
HAL Id: hal-01318800
https://hal.science/hal-01318800

Preprint submitted on 20 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equitable (d,m)-edge designs
Jean-Marc Fédou, Maria João Rendas

To cite this version:

Jean-Marc Fédou, Maria João Rendas. Equitable (d,m)-edge designs. 2013. �hal-01318800�

https://hal.science/hal-01318800
https://hal.archives-ouvertes.fr


Equitable (d,m)-edge designs

Jean-Marc Fédou∗, Maria-João Rendas∗∗

Laboratoire I3S - UMR7271 - UNS CNRS 2000, route des Lucioles 06900 Sophia Antipolis - France

Abstract

The paper addresses design of experiments for classifying the input factors of a multi-

variate function into negligible, linear and other (non-linear/interaction) factors. We

give constructive procedures for completing the definition of the clustered designs

proposed in [10], that become defined for arbitrary number of input factors and de-

sired clusters’ multiplicity. Our work is based on a representation of subgraphs of the

hyper-cube by polynomials that allows the formal verification of the designs’ proper-

ties. Ability to generate these designs in a systematic manner opens new perspectives

for the characterisation of the behaviour of the function’s derivatives over the input

space that may offer increased discrimination.

Keywords: Sensitivity analysis, clustered designs, one at a time designs.

1. Introduction

1.1. Sensitivity analysis

In sensitivity analysis, one wishes to characterise the dependency of an unknown

function f : A ⊂ Rd → R on each of its d input factors. In general, we know nothing

about the function f(·), but can evaluate it at chosen locations ξ ∈ Rd. Interest is on

partitioning the factors of f(·) into those that have no impact on the function value

(class C0), that have a linear effect (class C1) or that are non-linear or have interactions

with other input factors (class C2). Often, fast screening is done in the context of factor
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fixing (as noted in [13]), with the goal of restricting subsequent analysis of f(·) to the

smaller set C2. This is the context we address.

Several methods have been proposed for sensitivity analysis, ranging from local to

global methods, in particular, variance based methods such as the use of Monte-Carlo

methods for the computation of Sobol indices ([15]), the Fourier Amplitude Sentivity

Test (FAST) method ([6], [7]), or the Morris elementary effect method ([10]). Morris

method for preliminary sensitivity analysis is one of the most commonly used, due to

its robustness and computational efficiency. The method has not only been applied to a

variety of different fields (see [13] for a review), but has also received the attention of

several researchers who proposed modifications and improvements: [5]–[2] propose an

extension enabling study of two-factor interaction terms, [3] chooses the design used

to evaluate the elementary effects amongst a large number of random trajectories, such

that a dispersion index is optimised, [12] replaces designs aligned with the input space

directions by randomly oriented simplexes, and [1] proposes a sequential version of

Morris test, so that computational effort is concentrated in class C2 factors. We focus on

Morris’ original method, that we outline below. Our contribution concerns the designs

used in Morris method, and can be combined with most modifications of the original

method published in the literature.

1.2. Morris preliminary sensitivity analysis designs

Morris method implements statistical tests over a set of elementary differences

along each principal direction i, di(ξ), computed at a set of points {ξn}rn=1 of the

input domain:

di(ξ) =
1

∆
[f(ξ + ∆ei)− f(ξ)] , ξ ∈ A, i = 1, . . . , d. (1)

Above, ei is the vector with components eij = δij , j = 1, . . . , d. Let (µi, σ
2
i ) be

empirical estimates of the mean di and variance s2i of di:

µi =
1

r

r∑
n=1

di(ξ
i
n) ' Eνi [di] = di, i = 1, . . . , d (2)

σ2
i =

1

r − 1

r∑
n=1

(
di(ξ

i
n)− µi

)2 ' Varνi [di] = s2i . (3)
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Figure 1: Illustration of Morris elementary effects method (d = 3, r = 4).

Input factors are classified as (i) negligible, (ii) linear, or (iii) non-linear/interaction

if (i) their mean and variance are both close to zero, (ii) the mean is non-zero, but

variance is small, or (iii) variance is large. A revised version of Morris method ([3])

uses instead µ?i , the sample average of |di(ξ)|, improving the robustness for derivatives

of alternating sign.

If points {ξin}
r,d
n=1,i=1 are chosen completely at random, the sensitivity analysis

of a function of d variables requires a total of 2dr evaluations of f(·). The basic

Morris scheme is a One-At-a-Time (OAT) method that increases efficiency with respect

to random sampling by using most evaluations of f(·) twice. It relies on empirical

moment estimates using r samples of {di(·)}di=1 computed along r randomly oriented

paths Td+1 along which each one of the d coordinates is changed at a time, see Figure

1. The total number of evaluations of f(·) is r(d+1), which for large values of r and d

may still be prohibitive. Morris clustered designs, see Section 5 in [10], improve on the

efficiency of these OAT designs by using each value of f in the computation of more

than two elementary differences. The simple paths Td+1 are replaced by denser graphs

that enable determination of m ≥ 1 elementary differences along each direction.

For large values of d, Morris relies on a factorisation of the input space. Let Qd

be the d-dimensional unit hypercube, and factor d = tq such that Qd = Qtq . Let Y =

{ξ1, . . . , ξ|Y |} be a design in Qq(ξ) that enables the determination of m elementary
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effects along each direction. The full design Ξ =
⋃t
j=1 Y(j), where Y(j) is a replication

of Y along coordinates X(j−1)q+1, . . . , Xjq, computes at least m elementary effects

along each coordinate.

Although this idea is interesting, Morris’ presentation is affected by a number of

drawbacks. In [10] the smaller designs Y ⊂ Qq gather all s ∈ Qq with ` bits equal to

one for all ` ∈ I ⊂ {0, . . . , q}. Design multiplicity m indirectly follows from choice

of I, but no guidelines on how this list should be chosen are provided, and actually,

since not all integers can be decomposed as the sum of a set of powers of two, not all

multiplicities m ≤ 2d−1 can be obtained. Note also that d must not not prime and

d = tq ≥ 2qmin(m) = 2dlog2(m)e+ 2, q ≥ qmin(m) = dlog2(m)e+ 1 . (4)

Verification of the properties of Morris’ clustered designs is cumbersome and their

optimality, as it is recognised by the author, is not guaranteed. In fact, since Morris

designs are not necessarily connected – they will be if q ∈ I – they are not natural

candidates for optimality.

1.3. Contributions

The main result of the paper is the explicit presentation of a family of subgraphs of

Qd that enable the computation of a pre-specified number m of elementary effects for

all 1 ≤ m ≤ 2d−1.

Definition 1. A subgraph S of Qd is a (d,m)-edge equitable design if and only if the

number of edges of S along each direction is exactly m.

Figure 2 illustrates this definition. For each graph, edge colour indicates the direc-

tion of Qd along which the edge is aligned (we will use this colour code for arbitrary

values of d). The number of edges of each colour is thus exactly equal to m for (d,m)-

edge equitable graphs. The graph on the left is (3, 2)-edge equitable, while the other

two graphs are not edge equitable.

Although a vast literature characterising interesting families of subgraphs of the

hypercube, such as median and meshed subgraphs, as well as on graph colouring prob-

lems, exists in discrete mathematics, see e.g. [8], we could find no reference addressing

this class of subgraphs, and their determination seems to be largely an open problem.
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We present recursive procedures (Algorithms 1, 2 and 3) that generate (d,m)-edge

equitable designs, overcoming most of the drawbacks of Morris’ construction: (i) they

are guided by the values of m and d, (ii) handle generic values of (d,m), and (iii)

provably lead to equitable designs.

We claim an additional contribution, that consists in the exploitation of a conve-

nient polynomial representation of subgraphs of Qd. A related map between polyno-

mials and subgraphs of Qd, the log map, has been used in [11] to study the class of

polynomial models identifiable by a design, using computational commutative algebra.

We believe that the polynomial representation of subgraphs of Qd and, more impor-

tantly, the exploitation of a suitably defined scalar product over polynomials for formal

verification of several graph properties, without having to resort to intricate combinato-

rial arguments, is novel. In particular, we are able to provide algebraic demonstrations

for equitability (Theorem 2), and derive explicit formulas for the size of our designs

(Theorems 3, 4 and 5).

As the paper shows, improved efficiency in the computation of the elementary ef-

fects by using clustered designs does not translate into better performance on the clas-

sification of input factors in Morris original method. Definition of tests adapted to the

structured sampling implemented by clustered designs will be addressed in a forthcom-

ing paper.

2. Polynomial representation of subgraphs of Qd

We concentrate on subgraphs of the unit hypercube Qd = {0, 1}d, i.e., the graph

whose vertices are the points having coordinates 0 or 1 in Rd, two points being joined

by an edge if only if they differ in exactly one coordinate. Given an ordering of the

directions ofQd, there is a bijection between its vertices and the binary words of length

d:
Qd → {0, 1}d

s ↪→ {si}di=1, si ∈ {0, 1} .

We define a d-edge-coloring of Qd by stating that an edge joining two points s and s′

has color i when si 6= s′i and sj = s′j , j 6= i.

5



We associate to each s ∈ Qd a monomial Ps in the ring R[X1, . . . , Xd] of the

polynomials over the variables X1, . . . , Xd:

s = {s1, . . . , sd} −→ Ps(X1, . . . , Xd) = Xs1
1 . . . Xsd

d .

The subgraph induced by a set S ⊂ Qd will be represented by the polynomial PS =∑
s∈S Ps. The empty set is represented by the zero polynomial. The set of the poly-

nomials representing simple subgraphs of Qd will be denoted by Kd, and corresponds

to the polynomials of degree at most 1 in each variable having coefficients in {0, 1}.

2.1. Scalar product in Kd

The set Kd can be embedded in the algebra R[X1, . . . , Xd]/{X2
i ≡ 1, i = 1 . . . d}

of the polynomials according to the equivalence relation induced by the equalities

X2
i ≡ 1, i = 1 . . . d. This algebra is a vector space for which the set of monomials

can be taken as a natural basis. By defining a scalar product such that this basis is or-

thogonal, we endow Kd with a structure that has several interesting properties in term

of the underlying subgraphs of Qd.

Definition 2. We define the scalar product between monomials Ps,Ps′ ∈ Kd as

< Ps,Ps′ >= 1s=s′ ,

and extend it naturally to the entire Kd by bilinearity

< PS ,PS′ >=
∑

s∈S,s∈S′
< Ps,Ps′ >, PS ,PS′ ∈ Kd .

Lemma 1. The scalar product of two subgraphs of Qd, S1 and S2, is equal to the size

of their intersection: 〈PS1
,PS2

〉 = |S1 ∩ S2|. In particular, < PS ,PS >= ||PS ||2 =

|S|.

Lemma 2. Let s ∈ Qd and S ⊂ Qd. The subgraph S′ defined by PS′ = PsPS is the

reflection of S along the directions present in s.

In particular, XiPS corresponds to the mirror of S along direction i.
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Figure 2: Edge equitable (left) and non edge equitable (centre) graphs. The colour of each edge indicates the

direction along which it is aligned. The graph on the right is the reflection of the graph on the left along X1.

Figure 2 illustrates Lemma 2, showing PS = 1 +X1 +X2 +X1X3 +X2X3 and

X1PS . Multiplication by X1 resulted in a reflection of S along the red (X1) direction.

Lemma 3. For all s ∈ Qd, S, S′ ⊂ Qd < PsPS ,PsPS′ >=< PS ,PS′ > .

Using Lemmas 2 and 1 the following is immediate.

Lemma 4. The number mi of edges of S ⊂ Qd having color i satisfies

< PS , XiPS >= 2mi, i ∈ {1, . . . , d} . (5)

2.2. Problem (re)formulation

Denote by Edm the set of (d,m)-edge equitable polynomials. Using Lemma 4,

Lemma 5. PS ∈ Edm if and only if

< PS , XiPS >= 2m, i ∈ {1, . . . , d} . (6)

Lemma 6. Edm is closed under multiplication by monomials:

∀s ∈ Qd, PS ∈ Edm ⇒ PS′ = PsPS ∈ Edm .

and under permutations of the coordinates of Qd.

Theorem 1. Let S ⊂ Qd, and S denote the complement of S in Qd.

PS ∈ Edm ⇒ PS ∈ E
d
2d−1+m−|S| ,

i.e., the complement of a (d,m)-edge equitable subgraph is an (d,m′)-edge equitable

graph, with m′ = 2d−1 +m− |S|.
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Proof.

Let PS ∈ Edm and compute 〈PS , XiPS〉

〈SS , XiPS〉 = 〈PQd − PS , Xi(PQd − PS)〉

= 〈PQd , XiPQd〉+ 〈PS , XiPS〉 − 2 〈PQd , XiPS〉 = 2d + 2m− 2|S| = 2m′ ,

which is independent of i, completing the proof.

Theorem 1 is a first illustration of the power of the polynomial representation for

establishing the properties of subgraphs of the hypercube.

3. Generation of (d,m)-equitable subgraphs of Qd

3.1. Recursive graph composition

For every natural number d and every integer 1 ≤ m ≤ 2d−1 the algorithm below

produces a polynomial Gdm ∈ Edm.

Algorithm 1. Recursive definition of Gdm.

Initialization (m = 1):

Gd1 = 1 +

d∑
i=1

Xi . (7)

Recursion

• For m even, Gdm = (1 +X1Xd)G
d−1
m/2

. (8)

• For m odd, Gdm = Gd−1(m−1)/2
+X1XdG

d−1
(m+1)/2

. (9)

Figure 3 illustrates the graph compositions of eq. (8) (m even) and eq. (9) (m odd),

respectively. Note that in the graphs displayed on the right the m edges linking the two

graphs on the left are along the new dimension X4 (green colour). The solutions are

the composition of graphs with smaller values of d and m, along a binary tree whose

leaves all have m = 1.

Theorem 2. For all d ≥ 1, and all 1 ≤ m ≤ 2d−1, the graphs Gdm defined by (7) – (9)

are (d,m)-edge equitable.
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Figure 3: Construction of G4
4 (top) and of G4

5 (bottom).

The proof of Theorem 2 is given in Appendix A, and is based on the Lemmas of

Section 2. Theorem 2 overcomes major limitations of Morris presentation, by defining

a solution (i) for all pairs (d,m) which is (ii) provably equitable.

Theorem 3. For the graphs Gdm defined by (7) – (9)

∣∣Gdm∣∣ = m(d− κ) + 2κ+1 −m, where κ = blog2(m)c . (10)

Demonstration of Theorem 3 is trivial by verifying that (10) is satisfied if we ini-

tialise with
∣∣Gd1∣∣ = d+ 1 the recurrence equations implied by (8) and (9)

∣∣Gdm∣∣ = 2
∣∣∣Gd−1m/2

∣∣∣ , for d even∣∣Gdm∣∣ =
∣∣∣Gd−1m−1/2

∣∣∣+
∣∣∣Gd−1m+1/2

∣∣∣ , for d odd .

3.2. Improving efficiency by an alternative initialisation

Since
∣∣Gdm∣∣ is recursively defined, decreasing size for small values of m will prop-

agate to larger values of m. We present now an alternative family of (d,m)-edge
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equitable graphs Hd
m, m ≥ 2, obtained by starting the recursion (8) – (9) at m = 4.

The minimality of these graphs can be proved for m = 2, and has been checked nu-

merically for m = 3, d ≤ 5.

Algorithm 2. Recursive definition of Hd
m.

Initialization (m = 2, 3)

• For m = 2 we distinguish the cases of even and odd d:

when d ≥ 2 is even Hd
2 = Hd−2

2 + (Xd−1 +Xd +Xd−1Xd), (11)

when d ≥ 3 is odd, Hd
2 = Hd−1

2 +X1Xd +Xd−1Xd . (12)

• For m = 3, Hd
3 = 1 +X1Xd +

∑d
k=1Xk +

∑d−1
j=1 XjXj+1.

Recursion: Apply eqs. (8) – (9) .

The size of these graphs satisfies the recursive equations

|Hd
2 | =

 |H
d−2
2 |+ 3(d− 2), if d is even

|Hd−3
2 |+ 5, if d is odd

(13)

|Hd
3 | = 1 + 2d

By writing m ≥ 3 as m = 2p2 + 3p3, p2, p3 ∈ N0, where p2 and p3 are the number of

leaves labeled 2 and 3, respectively, in the recursive decomposition of m used in our

algorithm, the following Lemma can be demonstrated:

Lemma 7. Let k = blog2(m)c, and write m = 2κ + 2κ−1 + i,∈ [−2κ−1, 2κ−1[.

Then the number of subgraphs H?
2 and H?

3 in the recursive composition (8)-(9) are,

respectively,

p2 =

 2i, if i ≥ 0

−i, if i < 0
, p3 = 2κ−1 − |i| .

If i < 0 all the subgraphs are in dimension d − κ + 1, otherwise the subgraphs with

m = 2 are in dimension d− κ.
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Theorem 4. Let κ and i be defined as in Lemma 7. The size of Hd
m is

|Hd
m| = c(m) + α(m)d, (14)

α(m) =

 i+ 2κ, i ≥ 0

i/2 + 2κ, i ≤ 0
=

 m− 2κ−1, i ≥ 0

1
2

(
m+ 2κ−1

)
, i < 0

,

where the term independent of d is

c(m) =

 −m
(
1
2

(
(−1)d−κ + 1

)
+ κ
)

+ 2κ−2
(
3(−1)d−κ + 2k + 9

)
, i ≥ 0

− 1
2m
(
1
2

(
(−1)d−κ − 1

)
+ κ
)
− 2k−3

(
−3(−1)d−κ + 2κ− 9

)
, i < 0

Proof is simple by verifying the recursive equations (13).

For large values of κ, it can be shown that

|Hd
m| '

 (d− κ)(m− 2κ−1), i ≥ 0

1
2 (d− κ)(m+ 2κ−1), i < 0

When m = 2κ + 2κ−1 a simpler expression can be found:∣∣Hd
2κ+2κ−1

∣∣ = 2κ
(

(d− κ) +
3

2

)
. (15)

Theorem 4 completes the characterisation of the family of solutions H
d

m′ = Hd
m,

in terms of their size, which is |Hd

m′ | = 2d − |Hd
m|, and of the value of m′.

3.3. Further improving economy by factoring the designs

Consider the case m = 2κ + 2κ−1 when the simpler expression in (15) holds. We

can check that

|H2d
m | = 2|Hd

m|+ 2κ
(
κ− 3

2

)
> 2|Hd

m| ,

i.e., the size of our designs grows supra-linearly in d. It can be checked that this is true

for generic values of m. We improve the family of designs presented in the previous

subsection by combining the factorisation approach used by Morris clustered designs

with the generic solution Hd
m presented in the previous section.

Remember the definition of qmin(m) = dlog2(m)e + 1, see equation (4), as the

dimension of the smallest hypercube that can contain m edges along each direction,

and for a given pair (d,m) write d as d = c · qmin(m) + t′, such that

d = (c− 1)qmin(m) + t, t ∈ {qmin(m), . . . , 2qmin(m)− 1} . (16)
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It is easy to check that qmin(m) = κ+1, where κ is the parameter in Lemma 7. For d ≥

2qmin(m) designs more efficient than those presented in section 3.2 can be obtained by

placing c − 1 copies of Hqmin(m)
m in disjoint qmin(m)-dimensional subspaces of Qd,

and adding a Ht
m design covering the remaining directions. In the following we will

often omit indication of the dependency on m, using the simpler notation qmin.

Algorithm 3. Definition of Md
m.

Md
m = 1 +

c−1∑
j=1

[Shiftjqmin
(Hqmin

m )− 1] + Shift(c−1)qmin
Ht
m , (17)

where Shiftk(P) operates over the coordinates of the polynomial P:

Shiftk (P(Xi1 , . . . , Xin)) = (P(Xi1+k, . . . , Xin+k)) .

For d = qmin,

|Hqmin
m | =

∣∣Hκ+1
m

∣∣ =

 m+ 2κ−1, i ≥ 0

1
2 (m+ 2κ−1) + 3

22κ, i < 0

Theorem 5. The size of the designs defined by (17) is

∣∣Md
m

∣∣ = 1 + (c− 1)|Hqmin
m |+ |Ht

m|

=


(
b d
κ+1c − 1

) (
m+ 2κ−1

)
+ |Ht

m|, i ≥ 0(
b d
κ+1c − 1

) (
1
2 (m+ 2κ−1) + 3

22κ
)

+ |Ht
m|, i < 0

where c, t and qmin = κ+ 1 are defined in eq. (16), and |Ht
m| is given by Theorem 4.

Figure 4 shows the three families of graphs for d = 19 and m = 5, an example of a

situation for which Morris’ construction is not defined. Note the remarkably different

graphs topologies, as well as the decreasing size: 76 = |G19
5 | > |H19

5 | = 60 >

|M19
5 | = 49.

We remark that for the values of d and m for which Morris designs are fully de-

scribed in his paper, Md
m is a perfectly equitable design of the same size, but our our

construction is defined for all pairs (d,m).
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3.4. Economy

Morris characterised efficiency of a design S as the ratio of the total number of

elementary effects that can be computed using S to its size. We adhere to his definition.

Definition 3. Let S ∈ Edm. The economy of S is

Γ(S) =
md

|S|
. (18)

Lemma 8. |Gdm| ≥ |Hd
m| ≥ |Md

m|, Γ(Gdm) ≤ Γ(Hd
m) ≤ Γ(Md

m).

Figure 5 confirms this Lemma: the economy of Hd
m is framed by the economies

of Gdm (below) and of Md
m (above). These plots confirm that factorisation leads to a

significant improvement, nearly doubling economy for small values of m.

Note (see right plot, where entire range of m for d = 10 is plotted) that all three

curves come together at an economy of d/2 for the upper limit of m = 2d−1, i.e, when

the hypercube becomes complete. The point at which all curves merge is m = 2d−2:

for m ≥ 2d−2, (d,m)-edge equitable solutions are “unique,” in the sense that they all

correspond to the deletion of 2d−1 − m non-adjacent points of Qd. We can see that

the middle curve (Hd
m) rapidly coincides with the (upper) curve for the factored design

(Md
m): since factored designs exist only if d ≥ 2qmin, i.e., for m ≤ 2(d/2−1), from this

point onwards the green and red curves are indistinguishable.

Lemma 9. When d→∞

Γ∞(Gdm) = lim
d→∞

md

|Gdm|
= 1

Γ∞(Hd
m) = lim

d→∞

md

|Hd
m|

=
m

α(m)
=

 1
1−2κ−1/m , i ≥ 0

2
1+2κ−1/m , i < 0

,
4

3
≤ Γ∞(Hd

m) ≤ 3

2

Γ∞(Md
m) = lim

d→∞

md

|Md
m|
,

m2

2m− 1
≤ Γ∞(Md

m) ≤ m2

m− 1

The expressions above follow from the definition of economy and the expressions for

the size of the designs. Note that Γ∞(Gdm) is bounded below by Γ∞(Hd
2 ) = 4/3 and

above by Γ∞(Hd
3 ) = 3/2. It is easy to check that Γ∞(Gdm) = Γ∞(Gd1) = 1, showing

that the economy of our recursively defined solutions is bounded by the economy of

their initialisations.
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Figure 4: The three families of edge equitable graphs: G19
5 (left), H19

5 (centre) and M19
5 (right). Sizes are

76, 60 and 49, respectively.
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Figure 5: Economy (Γ) of designs Gd
m (lower curves), Hd

m (middle curves) and Md
m, (upper curves),

m ≤ 200, d = 30 (left) and complete range of m, d = 10 (right).

4. Sensitivity analysis

For One-At-a-Time designs, the elementary effects di can be computed incremen-

tally as f(·) is evaluated at consecutive points of the design. This is no longer the case

for m > 1. We indicate below how the polynomial representation can be exploited to

identify them pairs of points {(i(`)1 , i
(`)
2 )}m`=1 involved in the computation of them ele-

mentary effects along direction i. Let P be the polynomial representation of the design

and n be its size (the number of terms in P). Consider an ordering of the monomials

of P , such that

P =

n∑
p=1

Psp , sp ∈ Qd ,

and let fP denote the vector of valuations of f(·): [fP ]p = f(sp), p = 1, . . . , n. Define

the d upper-triangular matrices

[Ei](p,q) =

 (1− 2[sp]i)
〈
Psp , XiPsq

〉
, 1 ≤ q < p ∈ {1, . . . , n}, i ∈ {1, . . . , d}

0, otherwise

14



There is at most one non-zero entry in each line of E. Assuming that P is a (d,m)-

edge equitable design, there are exactly m non-zero elements [Ei](i(`)1 ,i
(`)
2 )

= ±1, ` =

1, . . . ,m, that indicate the pairs of points of the design that enable the computation

of the m elementary effects di, which are the m non-zero entries of (1 is the d-

dimensional vector of 1’s)

di =
1

∆
JifP , Ji = −diag (Ei1) + Ei .

Sample averages can be computed (remember there are only m non-zero values if di)

as

µi =
1

∆m
1TJifP , µ?i =

1

∆m
1T |JifP | , i = 1, . . . , d .

Consider the following example in E42 :

P = 1 +X1 +X2 +X1X2 +X1X2X3 +X1X2X4 +X1X2X3X4

For this graph, n = 7, and consider that the nodes are listed by order. Consider di-

rection X2, for which the non-zero elements of J2 are [J2]1,3 = [J2]2,4 = 1, and

[J2]1,1 = [J2]2,2 = −1, and thus and

dT2 =
1

∆


0, i 6∈ {1, 2}

[fP ]3 − [fP ]1, i = 4

[fP ]4 − [fP ]2, i = 6

.

Morris Elementary Effects method is based on a set of elementary effects computed

along r random perturbations of a basic design P . Using Lemma 6, random versions

of a design represented by polynomial P can be obtained as

P(j) = s(j)P(X(j) + π(j)(X)), j = 1, . . . , r ,

where {s(j)}rj=1 are independent and uniformly drawn in Qd, {X(i)}rj=1 are inde-

pendent and uniform in A and {π(j)}rj=1 are independent random permutations of

{1, . . . , d}.
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5. Numerical application

We illustrate in this section the application of the designs presented in the previous

sections, considering the same function as used in the original publication [10].

f(x) = β0 +

20∑
i=1

βiwi +

20∑
i<j

βijwiwj +

5∑
i<j<l

βijlwiwjwl +

4∑
i<j<l<s

βijlswiwjwlws

(19)

where wi = 2Xi − 1, i ∈ {1, 2, 4, 6, 8, . . . , 20} and wi = 2.2Xi/(Xi + 0.1) − 1, i ∈

{3, 5, 7}. Coefficients βi are as follows:

βi = 20, i ∈ {1, . . . , 10}, βij = −15, i, j ∈ {1, . . . , 6}

βijl = −10, i, j, l ∈ {1, . . . , 5}, βijls = 5, i, j, l, s ∈ {1, . . . , 4}.

All remaining 1st and 2nd order coefficients are independent realisations of a standard

normal distribution, βi ∼ N (0, 1), i 6∈ {1, . . . , 10}, βij ∼ N (0, 1), i, j 6∈ i, j ∈

{1, . . . , 6}. For this function the relevant classes of input factors are

C0 = {11, . . . , 20}, C1 = {8, 9, 10}, C2 = {1, . . . , 7} .

We apply Morris test for m = 4 and r = 3, leading to a total of number of ele-

mentary effects per direction equal to 12. The total number of evaluations of f(·) with

this degree of multiplicity is n4 = 147, while the computation of the same number of

elementary effects with the standard designs (m = 1) requires n1 = 12(d+ 1) = 252,

i.e., almost two times more.

Figure 6 shows the statistics observed in one run of the test. The estimates of the

variances σ2
i have been corrected to take into account the clustered nature of designs

(see [14] for details). The three distinct classes are well identified, although some

class C2 input factors, like X3, come close to the C0 region. This tendency to wrongly

classify non-linear/mixed effects, which can occasionally be classified as linear or neg-

ligible, has ben recognised before, see [4]. In a subsequent paper we will fully address

the study of Morris elementary method under clustered designs.
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Figure 6: Morris statistics (m = 4) for Xi, i = 1, . . . , 20. Position of the label i indicates the observed

(µ?i , σi).

6. Conclusions and further work

The paper presents a complete and constructive definition of Morris clustered de-

signs, that we designate by edge equitable designs. The algorithms presented are based

on a polynomial representation of subgraphs of the hypercube that enables simple al-

gebraic manipulation of the graphs and determination of their properties. These algo-

rithms overcome some limitations of the original presentation: we provide recursive

algorithms that enable the construction of equitable graphs with arbitrary multiplicity

m for all dimensions d of the input space. The results are novel, and we are not aware

of a formal study of this class of graphs in the literature.

Some extensions are possible. Our designs are not minimal, and the determination

of minimal edge-equitable graphs remains an open problem. Our designs are subsets

of the hypercube. The approach based on a polynomial representation of graphs may

be extended to define equitable graphs over finite d-dimensional grids, recursively gen-

erated as the iterated product of a basic finite set S: Sd = Sd−1 × S, opening the way

to computation of higher order derivatives. We are currently working in this direction.

Numerical studies show that there is a tradeoff between computational efficiency

and discrimination power of the original Morris test when an increasing multiplicity m

is used. However, use of m > 1 enables the definition of different kinds of tests, that

will detect not just a large variability of the elementary effects across the entire domain
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of f , but how much their distribution changes over disjoint neighborhoods of the input

space. This idea will be explored in future studies.

Appendix A. Demonstration of Theorem 2

We consider separately the cases of odd and even m.

• m even

Assume that Gd−1m/2
∈ Ed−1m/2

, i.e.,

< Gd−1m/2
, XiG

d−1
m/2

>= m, i ∈ {1, . . . , d− 1} .

Since Gd−1m/2
∈ Kd−1,

< Gd−1m/2
, XiXdG

d−1
m/2

>= 0, ∀i 6= d .

It follows immediately that, for Gdm defined by (8)

< Gdm, XiG
d
m >=



< Gd−1m/2
, XiG

d−1
m/2

> +

< X1XdG
d−1
m/2

, XiX1XdG
d−1
m/2

>, if i < d

< Gd−1m/2
, X1G

d−1
m/2

> +

< X1XdG
d−1
m/2

, X1G
d−1
m/2

>, if i = d

.

Each term in each branch of the right-handside of this equation is equal to m,

demonstrating that Gdm ∈ Edm.

• m odd

Assume that Gd−1m−1/2
∈ Ed−1m−1/2

and Gd−1m+1
2

. Then, for Gdm defined by (9)

< Gdm, XiG
d
m > =< Gd−1m−1/2

, XiG
d−1
m−1/2

> + < X1XdG
d−1
m+1/2

, XiG
d−1
m−1/2

>

+ < Gd−1m−1/2
, XiX1XdG

d−1
m+1/2

> + < X1XdG
d−1
m+1/2

, XiX1XdG
d−1
m+1/2

>

=


< Gd−1m−1/2

, XiG
d−1
m−1/2

> +

+ < Gd−1m+1/2
, XiG

d−1
m+1/2

>, if i < d

2 < Gd−1m−1/2
, XiX1XdG

d−1
m+1/2

>, if i = d

=

 (m− 1) + (m+ 1) = 2m, if i < d

2 < Gd−1m−1/2
, X1G

d−1
m+1/2

>, if i = d
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Construction (9) will thus lead to a (d,m)-edge equitable subgraph iff our family

of solutions verifies also the following additional condition

< Gd−1m , X1G
d−1
m+1 >= 2m+ 1, ∀m . (.1)

Assume that (m− 1)/2 = 2k. Using equations (8) and (9),

< Gd2k, X1G
d
2k+1 > =< Gd−1k , X1G

d−1
k > + < Gd−1k , XdG

d−1
k+1 >

+ < X1XdG
d−1
k , X1G

d−1
k > + < X1XdG

d−1
k , XdG

d−1
k+1 >

= 2k + 0 + 0+ < X1G
d−1
k , Gd−1k+1 >

Equation (.1) will thus hold for 2k if it holds for k. When (m− 1)/2 = 2k − 1

we can easily check that the same implication is obtained:

< Gd−1k−1, X1G
d−1
k >= 2k − 1⇒< Gd2k−1, X1G

d
2k >= 4k − 1

Thus, the condition for (9) to produce (d,m)-edge equitable solutions is

∀d, ∀k < Gdk, X1G
d
k+1 >= 2k + 1 . (.2)

It is easy to check that the condition holds for k = 1 ( Sd) and k = 2 (the

composition (1 +X1Xd)Sd), which concludes the proof.
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