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Introduction

Impulsive differential systems are found in the description of phenomena issued from applied sciences as physics, chemistry, biology and medicine. Recently interesting works in biomathematics have been published, we can cite those considering impulsive chemotherapeutic treatment of tumor diseases ( [START_REF] Boudermine | Bifurcation of nontrivial periodic solutions for pulsed chemotherapy model[END_REF], [START_REF] Lakmeche | Bifurcation of non trivial periodic solutions of impulsive differential equations arising in chemotherapeutic treatment[END_REF]- [START_REF] Lakmeche | Pulsed chemotherapy model[END_REF], [START_REF] Panetta | A mathematical model of periodically pulsed chemotherapy : tumor recurrence and metastasis in a competition environment[END_REF], [START_REF] Panetta | A mathematical model of drug resistance : Heterogeneous tumors[END_REF]), impulsive pest control strategies ( [START_REF] Liu | Complex dynamics of Holling type II Lotka Volterra predator prey system with impulsive perturbations on the predator[END_REF]), impulsive harvesting ( [START_REF] Negi | Dynamics in a Beddington DeAngelis prey predator system with impulsive harvesting[END_REF], [START_REF] Zhang | Optimal impulsive harvesting policy for single population[END_REF]), and impulsive vaccination ( [START_REF] Shulgin | Theoretical examination of the pulse vaccination policy in the SIR epidemic model[END_REF], [START_REF] Zeng | Complexity of an SIR epidemic dynamics model with impulsive vaccination control[END_REF]). In this paper, we consider a mathematical model for cell population under chemotherapy treatment by two drugs, one with instantaneous effect and the other with continuous effect. We study the stability of the tumor eradication and the consequences of the lost of its stability. In the last case we could have a bifurcation of positive nontrivial solutions which correspond to the persistence of the tumor. More specifically, we consider a cell population constituted by three subpopulations ; normal cells, sensitive tumor cells and resistant tumor cells, with mutation and resistance to the drug with instantaneous effect. The model is described by the following impulsive differential equations :

dx 1 dt = r 1 x 1 1 - x 1 k 1 -λ 1 (x 2 + x 3 ) -θ 1 x 1 , [1] dx 2 dt = r 2 x 2 1 - x 2 + x 3 k 2 -λ 2 (x 1 + x 3 ) -mx 2 -θ 2 x 2 , [ 2 
]
dx 3 dt = r 3 x 3 1 - x 2 + x 3 k 3 -λ 3 (x 1 + x 2 ) + mx 2 -θ 3 x 3 , [3] 
x 1 (t + i ) = T 1 x 1 (t i ), [START_REF] Lakmeche | Nonlinear mathematical model of pulsed-therapy of heterogeneous tumors[END_REF] x 2 (t + i ) = (T 2 -R)x 2 (t i ), [START_REF] Lakmeche | Pulsed chemotherapy model[END_REF] x 3 (t + i ) = T 3 x 3 (t i ) + Rx 2 (t i ), [START_REF] Liu | Complex dynamics of Holling type II Lotka Volterra predator prey system with impulsive perturbations on the predator[END_REF] where t i+1 -

t i = τ > 0, ∀i ∈ N, θ 1 < r 1 , θ 2 < r 2 + m and θ 3 < r 3 .
The variables and parameters are : τ : period between two successive drug with instantaneous effect, x j : normal (resp. sensitive tumor, resistant tumor) cells biomass for j = 1 (resp. 2,3), r j : growth rates of the normal (resp. sensitive tumor, resistant tumor) cells for j = 1 (resp. 2,3), k j : carrying capacities of the normal (resp. sensitive tumor, resistant tumor) cells for j = 1 (resp. 2,3), λ j : competitive parameters of the normal (resp. sensitive tumor, resistant tumor) cells for j = 1 (resp. 2,3), T j : survival fractions of the normal (resp. sensitive tumor, resistant tumor) cells, their values are completely determined by the quantity of injected drug with instantaneous effect. θ j : elimination rate of normal (resp. sensitive tumor, resistant tumor) cells by the drug with continuous effect. R : Fraction of cells mutating due of the dose of the drug with instantaneous effect, which is less than T 2 . m : acquired resistance parameter usually it is very small. Note that if θ i = 0, then we obtain the models studied in [START_REF] Boudermine | Bifurcation of nontrivial periodic solutions for pulsed chemotherapy model[END_REF] and [START_REF] Lakmeche | Pulsed chemotherapy model[END_REF].

Analysis of the model

In the following, we proceed to analyze our model. To this purpose, we shall use a fixed point approach. Let Φ(t, X 0 ) be the solution of the system (1)-( 6) for the initial condition X 0 . We define the mappings

F 1 , F 2 , F 3 : R 3 → R by F 1 (x 1 , x 2 , x 3 ) = r 1 x 1 1 -x1 k1 -λ 1 (x 2 + x 3 ) -θ 1 x 1 , F 2 (x 1 , x 2 , x 3 ) = r 2 x 2 1 -x2+x3 k2 -λ 2 (x 1 + x 3 ) -mx 2 -θ 2 x 2 , F 3 (x 1 , x 2 , x 3 ) = r 3 x 3 1 -x2+x3 k3 -λ 3 (x 1 + x 2 ) + mx 2 -θ 3 x 3 , and Θ 1 , Θ 2 , Θ 3 : R 3 → R by Θ 1 (x 1 , x 2 , x 3 ) = T 1 x 1 , Θ 2 (x 1 , x 2 , x 3 ) = (T 2 -R)x 2 , Θ 3 (x 1 , x 2 , x 3 ) = T 3 x 3 + Rx 2 . Let Θ := (Θ 1 , Θ 2 , Θ 3 ) and Ψ : R + × R 3 → R 3 be the operator defined by Ψ(τ, X 0 ) = Θ(Φ(τ, X 0 )), [7] 
and denote by D X Ψ the derivative of Ψ with respect to X. Then ξ = Φ(., X 0 ) is a τ -periodic solution of (1)-( 6) if and only if

Ψ(τ, X 0 ) = X 0 , [8] 
i.e. X 0 is a fixed point of Ψ(τ, .), and it is exponentially stable if and only if the spectral radius ρ(D X Ψ(τ, .)) is strictly less than 1 ([2]). A fixed point X 0 of Ψ(τ, .) is the initial state of (1)-( 6) which gives a τ -periodic solution ξ verifying ξ(0) = X 0 . We reduce the problem of finding a periodic solution of (1)-( 6) to a fixed point problem.

Here, ξ is a periodic solution of period τ for (1)-( 6) if and only if X 0 is a fixed point for [START_REF] Panetta | A mathematical model of periodically pulsed chemotherapy : tumor recurrence and metastasis in a competition environment[END_REF]. Consequently, to establish the existence of nontrivial periodic solutions of ( 1)-( 6), one needs to prove the existence of nontrivial fixed points of Ψ(τ, .).

REMARQUE. -

The problem (1),(4), obtained by taking x 2 = 0 and x 3 = 0, has a τ 0 -periodic solution x(t, x 0 ) = x s (t), where

x s (t) = k 1 r 1 -θ 1 r 1 (T 1 -exp(-(r 1 -θ 1 )τ 0 )) exp((r 1 -θ 1 )t) exp((r 1 -θ 1 )t)(T 1 -exp(-(r 1 -θ 1 )τ 0 )) + (1 -T 1 ) , 0 < t ≤ τ 0 , [9] with x 0 = k 1 r1-θ1 r1 (T1-exp(-(r1-θ1)τ0))
1-exp(-(r1-θ1)τ0) . We denote by ζ = (x s , 0, 0) which is a solution of ( 1)-( 6), we call it trivial solution.

Stability of ζ

In the case without tumor we have x 2 = x 3 = 0, then (1)-( 6) is reduced to (1),( 4) which has a unique non-trivial positive periodic solution x s given by [START_REF] Panetta | A mathematical model of drug resistance : Heterogeneous tumors[END_REF]. It is defined and stable for

T 1 > exp(-(r 1 -θ 1 )τ 0 ). That is τ 0 > 1 r 1 -θ 1 ln 1 T 1 . [10]
To determine the stability of the trivial solution ζ = (x s , 0, 0) in the three dimensional space, we must calculate D X Ψ(τ 0 , X 0 ) where X 0 = (x 0 , 0, 0). We have

D X Ψ(τ 0 , X 0 ) = D X Θ(Φ(τ 0 , X 0 )) ∂Φ ∂X (τ 0 , X 0 ) =    T 1 ∂Φ1(τ0,X0) ∂x1 T 1 ∂Φ1(τ0,X0) ∂x2 T 1 ∂Φ1(τ0,X0) ∂x3 0 (T 2 -R)) ∂Φ2(τ0,X0) ∂x2 0 0 R ∂Φ2(τ0,X0) ∂x2 + T 3 ∂Φ3(τ0,X0) ∂x2 T 3 ∂Φ3(τ0,X0) ∂x3    .
The solution ζ is exponentially stable if and only if the spectral radius is less than one, that is

T j ∂Φ j ∂x j (τ 0 , X 0 ) < 1, for j = 1, 2, 3.
Using the variational equation associated to the system (1)-( 6)

d dt (D X Φ(t, X 0 )) = D X F (Φ(t, X 0 ))(D X Φ(t, X 0 )), [11] 
with the initial condition

D X Φ(0, X 0 ) = Id R 3 we obtain ∂Φ1(τ0,X0) ∂x1 = T -2 1 e -(r1-θ1)τ0 , ∂Φ2(τ0,X0) ∂x2 = T -r 2 λ 2 K 1 r 1 1 e (r2-θ2-m-(r1-θ1) r 2 λ 2 K 1 r 1 )τ0 , ∂Φ3(τ0,X0) ∂x3 = T -r 3 λ 3 K 1 r 1 1 e (r3-θ3-(r1-θ1) r 3 λ 3 K 1 r 1 )τ0 , ∂Φ3(τ0,X0) ∂x2 = me (r 3 -θ 3 -(r 1 -θ 1 ) r 3 λ 3 K 1 r 1 )τ 0 (1-e -(r 1 -θ 1 )τ 0 ) r 2 λ 2 K 1 r 1 T r 3 λ 3 K 1 r 1 1 (1-e -(r 1 -θ 1 )τ 0 ) r 3 λ 3 K 1 r 1 τ0 0 e (r2-θ2-(r3-θ3)-m)u I (r3λ3-r2λ2) K 1 r 1 (u)du, ∂Φ1(τ0,X0) ∂x3 = -(r1-θ1)λ1K1(T1-e -(r 1 -θ 1 )τ 0 )e -(r 1 -θ 1 )τ 0 T 2 1 (1-e -(r 1 -θ 1 )τ 0 ) 2- r 3 λ 3 K 1 r 1 τ0 0 e (r3-θ3)u I 1-r 3 λ 3 K 1 r 1 (u)du, ∂Φ1(τ0,X0) ∂x2 = -(r1-θ1)λ1K1(T1-e -(r 1 -θ 1 )τ 0 )e -(r 1 -θ 1 )τ 0 T 2 1 (1-e -(r 1 -θ 1 )τ 0 ) 2- r 2 λ 2 K 1 r 1 τ0 0 e (r2-θ2-m)u I 1-r 2 λ 2 K 1 r 1 (u)du + m τ0 0 e (r3-θ3)u I 1-r 3 λ 3 K 1 r 1 (u)( u 0 e (r2-θ2-(r3-3)-m)p I (r3λ3-r2λ2) K 1 r 1 (p)dp)du for 0 < t ≤ τ 0 where I(t) = (T 1 -e -(r1-θ1)τ0
)e (r1-θ1)t + (1 -T 1 ) (Fore more details, see [START_REF] Lakmeche | Pulsed chemotherapy model[END_REF]).

In view of the fact that λ 2 K 1 < 1 and λ 3 K 1 < 1 (see [START_REF] Panetta | A mathematical model of periodically pulsed chemotherapy : tumor recurrence and metastasis in a competition environment[END_REF]), we have

T 2 < T r 2 λ 2 K 1 r 1 1 + R [12]
and

T 3 < T r 3 λ 3 K 1 r 1 1 . [13]
ζ is exponentially stable as an equilibrium for the full system (1)-( 6) if and only if

ln( 1 T1 ) r 1 -θ 1 < τ 0 < min     ln T r 2 λ 2 K 1 r 1 1 (T 2 -R) -1 r 2 -θ 2 -m -(r 1 -θ 1 ) r2λ2K1 r1 , ln T r 3 λ 3 K 1 r 1 1 T -1 3 r 3 -θ 3 -(r 1 -θ 1 ) r3λ3K1 r1     .
[14] REMARQUE. -The trivial periodic solution (x s , 0, 0) represents the healthy equilibrium. So, our aim is to obtain its stability, this corresponds to the eradication of the tumor. We have the following result. If conditions ( 12), (13) are satisfied and

T 2 > T r 2 λ 2 K 1 r 1 - r 3 λ 3 K 1 r 1 r 2 -θ 2 -m-(r 1 -θ 1 ) r 2 λ 2 K 1 r 1 r 3 -θ 3 -(r 1 -θ 1 ) r 3 λ 3 K 1 r 1 1 T r 2 -θ 2 -m-(r 1 -θ 1 ) r 2 λ 2 K 1 r 1 r 3 -θ 3 -(r 1 -θ 1 ) r 3 λ 3 K 1 r 1 3 + R, [15] 
we have min

    ln T r 2 λ 2 K 1 r 1 1 (T2-R) -1 r2-θ2-m-(r1-θ1) r 2 λ 2 K 1 r 1 , ln T r 3 λ 3 K 1 r 1 1 T -1 3 r3-θ3-(r1-θ1) r 3 λ 3 K 1 r 1     = ln T r 2 λ 2 K 1 r 1 1 (T2-R) -1 r2-θ2-m-(r1-θ1) r 2 λ 2 K 1 r 1 .
That is, the tumor eradication solution ζ is stable for

ln( 1 T1 ) r 1 -θ 1 < τ 0 < ln T r 2 λ 2 K 1 r 1 1 (T 2 -R) -1 r 2 -θ 2 -m -(r 1 -θ 1 ) r2λ2K1 r1
.

[16]

If conditions ( 12), ( 13) are satisfied and

T 2 < T r 2 λ 2 K 1 r 1 - r 3 λ 3 K 1 r 1 r 2 -θ 2 -m-(r 1 -θ 1 ) r 2 λ 2 K 1 r 1 r 3 -θ 3 -(r 1 -θ 1 ) r 3 λ 3 K 1 r 1 1 T r 2 -θ 2 -m-(r 1 -θ 1 ) r 2 λ 2 K 1 r 1 r 3 -θ 3 -(r 1 -θ 1 ) r 3 λ 3 K 1 r 1 3 + R, [17] 
we have min

    ln T r 2 λ 2 K 1 r 1 1 (T2-R) -1 r2-θ2-m-(r1-θ1) r 2 λ 2 K 1 r 1 , ln T r 3 λ 3 K 1 r 1 1 T -1 3 r3-θ3-(r1-θ1) r 3 λ 3 K 1 r 1     = ln T r 3 λ 3 K 1 r 1 1 T -1 3 r3-θ3-(r1-θ1) r 3 λ 3 K 1 r 1
.

That is, we have stability of ζ for

ln( 1 T1 ) r 1 -θ 1 < τ 0 < ln T r 3 λ 3 K 1 r 1 1 T -1 3 r 3 -θ 3 -(r 1 -θ 1 ) r3λ3K1 r1
.

[18]

REMARQUE. -From Theorem 2.1, we deduce that we have stability of the trivial equilibrium if the treatment amplitudes and period between two successive administrations of the treatment satisfy ( 12)-( 14), in this case we have eradication of the tumor.

Bifurcation analysis

We use Lyapunov Schmidt bifurcation to find nontrivial periodic solution of the model (1)- [START_REF] Liu | Complex dynamics of Holling type II Lotka Volterra predator prey system with impulsive perturbations on the predator[END_REF]. A necessary condition for the bifurcation of nontrivial periodic solutions near ζ is det(D X M (0, (0, 0, 0))) = 0.

To find a nontrivial periodic solution of period τ with initial data X 0 = (x 0 , 0, 0), we need to solve the fixed point problem X = Ψ(τ, X).

[19]

Let τ and X such that τ = τ 0 + τ and X = X 0 + X. The equation ( 19) is equivalent to

M (τ , X) = 0, [20]
where

M (τ , X) = M 1 (τ , X), M 2 (τ , X), M 3 (τ , X) = X 0 + X -Ψ(τ 0 + τ , X 0 + X). If (τ , X) is a zero of M , then (X 0 + X) is a fixed point of Ψ(τ 0 + τ , .
). Since ζ is a trivial τ 0 -periodic solution ( 1)-( 6), then it is associated to the trivial fixed point X 0 of Ψ(τ 0 , .). Let

D X M (0, (0, 0, 0)) =   a 0 b 0 c 0 0 e 0 0 0 h 0 i 0   . [21]
It follows that (see [START_REF] Lakmeche | Pulsed chemotherapy model[END_REF] for details) :

a 0 = T -1 1 (T 1 -e -(r1-θ1)τ0 ), b 0 = (r1-θ1)λ1K1(T1-e -(r 1 -θ 1 )τ 0 )e -(r 1 -θ 1 )τ 0 T1(1-e -(r 1 -θ 1 )τ 0 ) 2- r 2 λ 2 K 1 r 1 τ0 0 e (r2-θ2-m)u I 1-r 2 λ 2 K 1 r 1 (u)du + m τ0 0 e (r3-θ3)u I 1-r 3 λ 3 K 1 r 1 (u)( u 0 e (r2-θ2-(r3-3)-m)p I (r3λ3-r2λ2) K 1 r 1 (p)dp)du , c 0 = (r1-θ1)λ1K1(T1-e -(r 1 -θ 1 )τ 0 )e -(r 1 -θ 1 )τ 0 T1(1-e -(r 1 -θ 1 )τ 0 ) 2- r 3 λ 3 K 1 r 1 τ0 0 e (r3-θ3)u I 1-r 3 λ 3 K 1 r 1 (u)du, e 0 = 1 -(T 2 -R)T -r 2 λ 2 K 1 r 1 1 e (r2-θ2-m-(r1-θ1) r 2 λ 2 K 1 r 1 )τ0 , h 0 = -RT -r 2 λ 2 K 1 r 1 1 e (r2-θ2-m-(r1-θ1) r 2 λ 2 K 1 r 1 )τ0 -T 3 me (r 3 -θ 3 -(r 1 -θ 1 ) r 3 λ 3 K 1 r 1 
)τ 0 (1-e -(r 1 -θ 1 )τ 0 )

r 2 λ 2 K 1 r 1 T r 3 λ 3 K 1 r 1 1 (1-e -(r 1 -θ 1 )τ 0 ) r 3 λ 3 K 1 r 1 τ0 0 e (r2-θ2-(r3-θ3)-m)u I (r3λ3-r2λ2) K 1 r 1 (u)du and i 0 = 1 -T 3 T -r 3 λ 3 K 1 r 1 1 e (r3-θ3-(r1-θ1) r 3 λ 3 K 1 r 1 )τ0 .
From the stability of the solution x s in the one dimensional space we have a 0 > 0, it follows that e 0 i 0 = 0 is necessary for the bifurcation. Equality

τ 0 = ln T r 2 λ 2 K 1 r 1 1 (T 2 -R) -1 r 2 -θ 2 -m -(r 1 -θ 1 ) r2λ2K1 r1 , [ 22 
]
corresponds to e 0 = 0 and equality

τ 0 = ln T r 3 λ 3 K 1 r 1 1 T -1 3 r 3 -θ 3 -(r 1 -θ 1 ) r3λ3K1 r1 , [ 23 
]
corresponds to i 0 = 0. We have three cases : 1) Case 1 : e 0 = 0 and i 0 = 0. Suppose that ( 10)-( 13), ( 15) and ( 22) are satisfied. With the above notations, we deduce that M (0, (0, 0, 0)) = 0, dim(ker[D X M (0, (0, 0, 0

))]) = 1 with ker[D X M (0, (0, 0, 0))] = span{ c 0 h 0 a 0 i 0 - b 0 a 0 , 1, - h 0 i 0 }. Then equation (20) is equivalent to    M 1 (τ , αY 0 + Z) = 0, M 2 (τ , αY 0 + Z) = 0, M 3 (τ , αY 0 + Z) = 0, [ 24 
]
where

Y 0 = c 0 h 0 a 0 i 0 - b 0 a 0 , 1, - h 0 i 0 , Z = (z 1 , 0, z 3 ), X = αY 0 + Z and (α, z 1 , z 3 ) ∈ R 3 .
From the first and last equations of (24), we see that det ∂M1(0,(0,0,0)) ∂z1 ∂M1(0,(0,0,0)) ∂z3 ∂M3(0,(0,0,0)) ∂z1 ∂M3(0,(0,0,0)) ∂z3

= det a 0 c 0 0 i 0 = a 0 .i 0 = 0.

From the implicit function theorem, we can solve M 1 (τ , αY 0 + Z) = 0 and M 3 (τ , αY 0 + Z) = 0 near (0, (0, 0, 0)) with respect to Z as a function of τ and α and find a unique continuous function

Z * , such that Z * (τ , α) = (z * 1 (τ , α), 0, z * 3 (τ , α)), Z * (0, 0) = (0, 0, 0), M 1 τ , c 0 h 0 a 0 i 0 - b 0 a 0 α + z * 1 (τ , α), α, - h 0 i 0 α + z * 3 (τ , α) = 0 and M 3 τ , ć0 h0 á0 í0 - b0 á0 α + z * 1 (τ , α), α, - h0 í0 α + z * 3 (τ , α) = 0,
for every (τ , α) small enough.

Moreover, we have ∂Z * ∂α (0, 0) = (0, 0, 0) and

∂Z * ∂ τ (0, 0) = ( (r 1 -θ 1 ) 2 k 1 (1 -T 1 )e -(r1-θ1)τ0 r 1 (1 -e -(r1-θ1)τ0 ) 2 , 0, 0).
Then M (τ , X) = 0 if and only if

f 2 (τ , α) = M 2 τ , ć0 h0 á0 í0 - b0 á0 α + z * 1 (τ , α), α, - h0 í0 α + z * 3 (τ , α) = 0.
[25] We now proceed to solve equation (25). We have f 2 (0, 0) = 0. From the Taylor development of f 2 around (τ , α) = (0, 0), we find that

∂f2(0,0) ∂ τ = ∂f2(0,0) ∂α = 0. Let A 2 = ∂ 2 f2(0,0) ∂ τ 2 , B 2 = ∂ 2 f2(0,0) ∂ τ ∂α and C 2 = ∂ 2 f2(0,0) ∂α 2 . It's shown that A 2 = 0. Further, for λ 2 = 0 we have B 2 = -(T 2 -R) (r 2 -θ 2 -m) e (r2-θ2-m)τ0 < 0 and C 2 = (T 2 -R) r 2 e (r2-θ2-m)τ0 k 2 (r 2 -θ 2 -m) (e (r2-θ2-m)τ0 -1) +(T 2 -R) 2r 2 me (r2-θ2-m)τ0 k 2 τ0 0 e (r3-θ3)u I -r 3 λ 3 K 1 r 1 (u) u 0 e (r2-θ2-(r3-θ3)-m)s I -r 3 λ 3 K 1 r 1 (s) ds du +2(T 2 -R) -h 0 i 0 r 2 e (r2-θ2-m)τ0 k 2 (1 -e -(r1-θ1)τ0 ) -r 3 λ 3 K 1 r 1 τ0 0 e (r3-θ3)u I -(r 3 -θ 3 )λ 3 K 1 r 1 (u)du ,
(for more details, see [START_REF] Lakmeche | Pulsed chemotherapy model[END_REF]). From conditions cited above, we have i 0 > 0 and h 0 < 0, then

C 2 > 0, therefore B 2 C 2 < 0. Hence f 2 (τ , α) = B 2 τ α + C 2 α 2 2 + o |α| 2 + |τ | 2 .
By taking τ = σα, we have

f 2 (σα, α) = α 2 2 g 2 (σ, α) where g 2 (σ, α) = 2B 2 σ + C 2 + o α 1 + σ 2 . Moreover ∂g2 ∂σ (σ, 0) = 2B 2 < 0 and g 2 (σ, 0) = 2B 2 σ + C 2 . So, for σ 0 = -C2
2B2 we have g 2 (σ 0 , 0) = 0 and ∂g2 ∂σ (σ 0 , 0) = 0. Using the implicit function theorem we find a function σ(α) such that for α small enough g 2 (σ(α), α) = 0 and σ(0) = σ 0 = -C2 2B2 . Then, for α near 0 and τ (α) = σ(α)α we have f 2 (τ (α), α) = 0. Theorem 2.2 If conditions ( 10)-( 13), ( 15) and ( 22) hold, then we have a bifurcation of one nontrivial τ (α)-periodic solution of ( 1)-( 6) with initial condition

x 0 + c 0 h 0 a 0 i 0 - b 0 a 0 α + z * 1 (τ (α), α), α, - h 0 i 0 α + z * 3 (τ (α), α
) and period τ (α) = τ 0 + τ (α) for α(> 0) and λ 2 small enough, where

τ (α) = -C2 2B2 α + •(α) and z * 1 (τ (α), α) = -C2 2B2 (r1-θ1) 2 k1(1-T1)e -(r 1 -θ 1 )τ 0 r1(1-e -(r 1 -θ 1 )τ 0 ) 2 α + •(α).
2) Case 2 : e 0 = 0 and i 0 = 0. Suppose that ( 10)-( 13), ( 17) and (23) are satisfied. We have M (0, (0, 0, 0)) = 0, dim(ker[D X M (0, (0, 0, 0))]) = 1 with

ker[D X M (0, (0, 0, 0))] = span{ -c 0 a 0 , 0, 1 }. Let Y 0 = -c 0 a 0 , 0, 1 , Z = (z 1 , z 2 , 0), X = αY 0 + Z and (α, z 1 , z 2 ) ∈ R 3 .
From the first and second equations of (24), we have det ∂M1(0,(0,0,0)) ∂z1 ∂M1(0,(0,0,0)) ∂z2 ∂M2(0,(0,0,0)) ∂z1 ∂M2(0,(0,0,0)) ∂z2

= det a 0 b 0 0 e 0 = a 0 .e 0 = 0.

From the implicit function theorem, we can solve M 1 (τ , αY 0 + Z) = 0 and M 2 (τ , αY 0 + Z) = 0 near (0, (0, 0, 0)) with respect to Z as a function of τ and α and find a unique continuous function Z * , such that Z * (τ , α) = (z * 1 (τ , α), z * 2 (τ , α), 0), Z * (0, 0) = (0, 0, 0),

M 1 τ , - c 0 a 0 α + z * 1 (τ , α), z * 2 (τ , α), α = 0 and M 2 τ , - c 0 a 0 α + z * 1 (τ , α), z * 2 (τ , α), α = 0,
for every (τ , α) small enough.

Moreover, we have ∂Z * ∂α (0, 0) = (0, 0, 0) and

∂Z * ∂ τ (0, 0) = ( (r 1 -θ 1 ) 2 k 1 (1 -T 1 )e -(r1-θ1)τ0 r 1 (1 -e -(r1-θ1)τ0 ) 2 , 0, 0).
Then M (τ , X) = 0 if and only if

f 3 (τ , α) = M 3 τ , - c 0 a 0 α + z * 1 (τ , α), z * 2 (τ , α), α = 0. [26]
We now proceed to solve equation (26).

We have f 3 (0, 0) = 0.

From the Taylor development of f 3 around (τ , α) = (0, 0), we find that ∂f3(0,0)

∂ τ = ∂f3(0,0) ∂α = 0. Let A 3 = ∂ 2 f3(0,0) ∂ τ 2 , B 3 = ∂ 2 f2(0,0) ∂ τ ∂α and C 3 = ∂ 2 f3(0,0) ∂α 2 . It's shown that A 3 = 0.
Further, for λ 3 = 0 we have B 3 = -(r 3 -θ 3 )T 3 e (r3-θ3)τ0 < 0 and C 3 = 2r 3 τ 0 K -1 3 T 3 e (r3-θ3)τ0 > 0. Hence

f 3 (τ , α) = B 3 τ α + C 3 α 2 2 + o |α| 2 + |τ | 2 .
Using the same arguments as in the case 1, we have the following results. Theorem 2.3 If conditions ( 10)-( 13), ( 17) and ( 23) hold, then we have a bifurcation of one nontrivial τ (α)-periodic solution of ( 1)-( 6) with initial condition

x 0 + -ć 0 á0 α + z * 1 (τ (α), α), 0, α and period τ (α) = τ 0 + τ (α) for α(> 0) and (i) If h 0 = 0, then A 2 = B 2 = C 2 = 0, which is an undetermined case, to study it we need to determine the higher derivatives of f 2 .

(ii) If h 0 = 0, then dim ker(E) = 2, in this case the approach above can not be applied.

REMARQUE. -From Theorems 2.2 and 2.3, we deduce that the lost of stability for some values of the treatment amplitudes and the period between two successive administration of the treatment we have the onset of the tumor.

Conclusion

In this work we have considered a model of chemotherapy treatment by two drugs for population with normal cells, sensitive tumor cells and resistant tumor cells, one with instantaneous effect and the other with continuous effect. We have studied the stability of the trivial solution corresponding to the eradication of the tumor, and we find necessary conditions to have eradication of the tumor. Otherwise, we lose stability and bifurcation of nontrivial periodic solutions will appear, it corresponds to the persistence of the tumor. We have treated two cases, for the third one we need an other approach. It will be interesting to consider the resistance with respect to the drug with continuous effect.

Theorem 2 . 1

 21 If (12)-(14) are satisfied, then ζ is exponentially stable.

λ 3

 3 small enough, wherez * 1 (τ (α), α) = -C3 2B3 (r1-θ1) 2 k1(1-T1)e -(r 1 -θ 1 )τ 0 r1(1-e -(r 1 -θ 1 )τ 0 ) 2 α + •(α) and τ (α) = -C3 2B3 α + •(α).3) Case 3 : e 0 = 0 = i 0 .
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