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RESUME. Nous considérons un modéle de chimiothérapie pour une population de cellules avec ré-
sistance. Nous considérons le cas de deux médicaments le premier avec effet impulsif et le deuxieme
avec effet continu. Nous étudions la stabilité des solutions périodiques triviales et I'apparition des
solutions périodiques nontriviales en utilisant la bifurcation de Lyapunov-Schmidt

ABSTRACT. A chemotherapeutic treatment model for cell population with resistant tumor is consid-
ered. We consider the case of two drugs one with pulsed effect and the other one with continuous
effect. We investigate stability of the trivial periodic solutions and the onset of nontrivial periodic solu-
tions by the mean of Lyapunov-Schmidt bifurcation.
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Stabilité exponentielle, Bifurcation de Lyapunov-Schmidt.
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1. Introduction

Impulsive differential systems are found in the description of phenomena issued from

applied sciences as physics, chemistry, biology and medicine. Recently interesting works
in biomathematics have been published, we can cite those considering impulsive che-
motherapeutic treatment of tumor diseases ([1], [3]-[5], [8], [9]), impulsive pest control
strategies ([6]), impulsive harvesting ([7], [12]), and impulsive vaccination ([10], [11]).
In this paper, we consider a mathematical model for cell population under chemotherapy
treatment by two drugs, one with instantaneous effect and the other with continuous ef-
fect. We study the stability of the tumor eradication and the consequences of the lost of
its stability. In the last case we could have a bifurcation of positive nontrivial solutions
which correspond to the persistence of the tumor.
More specifically, we consider a cell population constituted by three subpopulations ; nor-
mal cells, sensitive tumor cells and resistant tumor cells, with mutation and resistance to
the drug with instantaneous effect. The model is described by the following impulsive
differential equations :

dx x
d—tl = ra (1 — k—i — A\ (IL'Q + :L'g)) — 0121, (1]
d
K R roxe | 1 — T2 AT A2(z1 +a3) | — maz — O, 2]
dt ko
d
ﬂ = 733 1-— M — )\3(1'1 + 5E2) + mxo — 93$37 [3]
dt k3
zi(t]) = Tizi(t), [4]
za(tf) = (Ta — R)xa(ts), 5]
z3(t]) = Tsas(t;) + Roa(t:), [6]

wheretiﬂ —t;=7>0,VieN, 0 <ry,0; <ry+mandfz < rs.

The variables and parameters are :

T : period between two successive drug with instantaneous effect,

x; : normal (resp. sensitive tumor, resistant tumor) cells biomass for j = 1 (resp. 2,3),

r; : growth rates of the normal (resp. sensitive tumor, resistant tumor) cells for j = 1
(resp. 2,3),

k; : carrying capacities of the normal (resp. sensitive tumor, resistant tumor) cells for
7 =1 (resp. 2,3),

A; : competitive parameters of the normal (resp. sensitive tumor, resistant tumor) cells for
7 =1 (resp. 2,3),

T} : survival fractions of the normal (resp. sensitive tumor, resistant tumor) cells, their va-
lues are completely determined by the quantity of injected drug with instantaneous effect.



6; : elimination rate of normal (resp. sensitive tumor, resistant tumor) cells by the drug
with continuous effect.

R : Fraction of cells mutating due of the dose of the drug with instantaneous effect, which
is less than T5.

m : acquired resistance parameter usually it is very small.

Note that if 8; = 0, then we obtain the models studied in [1] and [5].

2. Analysis of the model

In the following, we proceed to analyze our model. To this purpose, we shall use a
fixed point approach.
Let ®(t, X¢) be the solution of the system (1)-(6) for the initial condition Xj.
We define the mappings Fi, b, F3 : R — R by

Fi(xy, 2, 23) = rixy (1 I C IE3)) — 0121,
)

_ +
Fy(z1, @2, 23) = rowa (1 — 25 — Ay(21 + $3)) — mx2 — O,

k

k3
and @1, @2, @3 : R3 — R3 by
O1(x1,x2,23) = Th21,
@2(1’1,1’2, $3) = (TQ — R)l’g,
@3($1, o, 1‘3) = T3£E3 + RIL’Q.
Furthermore, let ¥ : R x R3 — R23 be the operator defined by

F3($1, ,732,1:3) = r3x3 (1 — Zatz3 )\3(.1’1 + .1’2)) + mxy — 0323,

(7, Xo) = O(®(T, X)), [7]

and denote by Dx ¥ the derivative of ¥ with respect to X. Then £ = ®(.,Xy) is a
T-periodic solution of (1)-(6) if and only if

\Ij(Ta XO) = XO) [8]

i.e. Xg is a fixed point of ¥(7,.), and it is exponentially stable if and only if the spectral
radius p(Dx ¥ (r,.)) is strictly less than 1 ([2]). A fixed point X of ¥(7,.) is the initial
state of (1)-(6) which gives a 7-periodic solution £ verifying £(0) = Xj.

We reduce the problem of finding a periodic solution of (1)-(6) to a fixed point problem.
Here, ¢ is a periodic solution of period 7 for (1)-(6) if and only if X is a fixed point
for (8). Consequently, to establish the existence of nontrivial periodic solutions of (1)-(6),
one needs to prove the existence of nontrivial fixed points of ¥(r,.).



REMARQUE. —

The problem (1),(4), obtained by taking x5 = 0 and x3 = 0, has a 7p-periodic solution
x(t,xo) = x5(t), where

ry— 61 (Ty — exp(—(r1 — 61)70)) exp((r1 — 61)t)
(& exp((rl — Gl)t)(Tl — exp(f(rl — 91)7’0)) + (1 — Tl),
. _ r1—07 (Th—exp(—(r1—01)T

with 29 = k1™~ 17;;’((7(&1791)700))).

We denote by ¢ = (z5,0,0) which is a solution of (1)-(6), we call it trivial solution.

.rs(t) = k/’l

0<t<m,
[9]

2.1. Stability of ¢

The solution given by (9) is defined and stable in the one dimensional space if T} >
exp(—(r1 — 601)70). That is

1 1
In(=]. 1
TO>7’191H(T1) [10]

To determine the stability of the trivial solution { = (z5,0,0) in the three dimensional
space, we must calculate D x U (7o, X) where X = (29,0, 0). We have

Dx¥(r9,Xo) = DxO(®(r0,X0)) 2% (70, X0)
Tlaq)llg‘l;)l,Xo) Tlaq)llg‘l;)ZXo) Tlaélé‘;o;Xo)
= 0 (T> — R))22edree) 0
0 Ra@zgggxo) +T36‘1>3(%;027X0) Tsa@sé()‘ls;ongo)

The solution ( is exponentially stable if and only if the spectral radius is less than one,

that is
09,

Tj5= (10, Xo)| < 1, forj =1,2,3.

J
Using the variational equation associated to the system (1)-(6)

d
71 (Dx®(¢, Xo)) = Dx F(2(¢, X0))(Dx ®(t, Xo)), [11]
with the initial condition D x ®(0, X) = Idrs we obtain

0Py (70,X0) __ T7267(r1701)‘ro
6$1 - 1 ?

—roXAo K oA
0P (10,X0) _ ) (rrermf(nfel)%’(l)m
—2 0l =TT e 1
612 1 )
—r3A3Ky a A
%3 (10,X0) _ o (rg—B3—(r1—6,) 132381y 7,
—=3.020] T e 1
Oxs 1 )
ragiz K roXg K
(rg—0g—(rqg —0q) 32351y g1y 222K 1%
0% (10,X0) _ me 3—603—(r1—61 =1 U(l—e (r1—-01)70) " 71 fT() e(m_92_(r3_93)_m)u1(r3/\37r2)\2)r—11(u)du
Oxo - r3X3 Ky r3AzK) 0 ’

Tl T (1767(7‘1791)70) T



r3A3 Ky
1

991 (10,X0) _ _ (m—0)MK i (Th—e”T170070)e (" 70070 o7 (s go)e 71—
Oz3 - 5_T3X3K] fo e I (u)du7
Tf(l—ef(rlfel)"o) 1
iy — —(ry — roXo K
0®1(m0,X0) _ (r1 =)\ Ky (T —e~ 17 91)70) e~ ("1 ~f1)70 T0 (rg—Ba—m)u yl— 2521
Oxa - o T2X2Ky fO € I ! (u)du
le(l—ef(rlfel)fo) 1

+vn]goe“y””“fkjgﬁklUU(ﬁfe“?—%—UB—ﬂ—mHU“““*”Aﬂéf@ﬂmﬂdu}
for 0 < t < 79 where I(t) = (T} — e~ ("1=01)70)(r1=01)t 1 (1 — T}) (Fore more details,
see [5]).
In view of the fact that Ao K71 < 1 and A3K; < 1 (see [8]), we have

r2Ag Ky
Ty<T, " +R [12]
and
r3Asky
Ts <1y ™ . [13]
( is exponentially stable as an equilibrium for the full system (1)-(6) if and only if
T2 Ky 33Ky
1 n(T, ™ (Th—-R)! In (7, ™ Ty'
ln(T_l) < 79 < min
=6 " ry = 0p —m = (r1 = 1) 1y — 0 — (11— 01) B0
[14]

We have the following result.
Theorem 2.1 If (12)-(14) are satisfied, then ( is exponentially stable.
If conditions (12), (13) are satisfied and

r2A2 Ky r2Ao Ky
1 @

roXpKy  rgigky T27%27m—(r—01) rog—0g—m—(r;—61)

i ™ T3A3 K
1 b 7“3*93*(7“1*91)%11 rg—03—(r1—01)

Ty > T, T, 4R, [15]

roAo Ky r3A3 Ky T2 Ky
In|T, ™ (T»—R)’ n|{T, ™ Tyt In|T, ™ (Tx—R)’

Ao K 33 K - Ao K1 *
ra—02—m—(r1—01) 2251 1y gy () —y) T223KL r2—02—m—(r1—01) 22251

r3A3 Ky
™

we have min

That is, the tumor eradication solution ( is stable for

raXa Ky L
In{T, ™ T, — R)™
ln(TL1)<T< n(l " ) ) [16]
r= 0 T =0y —m— (g — 0y) 2

If conditions (12), (13) are satisfied and

roAo Ky
rodg Ky rgigKy T2 %2 m—(r1—01) 1 T
" 1 r3—03—(ry—67) 3321 Ts*eaf(rlfel)rar%

T, < T, T +R, [17]

K
% rg—fg—m—(r1—071)




r2A2 Ky r3A3 Ky r3d3 Ky
1n(T1 1 (TQ—R)l) 1n(T1 1 Tsl) In(T, ™ 1!

Ao K 33 K - 3 A3 K1 *
7‘2—92—777,—(7‘1—91)% ’ T3—93—(T1—91)T3T% TS_GB_(TI_B]‘)T&T%

we have min

That is, we have stability of ¢ for

r3A3 K1
In (T1 B T31)

ry — 6 r3 — 03— (r1 — 91)—7“3?31[(1

2.2. Bifurcation analysis

We use Lyapunov Schmidt bifurcation to find nontrivial periodic solution of the model
(1)-(6). A necessary condition for the bifurcation of nontrivial periodic solutions near ( is

det(Dx M (0, (0,0,0))) = 0.

To find a nontrivial periodic solution of period 7 with initial data Xo = (0,0, 0), we
need to solve the fixed point problem

X =9(r, X). [19]
Let 7 and X such that 7 = 75 + 7 and X = X + X. The equation (19) is equivalent to
M(7,X) =0, [20]
where
M(7,X) = (Mi(7, X), Ma(7, X), M3(7, X)) = Xo+ X — ¥(r0 + 7, Xo + X).

If (7, X) is a zero of M, then (X, + X) is a fixed point of ¥(7y + 7, .). Since ( is a trivial
To-periodic solution (1)-(6), then it is associated to the trivial fixed point Xy of ¥(7p,.).
Let

ag by <
DxM(0,(0,0,0)) = 0 e O . [21]

0 hy i

It follows that (see [5] for details) :

ay =Ty (T — e~ (r=f)m), .

—(r1—01)70\,—(r1 —01)7 i
by = KT e { ST era=ta=mu 1= E5 () gy,
T1(1_ef(r1*91)fo) 1

radz Ky

+ mfo‘fo e(ra—03)u 1= =5 (U)(fou e(rz702f(rgfg)fm)pj(ﬁ)\z*w/\z)I:—f(p)dp)du} ,

(- (- rag K

f_ ()M K (T —e” M1 70070)e = (M 000 g (g gy 71— T35

ch = NEEYYS) Jole 1 T (u)du,
Tl(lfef(ﬁ*el)fo) 1




Zrado Ky roAg K
! ™1 (TQ*GQfmf(Tlfel)—2 2 1)7’0
ey =1—(Ty — R)T, e T
Zrado Ky rodg Ky

™ —03—m—(r1—0
By = —RI, T elrmtmm (o) B,
ra3Ag K roXg K
(r3—63—(r1—01) 253=L)rg —(r1—01) 222201 Kq
me m (1—e”t1771070) ™ T0 (ro—0z—(rs—03)—m)u 7(rsds—rad2) =
_T3 r3A3 Ky r3Az3 Ky fO 6( 202~ (ra=0s) ) I = (u)du
T, T (l—e—(r1-91)70) ™1
and
—r3A3 K

o (r3—03—(r1—01) 325y

h=1-1T5177 ™
From the stability of the solution z in the one dimensional space we have a > 0, it
follows that e(i(, = 0 is necessary for the bifurcation.

Equality .
r2A287
In (T1 T (Ty — R)_l)

T2 K ?
T1

T0 =
0 7“2—(92—771—(7“1—91)

corresponds to e, = 0 and equality

r3A3 K1
In (T1 m Tgl)

_ , 23
70 r3 — 03 — (r1 — 91)T3>;3;K1 1231

corresponds to i, = 0. We have three cases :

1)Case 1 : ¢, = 0 and i, # 0. Suppose that (10)-(13), (15) and
(22) are satisfied. With the above notations, we deduce that M (0,(0,0,0)) =
0, dim(ker[DxM (0, (0,0,0))]) = 1 with ker[DxM(0,(0,0,0))] =
/h/ / /
span{ (COI—,,O — —,0, 1, —_—,0 }. Then equation (20) is equivalent to
29l Aag )
Mi(T,aYo+Z) = 0,
My(7,aYo+Z) = 0, [24]
Ms(T,aYo+2Z) = 0,

/AN / !
coho _bo | Mo
!z 7 -/
oo Qo Lo

where Yy = (

R3.
From the first and last equations of (24), we see that

OM(0000)  OM(0.0.0.0) a

z 2= _ _ /Ay

det | oar(0,(0,00) oMy (0.(0,0,0) | = det ( 0 i ) = ag-ip # 0.
621 623

), 7 = (z1,07z3),X = aYp + Z and (04,2’1,23) S

From the implicit function theorem, we can solve M; (7, oYy + Z) = 0 and M5(7, oYy +
Z) = 0 near (0,(0,0,0)) with respect to Z as a function of 7 and « and find a



unique continuous function Z*, such that Z*(7, o) = (27 (7, @), 0, 23 (7, «)), Z*(0,0) =

(0,0,0),
/h/ b/ h/
M, (7", <<CO,—,/O — —?> o+ zf(f,a),a,,—,OaJrzg‘(ia))) =0
ahi a i
0%0 0 0
and

‘oho b h
M (i ((C,Of - ,—°> a+zi‘(ia),a,f—0a+z§(ia)>> =0,
aopto ao 10

for every (7, ) small enough.
zZ* z*
Moreover,2 we  have ( 88904) (0,0) = (0,0,0) and 8677_
—01)*k1 (1 — Ty )e~(r1=0)m0
((Tl )k (1 —Ty)e 10,0).
Tl(l - e—(’!‘1—91)‘l’0)2
Then M (7, X) = 0 if and only if

‘oho b h
f2(T,0) = My <7‘, <<C/O fO — —0> a—l—zf(T,a),a,—,.—Oa+z§(7,a)>> =0.
aplo aop 20

[25]
We now proceed to solve equation (25).
We have f2(0,0) = 0.
From the Taylor development of f; around (7,a) = (0,0), we find that
6f2(9,0) _ 0£2(0,0) _ 0.
orT R Oa ) )
Let Ay = %ﬁ?v‘”, By = %éoa,o) and Cy = %.5270). It’s shown that A, = 0. Further,

for Ay = 0 we have By = —(T5 — R) (12 — 62 — m) elr2=02=m)70 () and

(7‘2—92—771)7’0
C: = (T-R) > (elramtemmmo 1)

k/’g (TQ — (92 — m)

_r3A3Ky
Ty

k2

2 (Tz*@gfm)‘ro 70 —rgAgKq u (""2*92*(""3703)7771)5
(T, — R)Z2C / e(rs=0)u [ () ( / <
0 0

-/
40

—n (ro—62—m)71o T0 (rg—03)A3 K
+2(T2 B R) ( 0) { To€ — / e(rs—Gs)uI43 Tf 3 1( )d
R 0

1 _ e—(’!‘l—el)‘l’o) 37‘1
(for more details, see [5]). From conditions cited above, we have i, > 0 and h{, < 0, then
Cy > 0, therefore BoCy < 0. Hence

2
«
f2(7, @) = BoTa + 027 +o(laf* +|7%).

By taking 7 = oa, we have fo(oa, ) = O‘7292(0, «) where g2(0,a) = 2Bso + Cy +

0a (14 0*) . Moreover %(0,0) = 2By < 0 and g2(0,0) = 2Bso + Cs. So, for

oo = —2%2 we have g2(09,0) = 0 and %(00,0) # 0.

ds) du

U ey



Using the implicit function theorem we find a function o(«) such that for « small
enough g2(o(a),a) = 0and (0) = 0g = — 2%22.
Then, for « near 0 and 7(a) = o(a)a we have fo(7 (), ) = 0.
Theorem 2.2 If conditions (10)-(13), (15) and (22) hold, then we have a Dbifur-
cation of one nontrivial 7(«a)-periodic solution of (1)-(6) with initial condition
/

cohy _ bo ‘(= ho e .
xo + - — = aJrzl(T(oz),oz),oz,fi—/oz+z3(7(a),a) and period T(a)) =

agig 0 A
70 + T(@) for a(> 0) and A2 small enough, where 7(a) = _2%32 o+ o(a) and
*(+ 2 r1—601 2k1 1-T (—57(7"1791)"0
#(7(0), 0) = —Gg =IO T U0 4o ),

2)Case 2 : ey # 0 and ij, = 0. Suppose that (10)-(13), (17) and (23)
are satisfied. We have M (0, (0,0,0)) = 0, dim(ker[DxM (0, (0,0,0))]) = 1 with

_ _ A
ker[Dx M (0, (0,0,0))] = span{ (%, 0, 1) b LetYy = (a_/co, 0, 1>, Z = (21, 29,0),
_ 0 0
X = aYp + Z and (o, 21, 22) € R3.
From the first and second equations of (24), we have

OML(0000)  OM(0.0.0.0) a bl

z z _ YA

det | oan0,(0,00) M0, 0,0,0) | = det ( 0 e ) = ag-eq 7 0.
0z 0z2

From the implicit function theorem, we can solve M; (7, oYy + Z) = 0 and M2 (7, aYo +
Z) = 0 near (0,(0,0,0)) with respect to Z as a function of 7 and « and find a
unique continuous function Z*, such that Z* (7, o) = (27(7, ), 23 (7, @), 0), Z*(0,0) =
(0,0,0),
/
M, (7_', <2—?a + zf(ia),z;(ia),a)) =0

0
and

/
s (7. (- Bt i) 5 a)a) ) <o
0
for every (7, «) small enough.

oz* 0z*
p) (0,0) = (0,0,0) and F(
Jo! 7
(T1 — 91)2]€1(1 — Tl)ei(rliel)‘ro

Moreover, we have 0,0) =

( T1(1 je—(T1—91)'ro)2 70a0)~
Then M (7, X) = 0 if and only if
/
fo(7, o) = Ms (T, (—2—% +21(7,a), 23 (7, ), a)) = 0. [26]
0

We now proceed to solve equation (26).
We have f3(0,0) = 0.



From the Taylor development of f3 around (7,a) = (0,0), we find that w =
0f3(0,0) __ 0

o - Y
Let A3 = %ﬁ?‘”, B3 = %g)olo) and C3 = %(2’0). It’s shown that A3 = 0.
Further, for A3 = 0 we have Bs = —(rs — 03)T3e(3=%)70 < 0 and C3 =
2r310 K5 ' T3e("37%)70 > (. Hence

2
(@]
f3(7,a) = BsTa + 037 +o(la]* +|7%).

Using the same arguments as in the case 1, we have the following results.
Theorem 2.3 If conditions (10)-(13), (17) and (23) hold, then we have a Dbifur-

cation of one nontrivial T(a)-periodic solution of (1)-(6) with initial condition
(zo + <ﬂ> o+ z’f(f(a),a),(),a) and period () = 19 + T(a) for a(> 0) and
do

Oy (r1—=61)%ki(1-Ty)e” (1170
2B3 ri(1—e—(r1=01)70)2

A3 small enough, where 27 (T(a), ) =
T(a) = —2%“"304 + o(a).
3) Case 3:¢ep =0 = iy,

a + o(a) and

@) If by # 0, then Ay = By = Cy = 0, which is an undetermined case, to study it we
need to determine the higher derivatives of fs.

(ii) If hy, = 0, then dim ker(E) = 2, in this case the approach above can not be applied.

3. Conclusion

In this work we have considered a model of chemotherapy treatment by two drugs
for population with normal cells, sensitive tumor cells and resistant tumor cells, one with
instantaneous effect and the other with continuous effect. We have studied the stability of
the trivial solution corresponding to the eradication of the tumor, and we find necessary
conditions to have eradication of the tumor. Otherwise, we lose stability and bifurcation of
nontrivial periodic solutions will appear, it corresponds to the persistence of the tumor. We
have treated two cases, for the third one we need an other approach. It will be interesting
to consider the resistance with respect to the drug with continuous effect.
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