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ABSTRACT

3D volume reconstruction in cryo-electron tomography is
possible by using Transmission Electron Microscope (TEM)
images from different tilt angles. The misalignment of these
images is one of the limits to the quality of the reconstructed
object. There are many alignment techniques to deal with
this problem. Their common feature is to correct the 2D
geometric transformation in the projection images. Never-
theless, 3D geometric transformation can occur in the TEM
acquisition including tilt angular uncertainty. In this paper,
we proposed a new multi-scale approach based on a Conju-
gate Gradient optimization of a cost function between the 3D
reconstructed and the projection images with the purpose to
find all the 3D parameters of geometric transformation. Tests
on synthetic and real data prove the accuracy of our geometric
transformation estimation.

Index Terms— Electron tomography, 3D reconstruction,
Geometric transformation uncertainty, Conjugate Gradient,
Multi-scale.

1. INTRODUCTION

Cryo-electron tomography (Cryo-ET) provides a way to in-
vestigate the inner structure of the biological cell in its natural
state. The idea is to reconstruct a 3D model of the specimen
structure using a recorded series of 2D projections captured
by tilting the specimen under the electron beam. Different
schemes of tilting around an axis normal to the electron beam
can be used (cf. Fig.1), but usually the maximum range of
tilting is ±70◦ [1].
Numerous reconstruction methods are used in cryo-ET,
mainly belonging to two families. First, the analytic fam-
ily, with methods as filtered back-projection or direct Fourier
inversion, implemented in Fourier’s space [2]. The second
one is the algebraic family, with iterative real-space methods
such as ART [3] or SIRT [4].
There are several factors that can reduce the quality of the
reconstruction such as: (i) the low electron dose used during
the acquisition to minimize the weight of radiation damage
[5]; (ii) the thickness of the ice used in the sample fixation

Fig. 1. TEM acquisition mechanism.

[6]; (iii) the missing data corresponding to the uncovered pro-
jection space; (iv) the uncertainty on the angular information
due to mechanical imprecision of the microscope [7]; (v) the
error made on the projection geometric transformation. The
electron dose, the ice thickness and the missing data are an
acquisition problem that cannot be corrected directly. Their
effect on the reconstructed results are minimized in a post-
processing step. The angular uncertainty is considered as a
negligible factor [7], which leaves it untreated by the majority
of the proposed alignment approach to correct the projection
geometric transformation. In fact, the resolution of the recon-
struction at the time when [7] was published was mediocre,
so the angular uncertainly does not have the effect over it.
Nowadays, and due to the improvement of the reconstruction
techniques, the resolution becomes important especially for
the reconstruction and the location small particles such as
ribosomes and nucleosomes. Treating the angular uncertainty
will permit a better reconstruction resolution.
The two well common alignment techniques are [8]: (1)
marker tracking, where gold particles are implanted into the
samples before the image acquisition, then these markers are
used to align the images [9], [10]; (2) pattern matching with
cross-correlation methods, where alignment is carried out by
cross-correlation calculation between each successive couple
of images [11], [12].



In our work, we focus on the marker free methods. In fact,
two successive projection images are not identical but similar
and we can use them to detect the alignment parameters. A
deficiency of this technique is the accumulation of errors from
one alignment pair to another [13]. In addition, a stretching
according to the cosine of the tilt angle for each projection
image is needed before the alignment to establish a common
area between the images for the technique to work [14].
To overcome those weakness, Dengler proposed in [15] a
multi-resolution approach to refine the alignment parame-
ters by coupling each projection image with its respective
re-projection image from the reconstructed object. Many
development of this method were proposed. The most recent
one is the method of Tran et al. [16]. They proposed a hierar-
chical method to correct the reconstruction and the alignment
problems in an alternating way. They treat the transformation
parameters (translation, rotation, scale). It is inspired from
the cross-correlation method, beginning by finding the first
set of transformation parameters by an optimization between
each successive pair of projection images. After that, a first
reconstruction is applied, followed by a refinement of the set
of transformations. If the method has not yet converged, they
repeat the reconstruction with the founded set of transforma-
tions.
The defect of all these proposed methods is the fact that
they only correct the alignment of the 2D projection images,
which cannot cover all the possible 3D geometric transforma-
tion that can occur in the acquisition process. For that reason,
we propose a new approach targeting the correction of the 3D
geometric transformation on the reconstructed object directly.
The background and our method are introduced in Section
2, then our method is tested in Section 3 and a conclusion is
given in Section 4.

2. JOINT 3D ALIGNMENT-RECONSTRUCTION
MULTI-SCALE APPROACH

Correcting directly the 3D reconstructed object will be more
accurate than correcting first the 2D projection images with
each other, and then reconstructing the 3D object. Especially
for the cryo-ET, where the missing wedge problem affect the
performance of the reconstruction method. Our idea is to
seek the 3D transformation parameters for each tilt angle that
produces a projection image similar to its corresponding real
one and simultaneously to correct the reconstructed 3D ob-
ject. We use a hierarchal multi-scale image decomposition
process (cf. Fig.2), to estimate the transformation parameters
in a coarse to fine way. In [17], we presented our first attempt
to correcting the angle uncertainty. Here, we present our full
approach of 3D alignment-reconstruction. We first present the
used algebraic model.
Let f = (f1, f2, . . . , fN)T be the vector including the N1 ×
N2 × N3 image f to be reconstructed, where N = Π3

d=1Nd

is the number of voxels of f . Let pi be the 2D projection

Fig. 2. Multi−scaling the original projections to iteratively
correct the transformation parameters and improve the 3D re-
constructed model.

image of size M = M1 × M2 according to the ith tilt an-
gle. Then, the vector form of pi is pi = (pi

1, . . . ,p
i
M)T .

We note S the number of acquired projection images and
P = (p1, . . . ,pi, . . . ,pS).

Let us talk now about the possible geometric transforma-
tion undergone by the 3D image f during the acquisition. We
present first the translation model, then the rotation one.
Suppose that the detector plan is parallel to the (OX, OY )
plan. The image can translate in (OX, OY ), which leads
to the same translation over the detector plan. The transla-
tion of the image according to (OZ), which is the focal axis,
will produce scaling effect in the projection image. Thus, as
we begin our approach by using a 3D estimated object, the
3D movement of this object can describe directly, at the same
time, the 2D translation and the 2D scaling in the projection
image pi . These transformations will disturb the discretiza-
tion of the reconstruction space. For that raison, we use the
interpolation by means of B splines to prevent this problem.
Let T be a N×N translation matrix applied on the vector f :

f i = T(txi, tyi, tzi)f (1)

Each line of T describes the equation of translation with the
interpolation according to (txi, tyi, tzi), where the kth line of
T contains the interpolation coefficients to find the translated
voxel fik.
We consider now the rotation. Usually, there are two types
of rotation in cryo-ET, (i) the rotation generated by the tilt
angle and (ii) the rotation that may occur in the detector plan.
Using the Euler angular system (α, β, γ), we can present both
rotations in the same time. We will use the same approach
we used for the translation above. In our work, we do not
apply the rotation on the image, but instead, we apply it to the
projection lines. In fact, we use a M × N matrix W which
project the vector f into the vector pi according to the angles
(αi, βi, γi) as:

pi = W(αi, βi, γi)f (2)

In fact, each line of the matrix W describes one of the projec-
tion lines passing throws the image. Many methods are pro-
posed to calculate this matrix such as ”voxel driven” and ”ray



driven” [18]. However, in our work, the calculation of W is
based on the ”distance driven” method proposed by [19]. One
must mention that both matrices T and W are sparse.
Our aim in this work is to correct every possible geometric
error that can take place in the reconstruction step. The in-
put data is a set of uncertain tilt angles and the corresponding
real projection images. Hence, we propose to use a function
that measures the distance between the real projection data
and the projection data found after re-projecting the recon-
structed volume according to the each current triple of angles
(αi, βi, γi) and its translation (txi, tyi, tzi). Thus, by refining
all these parameters, we can assure having a more accurate re-
constructed object.
We begin by defining this cost function C which stands for the
Euclidean distance between the real set of projection data Π
and the re-projection data from the reconstructed object P, so
we have:

C(f ,α,β,γ, tx, ty, tz) =
1

2
‖Π−P‖22 (3)

=
1

2

S∑
i=1

‖πi − pi‖22 (4)

This equation can be developed as:

C(f , . . . , tz) =
1

2

S∑
i=1

M∑
j=1

(πi
j − pi

j)
2 (5)

where,

pi
j =

N∑
k=1

wjk(αi, βi, γi)f
i
k (6)

=

N∑
k=1

wjk(αi, βi, γi)
( N∑

l=1

tkl(txi, tyi, tzi) fl
)

(7)

The cost function C depends on four parameters, the cur-
rent projections, the current reconstructed volume, the cur-
rent triple of tilt angles and the set of translation parameters
for each triple of angles.
We use the square in the equation (3) to ensure the positivity
of the function. The similarity between the two types of pro-
jections reaches its maximum when the function C reaches its
minimum. In this case, the solution set of our problem is:

(f̂ , α̂, β̂, γ̂, t̂x, t̂y, t̂z) = argmin C(f , . . . , tz) (8)

The equation (8) is approximately convex in f (due to the us-
ing of a quadratic sum) and the set of angles and translation
parameters are close to the solution by hypothesis. We can
therefore assume that in this case, the optimization problem
of Eq. (8) is convex. Moreover, it is plain that the cost func-
tion C is not linear according to its rotation parameters. Thus,
we have to use a non-linear minimization algorithm. Among
the known deterministic optimization algorithms mentioned

in the literature [20], we choose the non-linear version of the
Conjugate Gradient (CG) algorithm [21]. The CG method is
the most prominent iterative method for solving sparse sys-
tems of equations. We preferred this algorithm for its con-
vergence rate, its simple implementation and since it appeals
only to the first order derivative.
The first step to use the CG is to calculate the gradient of
our cost function C. In order to facilitate this phase, we have
switched the equation (5) as:

C(f , . . .) =
1

2

S∑
i=1

M∑
j=1

(Cr(f , αi, βi, γi, txi, tyi, tzi, j))
2 (9)

with Cr(f , . . . , j) = πi
j −

∑N
k=1 wjk(αi, βi, γi)f

i
k.

We first compute∇Cr, then∇C. Due to the discrete nature of
the cost function, we use the finite difference to estimate the
gradient values. We use the Meyer wavelet to establish the
multi-scale hierarchal decomposition [22].
After this decomposition, the roughest scale of the projection
set is used with the given tilt angles to initialize our process.
Then alternatively, the tilt angles, transform parameters and
the reconstructed volume are optimized and the resolution is
refined. Alg.1 summarizes our method.

Algorithm 1 Joint 3D alignment-reconstruction multi-scale
initialization α0 = αinit, β0 = βinit, γ0 = γinit , tx0 =
txinit, ty0 = tyinit, tz0 = tzinit, ∆C ← +∞, n
while n ≥ 0 do

Πn ← Scale projection(Π, n)
f ← reconstruction(Πn,α,β,γ)
while iter < itermax AND ∆C ←≤ ε do

compute gradient∇C(fiter, (α,β,γ)iter, (tx, ty, tz)iter)
apply CG(fiter+1, (α,β,γ)iter+1, (tx, ty, tz)iter+1)
∆C = C(fiter, . . .)− C(fiter+1, . . .)
fiter ← fiter+1, (α,β,γ)iter ← (α,β,γ)iter+1

(tx, ty, tz)iter ← (tx, ty, tz)iter+1, iter ← iter + 1
end while
n← n− 1, iter ← 0, ∆C ← +∞
Scale translation(tx, ty, tz, n)

end while
return fiter+1, (α,β,γ)iter+1, (tx, ty, tz)iter+1

3. EVALUATION OF THE METHOD

We present in this section the experimental results of the pro-
posed approach and a reconstruction done by using SIRT with
the alignment method of projections given by [11].
Experiments are conducted on 25 gray-level 3D images of
size 1283. An example of this base is given in Fig.3.
For each image, a set of projections uniformly distributed is
computed using a set of tilt angles in [−70◦ 70◦]. A random
error of translation and rotation is been assigned to each pro-
jection image. In addition, a random error is assigned to the



used tilt angles. In these experiments, we start the process by
decreasing the scale twice. We find in these tests that the ex-
ecution time is around 8× faster when we decrease by each
scale. Due to the lack of place in this paper, we only present
the final results. For each of the 25 images, 6 reconstructions
are carried out and only the one with the minimum cost value
is retained. In fact, the 6 reconstructions are slightly different,
due to the estimation process of the α slop in the CG, which
is using a fixed number of iterations.

Fig. 3. Samples of 3D images from the synthetic base.

To evaluate the results, we compute the Mean Square Error
(MSE) between the real data and i) the reconstructed images
by our method ii) the direct reconstruction after an optimized
alignment by the method proposed in [11].

MSE(%) =
1

N

N∑
i=1

(fi − f̂i)
2 (10)

Fig.4 shows the results for the 25 images. For all the tests, the
MSE is between [0.10 0.35] for our approach, and between
[0.40 0.85] for the other one. Our approach gives the best re-
sults for all the cases, due to the correction that includes not
only the error on the geometric transformation but also the er-
ror affecting the tilt angles.

Fig. 4. Evaluation of the reconstruction performance using
our approach and using the 2D alignment.

The proposed method is also applied to real data, which are
projections of the virus of the Orf disease. Fig.5 presents
some of the projections of the Orf-parapoxvirus. A recon-
structed volume from the given projections and the given tilt
angles with IMAGIC software [23], then filtered by experts,
is also provided. The results are shown in Fig.6. The MSE
between the real projections and the re-projections from our
reconstructed object is equal to 0.36, where the MSE between

the real projections and the re-projections from the reference
volume is equal to 0.53. A reason for this better result is that
the angles have been modified by 0.0847◦ in average by our
process. Thus, our method was able to reconstruct some part
that the other method failed to reconstruct. Another reason
is the filtering of the reference volume that improves the vol-
ume rendering but reduces the matching to the data. The step
was not applied to our reconstruction to emphasize the angle
modification effect.

Fig. 5. Orf-parapoxvirus projections respectively according
to the angles -60◦, -40◦, -10◦, 20◦, and 50◦.

Fig. 6. Reconstruction of the Orf-parapoxvirus: (a) by our
method; (b) reconstruction after alignment by [11]; (c) the
reference reconstructed volume.

4. CONCLUSION

In this paper, we describe a method to refine an object recon-
struction from a set of its tomographic projections and simul-
taneously correct the errors over all rigid transformations in-
cluding the used tilt angles. The starting point of the proposed
method is an approximation of the object (provided by some
reconstruction algorithm) together with a set of given tilt an-
gles used to acquire the projections. Then a cost depending on
these angles, the translations (initially there is no translation)
and the values of the reconstructed volume, is minimized with
a non-linear conjugate gradient. In addition, a multi-scale ap-
proach is used to speed up the optimization process.
Our experiments show that the proposed method improves
the reconstruction of the object in comparison with a method
based on the standard 2D alignment. Further improvements
of the reconstruction can still be obtained in the frame of our
method. In our future work, we plan to incorporate other pa-
rameters such as a priori information about the object to be
reconstructed.
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