

Because the same test was run at every time sample, p-values were temporally corrected: 

Differences were considered as significant at p<0.05 for at least 20 consecutive time bins (Blair and 

Karniski, 1993; Carota et al., 2010). The between subjects variability and the reproducibility of the 

LSA map was estimated over time by computing Spearman correlations between the LSA map 

obtained with all the 22 subjects, and LSA maps obtained with random subsets of subjects. 100 

maps were computed for each time sample and each random subsets containing from 5 to 20 

subjects. Statistical dependences between LSA and other experimental values were computed using 

Spearman correlations. Statistical significance of TF maps of ICA components was obtained using 
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paired comparisons against baseline. A non-parametric Wilcoxon test was performed per time-

frequency bin, and the resulting p-values were spatio-temporally corrected. Differences were 

considered as significant at p<0.05 for at least 20 consecutive time bins and 3 adjacent frequencies 

(tiles of 20 ms x 1.5 Hz). 

 

 

3 Results 

 

Most of the subjects went through the entire mapping procedure without any major issue at an 

intensity of 120% of rMT. However, three subjects reported painful sensations during the 

stimulation of IFG and STG. Stimulation intensity was then lowered down (minimum of 105% of 

rMT) for those three subjects when targeting IFG and STG. The TMS pulses still remained painful 

for one subject thus the experiment was stopped. In addition, one subject experienced drowsiness 

during the stimulation of some targets, which made the corresponding data not useable. In summary, 

we did not process the data of these four subjects for left IFG, of two subjects for left and right 

STG, and of one subject for left and right IPL, left and right SOL, right IFG, right DLPFC, right 

SMA, and right M1. 

 

3.1 TMS evoked potentials 

 

Figure 3 summarizes the different preprocessing steps used to estimate the TEPs. Figure 4 shows 

grand-average TEPs for the stimulation of the left hemisphere, the TEPs corresponding to the right 

hemisphere being very similar though mirrored along the interhemispheric axis. The sham condition 

did not show any significant activity, which suggests that the responses observed for real 
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stimulations were not due to confounding auditory responses to TMS clicks. The earliest 

components (<60 ms) were rather focal under the target, indicating the activation of local neuronal 

populations. The largest activity within this period was generated by the stimulation of M1 (P30 

component). In opposite, IPL was the least activated area, showing no activity pattern above 

baseline level. Larger amplitude responses could be observed after 60 ms for each condition, 

peaking around 100, 200 and 280 ms. Whereas the 100 and 280 ms components were essentially 

generated after the stimulation of MFG and parieto-occipital areas, and of IFG, DLPFC and STG 

respectively, the 200 ms central component could be observed in nearly all the conditions. Although 

being potentially contaminated with auditory or somatosensory confounds (see Discussion below), 

these late components could reveal the level of efferent connectivity of each stimulated area. In 

particular, the stimulation of the DLPFC, IFG and STG, which are three cortical areas highly 

involved in inhibitory circuits and language processing respectively, generated the largest and 

longest activity (up to 340 ms). In contrast, M1 stimulation led to the smallest late response, 

possibly due to the lesser proportion of cortico-cortical efferents. 
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Figure 3: EEG preprocessing steps of the procedure proposed in (Rogasch et al., 2014). Signals are displayed using a 

butterfly view for all channels and for all left stimulation sites. Raw (red) and cleaned (blue) data come from a typical 

subject. Grand average TEPs (black) correspond to the average of TEPs across subjects. Note that the amplitude scale 

is varying between the two first columns to optimize the display. 
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Figure 4: Grand-average TEPs for the stimulation of the left hemisphere. The grey insert emphasizes the earliest 

components. The z-score colorbar limits are -3 to +3 within this period. Topographies were obtained by averaging 

TEPs within a 40 ms time window (10 ms in grey insert). Red crosses on the left column indicate the stimulation sites. 

 

 

3.2 Local source activity 

 

Figure 5 shows the group average of LSA time series, i.e. the local cortical response to TMS within 

all stimulated areas. In most ROIs, LSA went back to baseline after 250 ms and reached its 

maximum amplitude in the earliest components (Figure 5A). Each ROI had its own temporal 

pattern of response to TMS that differed significantly from sham condition. The local response 

differed significantly across the 18 sites within all the period of interest [-50, 400 ms], except for 3 
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periods ranging from 49 to 53 ms, from 104 to 121 ms, and from 164 to 174 ms. Besides, the LSA 

map appeared to be symmetric during all the analysis window (Figure 5B), as no significant 

difference between right and left hemispheres activation levels could be found. The only significant 

asymmetry could be observed in SOL around 70 ms. M1 and SOL were the two first areas to 

respond at 30 ms, followed by SMA and MFG at 45 and 70 ms, the frontal and temporal areas (IFG, 

DLPFC, and STG) being activated later. The IPL was the least activated area throughout all the 

period of interest. Finally, the LSA map appeared to be highly reproducible within all the period of 

interest for groups of at least 18 subjects (ρ = 0.90 +/- 0.04), while a good correlation score (ρ = 

0.75 +/- 0.08) can still be achieved for groups of at least 12 subjects. The reproducibility however 

varied across time bins, two of the three non-significant periods (from 104 to 121ms, and from 164 

to 174ms) being also the most variable and least reproducible periods (ρ = 0.77 +/- 0.12 and ρ = 

0.55 +/- 0.18 for group of 18 and 12 subjects respectively). 
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Figure 5: Group average of LSA time series. A: Group average (grand average of absolute values) of LSA time series 

for each region of interest. Colored areas represent the 95% confidence intervals. The grey bar indicates the -5 to 

+15ms interpolation period due to the TMS artefact. B: LSA map generated for the 5 time periods presenting the 

highest overall activity. 

 

A group ICA on LSA time series was performed in order to detect cortical regions sharing common 

neuronal signatures, i.e. cortical modes (Figure 6). The temporal signature of each component was 

decomposed in the time-frequency domain using a wavelet transform in order to indicate their main 

frequencies. Interestingly, we could identify networks composed of several cortical areas for the 

majority of the components. Different fronto-parietal networks composed the components #3, 8 and 

9, while a temporo-parietal cluster was found in component #1. The other components showed other 

networks mainly weighted by one area (component #2: DLPFC; component #4: IFG; component 

#5: M1; component #6: SOL), and component #7 was only composed of the SPL. Each component 

had a specific dynamical signature, showing a mixture of responses in the low and high frequency 
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bands. The most powerful and sustained alpha rhythm activation was found in component #6 

involving the occipital lobe (9-12 Hz, from 50 to 500 ms after stimulation onset). Alpha oscillations 

were also prominent in components #1, 2, 8 and 9, all involving occipital or parietal areas in various 

proportions. Networks composed of motor areas (M1 and SMA) presented beta oscillations between 

15 and 30 Hz at the 100-250 ms latency (components #3, 5 and 8). Finally, low gamma oscillations 

(30-50 Hz) could be found around 100 ms after stimulation onset on several components (#1, 2, 6-

9). The highest frequencies were found in components #2 and 9, mainly representing frontal areas 

(DLPFC and MFG respectively). 

 

 

 

Figure 6: LSA modes identified from the components of a group ICA. Components were sorted by the amount of 

explained variance in descending order. Their topography is shown on the left, and their time-frequency profile on the 

right. Frequency bands corresponding to local maxima of power are indicated on the y axis. 
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4 Discussion 

 

We developed here the first attempt to broadly map the intrinsic dynamical properties of human 

cortical microcircuits. Our results are promising because homologous regions shared common 

properties and distinct neurodynamical responses were obtained in different regions, in particular 

along the anterior-posterior axis regarding high EEG frequencies. Under the assumption that 

impulse responses of local microcircuits are a proxy of their underlying cytoarchitecture, we 

suggest that our study paves the way to functional cytoarchitectonics, where one could envisage to 

proceed to the functional parcellation of the human brain using active probing of intrinsic cortical 

dynamics. Though our approach still suffers from technical limitations discussed below, and will 

remain limited in healthy subjects to the superficial cerebral cortex, it complements current 

approaches based on structural and resting state functional MRI because of its different 

neurodynamical content. 

 

4.1 Limitations of the study 

 

Nowadays, there is still a lack of fully data-driven and automatic pipelines for processing EEG data 

recorded during TMS. In this study, we used one of the latest methodology described in the 

literature. Rogasch et al. (2014) recommended the use of two rounds of ICA in order to filter out 

artifactual signals. Even if we developed some functions for automatically choosing the components 

to be rejected, there is still a need for a visual inspection of each of the remaining components. This 

step has to be eliminated in the future because it is time-consuming and introduces expert-

dependent variability. 
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Auditory and somatosensory evoked potentials due to the sensory feedback of the scalp muscle 

contractions might also have partly influenced the recorded EEG activity. In principle, the TEP 

component at 200 ms could reflect the presence of such unwanted responses, regarding its overall 

latency and topography (Rogasch et al., 2014). However, several strong arguments are in favor of 

their minimized influence. First, from results not shown in this report, we did not find any 

correlation between the intensity of stimulation, which is directly linked to the power of both the 

click sound and the induced muscle twitch, and the amplitude of this component, which should be 

large in case of purely auditory or sensorimotor artifacts (Hegerl and Juckel, 1993). Second, this 

component has already been found and discussed in numerous studies in TMS-EEG (Braack et al., 

2015; Chung et al., 2015). It has been shown to reflect a consistent aftereffect of the stimulation 

rather than a pure auditory or somatosensory artifact. Finally, such components have also been 

found in intracranial cortico-cortical evoked potentials after direct electrical stimulation of various 

areas (Keller et al., 2014). They could thus mainly reflect the activation of remote cortical and sub-

cortical areas connected to the stimulation site. 

 

A final limitation of our work lies in the way we defined the ROIs, i.e. simply by considering the 

regions around the targets used by the neuronavigation system. New optimized methods for 

modelling the electrical field induced by TMS (Thielscher et al., 2011) could be used in the future 

to define ROIs in a more accurate way according to excitation threshold. Furthermore, accurate 

biophysical modelling could also improve the tuning of stimulation intensity across sites that would 

then be based not only on scalp-cortex distances (Stokes et al., 2007; 2005) but also on the actual 

individual anatomy. 
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4.2 Functional cytoarchitectonics 

 

The mode analysis of LSA time series identified networks sharing intrinsic dynamical signatures in 

response to TMS single pulses: parietal-temporal, parietal-occipital, frontal, or motor. Parietal-

occipital networks showed a resonant frequency in the alpha band, whereas the motor cortex mainly 

oscillated in the beta band. In healthy conditions, our methodology could be further developed as a 

functional cytoarchitectonic approach, that is a new non-invasive way to parcel the human 

superficial cerebral cortex on the basis of the dynamics of its local neuronal circuits’ response. 

Parcellation of the cortex has a long history in neuroscience (Zilles and Amunts, 2010). The search 

for precise anatomical boundaries from local cytoarchitectural, myeloarchitectural, or 

receptoarchitectural features, is motivated by the assumption that structure determines function, 

which is essentially verified for primary areas (Cloutman and Lambon Ralph, 2012). For higher 

cognitive functions, computational neuroanatomy also relies upon the definition of hierarchies 

based on interlaminar patterns of long range connections to define distributed cortical hierarchies 

(Cloutman and Lambon Ralph, 2012; Crick and Koch, 1998; Hilgetag and Grant, 2010). Using 

neural mass models, it can be shown evoked EEG responses within cortical hierarchies directly 

depend upon the laminar pattern of connectivity (David et al., 2005). Inferences on intrinsic 

neuronal dynamics can thus be used to go beyond pure structural parcellation towards an anatomo-

functional one, the main assumption being that neural communication is facilitated between 

neuronal populations showing similar resonant frequencies, or modes (Fries, 2005). Nowadays, 

non-invasive functional parcellation methods essentially rely on MRI techniques, such as resting-

state functional MRI (Song et al., 2014; Yeo et al., 2011) and diffusion MRI tractography 

(Cloutman and Lambon Ralph, 2012; Tang et al., 2014). These methods are able to parcel a defined 

brain area in respect to a connectivity score, using both functional and/or anatomical connectivity. 
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However, there is only few similar approaches based on electrophysiological recordings, although it 

has been proved that some of its characteristics are strongly modulated by topological and 

cytoarchitectural features, including the density of pyramidal cells (Fernández-Ruiz et al., 2013; 

Kajikawa and Schroeder, 2011; Murakami and Okada, 2006). Several studies using direct cortical 

electrical stimulation also showed that the properties of the neuronal responses depend a lot on the 

intrinsic cytoarchitecture or connectivity patterns of the stimulated area, in both animals (Luppino et 

al., 1991) and humans (Keller et al., 2014).  

 

We propose that combining TMS and EEG can be used to develop functional cytoarchitectonics 

with the ultimate goal to parcel the human brain on the basis of distributed neuronal populations 

sharing common dynamical properties of their impulse response. TEP may indeed contain sufficient 

information to make inferences on local anatomical differences, because different interconnections 

and proportions of pyramidal cells, inhibitory and excitatory interneurons, automatically lead to 

differences in the macroscopic electrophysiogical responses to local electrical currents. For 

example, our results support the fact that the primary motor cortex has a very specific anatomical 

organization, which reacts in a unique manner to the stimulation, potentially due to the absence of 

cortical layer IV and to the presence of the large cortico-spinal pyramidal neurons. Furthermore, the 

pyramidal neurons of layer V are particularly large in the motor/premotor areas and in the median 

part of the occipital lobe (van den Heuvel et al., 2015), where we also observed the greatest early 

LSA (from 15 to 45ms, see Fig. 4b). Another interesting example is to note that dynamical 

properties of LSA were shared between the superior occipital lobe and the parietal lobe, or between 

the parietal lobe and the frontal lobe. It suggests the presence of distributed and overlapping 

functional networks resonating in different modes. However, the spatial resolution of our data is 

rather coarse because of the limited number of cortical targets and of EEG electrodes. Further 
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studies are needed to go beyond our results, and in particular to challenge the spatial precision of 

the segregation that could achieve such a method based on a noninvasive neurophysiological 

approach. Moreover, the direct relation between our parcellation results and human 

cytoarchitectonics features is yet to be established, by correlating our data with extensive 

cytoarchitectonic databases. 

 

Despite the limited spatial precision, the networks emerging from our study highly correlate with 

the resting state network (RSN) already described from low frequency signal fluctuations in fMRI 

(Song et al., 2014; Yeo et al., 2011) and more recently from phase-amplitude coupling 

synchronization between low (theta - alpha) and high (gamma) frequencies in 

magnetoencephalography (Florin and Baillet, 2015). Both techniques revealed that the spontaneous 

brain activity can be segregated into different RSN, ranging from local sensory-motor networks to 

large scale ones involving associated areas. These findings correlate with our results, regarding the 

spatial clusterization of LSA. Here using an active probing approach, we further showed that those 

networks share some common intrinsic frequency signatures, mainly composed of alpha and low 

gamma bands. Since RSN segregation in magnetoencephalography is based on phase-amplitude 

coupling between alpha and high gamma bands (Florin and Baillet, 2015), our new approach has 

the potential to map precisely the spectral properties of cortical areas supporting cross-frequency 

communication for large-scale neural communication. 

 

4.3 Potential applications 

 

The analysis of LSA modes and their related oscillatory contents can be turned into the 

identification of biomarkers of the integrity of cortical networks. A recent study supports this idea, 
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by showing that the resonant frequency of the premotor area could be modified in several 

psychiatric diseases, like major depressive disorders or schizophrenia (Canali et al., 2015; Ferrarelli 

et al., 2012). EEG responses to TMS are also mental state dependent, as recently reported by a 

study showing that the resonant frequency of the occipital area was modulated by visual attention 

(Herring et al., 2015). Investigating mental state influence on LSA modes could give new insights 

regarding the variance of TMS (and repetitive TMS) aftereffects across subjects (Beynel et al., 

2014). Other applications are the monitoring of stroke patient rehabilitation, since LSA directly 

reflects the integrity of cortical networks, or the differential diagnosis between vegetative and 

minimally conscious states. It has been shown that some of the characteristics of TEPs over the 

primary motor cortex, the superior frontal and parietal gyrus contain crucial information for the 

diagnosis of disorders of consciousness (Casali et al., 2013; Ragazzoni et al., 2013; Rosanova et al., 

2012). Extending these findings towards the whole cortex could be valuable. Finally, the potential 

ability of this methodology in studying resting state networks could give new insights regarding its 

modulation by neurodegenerative diseases (Baggio et al., 2015; Spetsieris et al., 2015). 

 

Overall, identifying intrinsic dynamical properties of cortical microcircuits opens many avenues for 

modelling both segregation and integration of neural information, with many potential applications 

in brain physiology and pathophysiology.  
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