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RESUME. Nous considérons un modéle de chimiothérapie pour une population de cellules avec ré-
sistance. Nous considérons le cas de deux médicaments le premier avec effet impulsif et le deuxiéme
avec effet continu. Nous étudions la stabilité des solutions périodiques triviales et I'apparition des
solutions périodiques non-triviales en utilisant la bifurcation de Lyapunov-Schmidt

ABSTRACT. A chemotherapeutic treatment model for cell population with resistant tumor is consid-
ered. We consider the case of two drugs one with pulsed effect and the other one with continuous
effect. We investigate stability of the trivial periodic solutions and the onset of nontrivial periodic solu-
tions by the mean of Lyapunov-Schmidt bifurcation.

MOTS-CLES : Modeéle de chimiothérapie, Equations différentielles impulsifs, Solutions périodiques,
Stabilité exponentielle, Bifurcation de Lyapunov-Schmidt.
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1. Introduction

Impulsive differential systems are found in the description of phenomena issued from

applied sciences as physics, chemistry, biology and medicine. Recently interesting works
in biomathematics have been published, we can cite those considering impulsive che-
motherapeutic treatment of tumor diseases ([1], [3]-[5], [8], [9]), impulsive pest control
strategies ([6]), impulsive harvesting ([7], [12]), and impulsive vaccination ([10], [11]).
In this paper, we consider a mathematical model for cell population under chemotherapy
treatment by two drugs, one with instantaneous effect and the other with continuous ef-
fect. We study the stability of the tumor eradication and the consequences of the lost of
its stability. In the last case we could have a bifurcation of positive nontrivial solutions
which correspond to the persistence of the tumor.
More specifically, we consider a cell population constituted by three subpopulations ; nor-
mal cells, sensitive tumor cells and resistant tumor cells, with mutation and resistance to
the drug with instantaneous effect. The model is described by the following impulsive
differential equations :

dx T
7; = na <1 - k% — A(z2 + x3)> — 0121, [1]
d
2 roxs (1 — el Ao(x1 + x3) | — mag — Oaxa, [2]
dt ks
drs = r3x3|1l— Bk As(x1 4+ 22) | + maxe — 0323, [3]
dt ks
zi(tF) = Ta(t), [4]
za(tf) = (To — R)za(ty), (5]
z3(t]) = Tsas(t;) + Raa(t), [6]

where ;11 —t; =7>0,Vi € N, 0; < 11,0 <ry+mandbs < rs.

The variables and parameters are :

T : period between two successive drug with instantaneous effect,

2, : normal (resp. sensitive tumor, resistant tumor) cells biomass for j = 1 (resp. 2,3),

r; : growth rates of the normal (resp. sensitive tumor, resistant tumor) cells for j = 1
(resp. 2,3),

k; : carrying capacities of the normal (resp. sensitive tumor, resistant tumor) cells for
7 =1 (resp. 2,3),

A; : competitive parameters of the normal (resp. sensitive tumor, resistant tumor) cells for
7 =1 (resp. 2,3),

T} = survival fractions of the normal (resp. sensitive tumor, resistant tumor) cells, their va-
lues are completely determined by the quantity of injected drug with instantaneous effect.
6; : elimination rate of normal (resp. sensitive tumor, resistant tumor) cells by the drug
with continuous effect.

R : Fraction of cells mutating due of the dose of the drug with instantaneous effect, which
is less than 7T5.

m : acquired resistance parameter usually it is very small.

Note that if §; = 0, then we obtain the models studied in [1] and [5].
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2. Analysis of the model

In the following, we proceed to analyze our model. To this purpose, we shall use a
fixed point approach.
Let ®(t, Xo) be the solution of the system (1)-(6) for the initial condition Xj.
We define the mappings Fi, Fy, I3 : R? — R by

Fi(xy, 20, 23) = ri21 ( i —)\1($2+$3)) — 0121,
)=

To+tx
Fo(z1, @2, 23) = rawa (1 — #2552 — Ag(z1 + xs)) — mxy — o,

Fg((l?l,xg,l'g) = r3x3 (1 — %f?’ — )\3(1‘1 + LL‘Q)) + mxg — 0323,

and @1, @2, @3 ‘R3 — Rby

©1 (21, 2, x3) = Th 1,

@2($1,5€2,1‘3) = (TQ — R)JZQ,

@3(1‘17 T, 173) = TgIg + ng.

Let © := (01,02,03) and ¥ : R, x R3 — R?3 be the operator defined by

\IJ(T’ XO) = @((I)(T? XO))? [7]

and denote by Dx ¥ the derivative of U with respect to X. Then £ = ®(., Xj) is a
T-periodic solution of (1)-(6) if and only if

\II(Ta XO) = X07 [8]

i.e. Xy is a fixed point of ¥(7,.), and it is exponentially stable if and only if the spectral
radius p(Dx (7, .)) is strictly less than 1 ([2]). A fixed point X of ¥(r,.) is the initial
state of (1)-(6) which gives a 7-periodic solution £ verifying £(0) = Xj.

We reduce the problem of finding a periodic solution of (1)-(6) to a fixed point problem.
Here, £ is a periodic solution of period 7 for (1)-(6) if and only if X is a fixed point
for (8). Consequently, to establish the existence of nontrivial periodic solutions of (1)-(6),
one needs to prove the existence of nontrivial fixed points of ¥(r,.).

REMARQUE. —

The problem (1),(4), obtained by taking x5 = 0 and x3 = 0, has a 7y-periodic solution
z(t,xg) = x5(t), where

r1 — 61 (Ty — exp(—(r1 — 61)70)) exp((r1 — 61)t)
T1 exp((rl — Gl)t)(Tl — exp(—(n — 91)7’0)) + (1 — Tl),
with xo = kl r1—01 (T1—exp(—(r1—61)70))
r1

1—exp(—(r1—01)10) *
We denote by ¢ = (z5,0,0) which is a solution of (1)-(6), we call it trivial solution.

l’s(t):kl O<t§7—07

[9]

2.1. Stability of ¢

In the case without tumor we have x5 = x3 = 0, then (1)-(6) is reduced to (1),(4)
which has a unique non-trivial positive periodic solution z¢ given by (9). It is defined and
stable for 77 > exp(—(r1 — 01)79). That is

1 1
To > E— In <Tl> . [10]
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To determine the stability of the trivial solution ( = (z5,0,0) in the three dimensional
space, we must calculate D x ¥ (7, Xo) where Xy = (0,0, 0). We have

DX\I/(T(),X()) = Dx@(q)(To,Xo))g%(To,Xo)
T, ) S R
= 0 (T — R)) 2Rzl 0
0 RORA Ty ORER Ty 2Rin)

The solution ( is exponentially stable if and only if the spectral radius is less than one,
that is 50
T2 (10, X,

J B ;i (7_0; 0)

Using the variational equation associated to the system (1)-(6)

<1, forj=1,2,3.

L (Dx (1, X)) = Dx F(B(1, Xo))(DxB(1, Xo)). i

with the initial condition Dx ®(0, X) = Idrs we obtain
0% (10,X0) _ T172e—(7"1—91)7'0

ox
! ZreXa Ky roAg K1

OPo(10,X0) __ 1 (rg—02—m—(r1—0;) 22— )To
— 0l =TT e 1

8322 1 k)
, Zr3A3 Ky ”
0®3(70,X0) __ 1 (7’3*93*(7"1*91)73131(1 )70
=) = T e 1

Ox3 1 ’

( ) M)To( (r1—81) )T2%2K1 ( 1
9®3(10,X0) _ ™ "1 l—e”M77JT0) ™ 70 o (r2—02—(r3—03)—m)u p(r3sAs—rada) TF
CED) - r3Xs K3 rarg K1 fo e I 1 (u)du,

T, 1 (175—(T1—91)To) 1

(rg—03—(r1—01)
€

0D1(10,X0) _ (r1—01)M K1 (Ty—e ("1701)70)e=(11=01)70 .7y (r3—63)u 1_%
O3 - 5_T333K3 fO e I ! (u)du,
TZ(1—e~(r1=%1)70) 1
—(r1—0 —(r1—0 ToA2 Ky
6<I>1(7—0,X0) _ (Tlfel))\lKl(Tlfe (r1 1)70)6 (r1 1)70 ) (7‘270277—”{)” 1— 2r
O3 = - RSZEvLSY Jo'e I (u)du
TZ(1—e=(r1=01)70) 1

b Jg? ot ) [ e 009 B () )
for 0 < ¢t < 79 where I(t) = (11 — e*(”’el)m)e(”%l)t + (1 — T1) (Fore more details,
see [5]).
In view of the fact that Ao K1 < 1 and A3K7 < 1 (see [8]), we have

r2Ag Ky

Th,<T; ™ +R [12]
and
r3xz Ky
T3 <1y ™ . [13]
( is exponentially stable as an equilibrium for the full system (1)-(6) if and only if
roXg K1 . r3A3 Ky 1
" w(rPH ) ()
—— < 79 < min ,
7"1—91 0 rg—ﬁg—m—(rl—ﬁl)% 7“3—93—(7“1—91)%
[14]
REMARQUE. —

The trivial periodic solution (x4, 0, 0) represents the healthy equilibrium. So, our aim is
to obtain its stability, this corresponds to the eradication of the tumor.
We have the following result.
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Theorem 2.1 If (12)-(14) are satisfied, then ( is exponentially stable.
If conditions (12), (13) are satisfied and

roXg K1 r3Az K1 7"2_92_"7/_("‘1_'91)7‘2);‘41(1 7‘2_92_7"_(7‘1_91)%
1 1 rg—03—(rq—67) 32351 r3—03—(rq—6,) 32351
3—03 161 - 3—03 1—61 =
T, > T, T 4R, [15]
raAg Ky r3A3 Ky r2A2 Ky

In <T1 " (TQR)—1> In <T1 " T3_1> In (T1 1 (TzR)_l)
we have min = .

Tzfezfmf(nf@ﬂ% ’ r37937(r1701)% rrezfmf(rrfh)%

That is, the tumor eradication solution ( is stable for

roXo K1 .
rl _

() _ In (T1 (T2 — R) )

ry — 01 0 ro — 0 —m — (r1 — 61)

TR [16]

T1

If conditions (12), (13) are satisfied and

r2Ag Ky
r2Ag Ky r3A3 Ky r1

i ™ T3Ag K T3Ag K

1 L rg—63—(ry—01)~353=L rg—03—(rq—61) 2321

T, < T, T, 4R, [17]

T2A2 Ky T3N3 Ky r3X3 Ky
1n<T1 1 (TgR)_1> 1n<T1 " T31> 1n<T1 1 T31)

T3 K T33s K = T3rs K1 -
r27027m7(r1701)'27,% ’ r37937(r1701)'37,% r3—03—(r1—01)353=1

2]

o Ao K
7‘2*92*7n*(r1*91)%11 rg—60—m—(r1—01)

we have min

That is, we have stability of ¢ for

r3X3Ky
In (T1 m T31>
<710 <

=6 ry — 03 — (11 — ;) ek

[18]

REMARQUE. —

From Theorem 2.1, we deduce that we have stability of the trivial equilibrium if the treat-
ment amplitudes and period between two successive administrations of the treatment sa-
tisfy (12)-(14), in this case we have eradication of the tumor.

2.2. Bifurcation analysis

We use Lyapunov Schmidt bifurcation to find nontrivial periodic solution of the model
(1)-(6). A necessary condition for the bifurcation of nontrivial periodic solutions near ( is

det(Dx M (0, (0,0,0))) = 0.

To find a nontrivial periodic solution of period 7 with initial data Xo = (x0,0,0), we
need to solve the fixed point problem

X = W(r, X). [19]
Let 7 and X such that 7 = 75 + 7 and X = X 4+ X. The equation (19) is equivalent to

M(7,X) =0, [20]

119
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where
M(7,X) = (Mi(7, X), Ma(7, X), M3(7, X)) = X0+ X — ¥(ro + 7, Xo + X).

If (7, X) is a zero of M, then (X + X) is a fixed point of ¥(7y + 7, .). Since ( is a trivial
To-periodic solution (1)-(6), then it is associated to the trivial fixed point X, of ¥(1y,.).

Let
CL/O b/O 86
It follows that (see [5] for details) :
ap =Ty (T — e~ (=000,
b6 = (7"1—91)>\1K1(Tl—67(%1*91)70))\6712"1*91)70 {fﬂ) e(rg—ez—'m)u11*% (u)du
T1(1—67(7'1701)TO)27%11 0

r3r3 Ky
1

o g elra 0 [ ) (! era e rama) o XD S () gy du

(g — (g — raAg K
;o ()M K (Ti—e” (M1 7070)e= (0070 7y (g gy, p1—T32BEL
Co = 5 T3A3K1 fO 6( 3—0s) I 1 (u)du,
Tl(lfe_(rl_gl)n)) 1
—raAp Ky roAo K
= 00 —m— (1 —0,) 22251
eh=1—(To—R)T, "+ 2 ferm n=t=57hm,
—roA2 Ky r
B = _RT. ™ e(T2—92—m—(7'1—91)%111(1)‘I'o
0o - 1
Ag K roAg K
(rg—63—(r1—01) 73331y —(r—01) 70y et Ky
me 1 (1—e 1~7%1)70) 1 To (ro—02—(r3—03)—m)u (7"3)\3—7‘2)\2)7
—13 [ZETLSY A Jo'e I 1 (u)du
T " (176—(T1—91)T0) 1
1
and

—r3A3Ky
in=1-T5T, ™ e(ra=0a=(n=01)
From the stability of the solution x4 in the one dimensional space we have af, > 0, it
follows that egi(, = 0 is necessary for the bifurcation.

Equality .
r2Aa Ky
In (T1 (T — R)_1>

Ao Ky ?
r2—92—m—(r1—91)”7ﬁ%

r3A3 Ky
1 )TU

[22]

T0 =

corresponds to e, = 0 and equality

r3A3 Ky
In (Tl E T31>

To = . (23]

r3 — 03— (r — 91)7”’)}‘?{1

corresponds to i, = 0. We have three cases :

I)Case 1 : ¢y = 0 and i; # 0. Suppose that (10)-(13), (15) and
(22) are satisfied. With the above notations, we deduce that M (0,(0,0,0)) =
0, dim(ker[DxM/(0,(0,0,0))]) = 1 with  ker[DxM/(0,(0,0,0))] =
Ih/ b/ h/
span{ (Cg m N —,,0> }. Then equation (20) is equivalent to
olo @0 lo
M(T7,aYo+Z) = 0,
My (7, aYo+Z) = 0, [24]
M3(77—7 aYO + Z) = 07
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AN / i
cwho b , Mo
/N 1 -/
oo Qo 0

where Yy = (

R3.
From the first and last equations of (24), we see that

0M;1(0,(0,0,0))  9M:(0,(0,0,0)) al
det( oMy (00,00 9Mp(0.0,0,0) ) :det< 0

0z1 Oz3

), Z = (21,0,25), X = Yy + Z and (o, 21, 25) €

CO ) il £ 0,

/
-/
4

From the implicit function theorem, we can solve M; (7, oYy + Z) = 0 and M5(7, oYy +
Z) = 0 near (0,(0,0,0)) with respect to Z as a function of 7 and « and find a
unique continuous function Z*, such that Z*(7, o) = (27(7, @), 0, 25 (7, «)), Z*(0,0) =

(0,0,0),
/h/ b/ h/
M, (77 ((cg /0 — ?) a+ 21 (T, ), a, —./OOZ-‘,-Z;(T,Oé))) =0
apiy  af i)
and

‘oho b h
Ms (T, ((C,O fO — O) a—l—zf(T,a),a,—{Oa—i—z;(r,a))) =0,
aplo ao 20

for every (7, o) small enough.
0z* 0z*
(0,00 = (0,00 ad Z=(0,0) =
T
(r1 = 61)%ki (1 = Ty)e”(m—00m 0.0
7“1(1 — e—(T1—91)To)2 » )
Then M (7, X) = 0 if and only if

Moreover, we have

[25]
We now proceed to solve equation (25).
We have f2(0,0) = 0.
From the Taylor development of f, around (7,«) = (0,0), we find that
0f2(0.0) _ 9f2(0.0) _
or - ) O - R )
Let Ay = %ﬁo), By = %{%0) and Cy = %.5270). It’s shown that A, = 0. Further,
for Ao = 0 we have By = —(T» — R) (r9 — 62 — m) e(r2=02=m)70 () apd
(r2—92—m)7'0
r2€ —0y—
Co, = (Th—R—2——  (elr2=0—m)70 _q
2 ( 2 )kQ(TQ—QQ—m)(e )
9 (ro—62—m)1o o —rgAg Ky u ,(ro—02—(rg—03)—m)s
(T, - Ry22me / e (ra—fs)u T () (/ e e s\ du
ko 0 0 -t
I" 71 (s)

_h! (r2—02—m)7o T Z(ra=03)A3 Ky
+2(T2—R)< ‘,0> 2t K/ e(rs =0 [ () du
20 kg(l _ 67(“701)7'0) 2] 0

(for more details, see [5]). From conditions cited above, we have 16 > (0 and h6 < 0, then
C5 > 0, therefore BoCy < 0. Hence

2
f2(7,a) = BaTa + Cg% +o (o +[7%) .
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By taking 7 = o, we have fa(oa,a) = %292(0', «) where g2(0,) = 2Bso + Cy +
0a (1+ 0?). Moreover 992 (5,0) = 2By < 0 and g2(0,0) = 2By0 + Cs. So, for

Oo
o0 = 72%2 we have g2(09,0) = 0 and %(00,0) # 0.
Using the implicit function theorem we find a function o(«) such that for o small

enough g2(o(a),a) = 0and 0(0) = op = 72072.

Then, for « near 0 and 7(a) = o () we have ]%Q(T(a), a) =0.

Theorem 2.2 If conditions (10)-(13), (15) and (22) hold, then we have a Dbifur-

cation of one nontrivial T(«)-periodic solution of (1)-(6) with initial condition
/

coho _ bo ho
Tot+ | = — a+zf(7i(a)7a)ﬂa7_7a""—Zéﬂ(%(a)va) and period 7(a) =
agiy  ap if)
To + (@) for a(> 0) and A2 small enough, where 7(a) = —2%204 + o(a) and
(= r1—01)2k1 (1-T1)e~ ("1 =91)70
27 (7o), o) = 72%2( 1 Tll)(ljif(wulf)@l)m)? a+o(a).

2)Case 2 : ey # 0 and i, = 0. Suppose that (10)-(13), (17) and (23)
are satisfied. We have M (0, (0,0,0)) = 0, dim(ker[DxM (0, (0,0,0))]) = 1 with

—c! _
ker[Dx M (0, (0,0,0))] = span{( ., 1)}. Let Yy = (;0,07 1), Z = (21, 22,0),
X =aYy + Z and (a, 21, 22) € R3.

ag 0
From the first and second equations of (24), we have

aMl(O,(O,OA,O)) 8&11(0,(0,0,0)) a/ ’

1 0z3 _ VAR

det | or @00y ornGRo0) | = det( 00 6(’; > = ag.ey # 0.
021 0za

From the implicit function theorem, we can solve M; (7, oYy + Z) = 0 and M2 (7, aYo +
Z) = 0 near (0,(0,0,0)) with respect to Z as a function of 7 and « and find a
unique continuous function Z*, such that Z* (7, a) = (27(7, ), 25 (7, @), 0), Z*(0,0) =
(0,0,0),

/
M, (7", (f;aJrzf(?,a),z;(ia),a)) =0

and .
i (7. (- Lo+ i) 5 a)a) ) <o

0

for every (7, o) small enough.

oz* 0z*
Moreover,2 we  have ( 8(52) (0,0) = (0,0,0) and ¥(070) =
— 01)2ky (1 — Ty)e— (=00
e 0.0).
Tl(l - e—(71—91)7'0)2
Then M (7, X) = 0 if and only if
/
f3(T,a) = M3 (T, <—2?a + 21(7, @), 25 (T, @), a)) =0. [26]
0

We now proceed to solve equation (26).
We have f5(0,0) = 0.
From the Taylor development of f3 around (7,a) = (0,0), we find that w =
0£3(0,0) _ 0
Oa -

2 2 2
Let A3 = w, B3 = ag;iggo) and C3 = %(2’0). It’s shown that A3 = 0.
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Further, for A3 = 0 we have B3 = —(r3 — 63)T3e("3~ %) < ( and C3 =
27“370K§1T36(T3’93)T° > 0. Hence

2
f3(7,a) = BsTa + 03% +o (o) +[7?) .

Using the same arguments as in the case 1, we have the following results.

Theorem 2.3 If conditions (10)-(13), (17) and (23) hold, then we have a Dbifur-
cation of one nontrivial T(«)-periodic solution of (1)-(6) with initial condition

(:co + (_,CO) a+ 25 (7(a), a),0, a) and period T(c) = 19 + T(a) for a(> 0) and
ag
(= 5 (r1—01)%ki (1-T1)e” ("1 %170
A3 small enough, where 25 (T(a), ) = —20?3'3( 7"1)(1—(2*“1*)91)"'0)2 a + o(a) and
T(a) = —2%”3@ + o(a).

3) Case 3: e = 0 = 1.

@) If by # 0, then Ay = By = Cy = 0, which is an undetermined case, to study it we
need to determine the higher derivatives of fs.

(i) If hy, = 0, then dim ker(E) = 2, in this case the approach above can not be applied.

REMARQUE. —

From Theorems 2.2 and 2.3, we deduce that the lost of stability for some values of the
treatment amplitudes and the period between two successive administration of the treat-
ment we have the onset of the tumor.

3. Conclusion

In this work we have considered a model of chemotherapy treatment by two drugs
for population with normal cells, sensitive tumor cells and resistant tumor cells, one with
instantaneous effect and the other with continuous effect. We have studied the stability of
the trivial solution corresponding to the eradication of the tumor, and we find necessary
conditions to have eradication of the tumor. Otherwise, we lose stability and bifurcation of
nontrivial periodic solutions will appear, it corresponds to the persistence of the tumor. We
have treated two cases, for the third one we need an other approach. It will be interesting
to consider the resistance with respect to the drug with continuous effect.
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