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Abstract

We use the formalism of the Rényi entropies to establish the symmetry range of extremal functions in a family of subcriti-
cal Caffarelli-Kohn-Nirenberg inequalities. By extremal functions we mean functions which realize the equality case in the
inequalities, written with optimal constants. The method extends recent results on critical Caffarelli-Kohn-Nirenberg in-
equalities. Using heuristics given by a nonlinear diffusion equation, we give a variational proof of a symmetry result, by
establishing a rigidity theorem: in the symmetry region, all positive critical points have radial symmetry and are therefore
equal to the unique positive, radial critical point, up to scalings and multiplications. This result is sharp. The condition on
the parameters is indeed complementary of the condition which determines the region in which symmetry breaking holds
as a consequence of the linear instability of radial optimal functions. Compared to the critical case, the subcritical range
requires new tools. The Fisher information has to be replaced by Rényi entropy powers, and since some invariances are lost,
the estimates based on the Emden-Fowler transformation have to be modified.

Symmétrie des fonctions extrémales pour des inégalités de Caffarelli-Kohn-Nirenberg sous-critiques
Nous utilisons le formalisme des entropies de Rényi pour établir le domaine de symétrie des fonctions extrémales dans une
famille d’inégalités de Caffarelli-Kohn-Nirenberg sous-critiques. Par fonctions extrémales, il faut comprendre des fonctions
qui réalisent le cas d’égalité dans les inégalités écrites avec des constantes optimales. La méthode étend des résultats récents
sur les inégalités de Caffarelli-Kohn-Nirenberg critiques. En utilisant une heuristique donnée par une équation de diffusion
non-linéaire, nous donnons une preuve variationnelle d’un résultat de symétrie, grâce à un théorème de rigidité : dans la
région de symétrie, tous les points critiques positifs sont à symétrie radiale et sont par conséquent égaux à l’unique point
critique radial, positif, à une multiplication par une constante et à un changement d’échelle près. Ce résultat est optimal. La
condition sur les paramètres est en effet complémentaire de celle qui définit la région dans laquelle il y a brisure de symétrie
du fait de l’instabilité linéaire des fonctions radiales optimales. Comparé au cas critique, le domaine sous-critique nécessite
de nouveaux outils. L’information de Fisher doit être remplacée par l’entropie de Rényi, et comme certaines invariances
sont perdues, les estimations basées sur la transformation d’Emden-Fowler doivent être modifiées.
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1. A family of subcritical Caffarelli-Kohn-Nirenberg interpolation inequalities

With the norms

‖w‖Lq,γ(Rd ) :=
(∫
Rd

|w |q |x|−γd x

)1/q

, ‖w‖Lq (Rd ) := ‖w‖Lq,0(Rd ) ,

let us define Lq,γ(Rd ) as the space of all measurable functions w such that ‖w‖Lq,γ(Rd ) is finite. Our functional

framework is a space Hp
β,γ(Rd ) of functions w ∈ Lp+1,γ(Rd ) such that ∇w ∈ L2,β(Rd ), which is defined as the

completion of the space D(Rd \{0}) of the smooth functions onRd with compact support inRd \{0}, with respect
to the norm given by ‖w‖2 := (p?−p) ‖w‖2

Lp+1,γ(Rd )
+‖∇w‖2

L2,β(Rd )
.

Now consider the family of Caffarelli-Kohn-Nirenberg interpolation inequalities given by

‖w‖L2p,γ(Rd ) ≤Cβ,γ,p ‖∇w‖ϑ
L2,β(Rd )

‖w‖1−ϑ
Lp+1,γ(Rd )

∀w ∈ Hp
β,γ(Rd ) . (1)

Here the parameters β, γ and p are subject to the restrictions

d ≥ 2, γ−2 <β< d −2

d
γ , γ ∈ (−∞,d) , p ∈ (

1, p?
]

with p? := d −γ
d −β−2

(2)

and the exponent ϑ is determined by the scaling invariance, i.e.,

ϑ= (d −γ) (p −1)

p
(
d +β+2−2γ−p (d −β−2)

) .

These inequalities have been introduced, among others, by L. Caffarelli, R. Kohn and L. Nirenberg in [5]. We
observe that ϑ = 1 if p = p?, a case which has been dealt with in [14], and we shall focus on the sub-critical
case p < p?. Throughout this paper, Cβ,γ,p denotes the optimal constant in (1). We shall say that a function

w ∈ Hp
β,γ(Rd ) is an extremal function for (1) if equality holds in the inequality.

Symmetry in (1) means that the equality case is achieved by Aubin-Talenti type functions

w?(x) =
(
1+|x|2+β−γ

)−1/(p−1) ∀x ∈Rd .

On the contrary, there is symmetry breaking if this is not the case, because the equality case is then achieved by
a non-radial extremal function. It has been proved in [4] that symmetry breaking holds in (1) if

γ< 0 and βFS(γ) <β< d −2

d
γ (3)

where

βFS(γ) := d −2−
√

(γ−d)2 −4(d −1) .

For completeness, we will give a short proof of this result in Section 2. Our main result shows that, under Condi-
tion (2), symmetry holds in the complement of the set defined by (3), which means that (3) is the sharp condition
for symmetry breaking. See Fig. 1.

Theorem 1.1 Assume that (2) holds and that

β≤βFS(γ) if γ< 0. (4)

Then the extremal functions for (1) are radially symmetric and, up to a scaling and a multiplication by a con-
stant, equal to w?.

The result is slightly stronger than just characterizing the range of (β,γ) for which equality in (1) is achieved
by radial functions. Actually our method of proof allows us to analyze the symmetry properties not only of
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Figure 1. In dimension d = 4, with p = 1.2, the grey area corresponds to the cone determined by d − 2+ (γ− d)/p ≤ β < (d − 2)γ/d and
γ ∈ (−∞,d) in (2). The light grey area is the region of symmetry, while the dark grey area is the region of symmetry breaking. The threshold is
determined by the hyperbola (d −γ)2 − (β−d +2)2 −4(d −1) = 0 or, equivalently β = βFS(γ). Notice that the condition p ≤ p? induces the
restriction β≥ d −2+ (γ−d)/p, so that the region of symmetry is bounded. The largest possible cone is achieved as p → 1 and is limited from
below by the condition β> γ−2.

extremal functions of (1), but also of all positive solutions in Hp
β,γ(Rd ) of the corresponding Euler-Lagrange

equations, that is, up to a multiplication by a constant and a dilation, of

−div
(|x|−β∇w

)= |x|−γ (
w2p−1 − w p)

in Rd \ {0} . (5)

Theorem 1.2 Assume that (2) and (4) hold. Then all positive solutions to (5) in Hp
β,γ(Rd ) are radially symmetric

and, up to a scaling and a multiplication by a constant, equal to w?.

Up to a multiplication by a constant, we know that all non-trivial extremal functions for (1) are non-negative
solutions to (5). Non-negative solutions to (5) are actually positive by the standard Strong Maximum principle.
Theorem 1.1 is therefore a consequence of Theorem 1.2. In the particular case when β = 0, the condition (2)
amounts to d ≥ 2, γ ∈ (0,2), p ∈ (

1,(d −γ)/(d −2)
]
, and (1) can be written as

‖w‖L2p,γ(Rd ) ≤C0,γ,p ‖∇w‖ϑ
L2(Rd )

‖w‖1−ϑ
Lp+1,γ(Rd )

∀w ∈ Hp
0,γ(Rd ) .

In this case, we deduce from Theorem 1.1 that symmetry always holds. This is consistent with a previous re-
sult (β = 0 and γ > 0, close to 0) obtained in [17]. A few other cases were already known. The Caffarelli-Kohn-
Nirenberg inequalities that were discussed in [14] correspond to the critical case θ = 1, p = p? or, equivalently
β = d −2+ (γ−d)/p. Here by critical we simply mean that ‖w‖L2p,γ(Rd ) scales like ‖∇w‖L2,β(Rd ). The limit case
β = γ−2 and p = 1, which is an endpoint for (2), corresponds to Hardy-type inequalities: there is no extremal
function, but optimality is achieved among radial functions: see [16]. The other endpoint is β = (d −2)γ/d , in
which case p? = d/(d − 2). The results of Theorem 1.1 also hold in that case with p = p? = d/(d − 2), up to
existence issues: according to [9], either γ≥ 0, symmetry holds and there exists a symmetric extremal function,
or γ< 0, and then symmetry is broken but there is no optimal function.

Inequality (1) can be rewritten as an interpolation inequality with same weights on both sides using a change
of variables. Here we follow the computations in [4] (also see [14,15]). Written in spherical coordinates for a
function

w̃(r,ω) = w(x) , with r = |x| and ω= x

|x| ,
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inequality (1) becomes(∫ ∞

0

∫
Sd−1

|w̃ |2p r d−γ−1 dr dω

) 1
2p ≤Cβ,γ,p

(∫ ∞

0

∫
Sd−1

|∇w̃ |2 r d−β−1 dr dω

) ϑ
2
(∫ ∞

0

∫
Sd−1

|w̃ |p+1 r d−γ−1 dr dω

) 1−ϑ
p+1

where |∇w̃ |2 = ∣∣ ∂w̃
∂r

∣∣2 + 1
r 2 |∇ωw̃ |2 and ∇ωw̃ denotes the gradient of w̃ with respect to the angular variable ω ∈

Sd−1. Next we consider the change of variables r 7→ s = rα,

w̃(r,ω) = v(s,ω) ∀ (r,ω) ∈R+×Sd−1 (6)

where α and n are two parameters such that

n = d −β−2

α
+2 = d −γ

α
.

Our inequality can therefore be rewritten as(∫ ∞

0

∫
Sd−1

|v |2p s n−1 d s dω

) 1
2p

≤Kα,n,p

(∫ ∞

0

∫
Sd−1

(
α2 ∣∣ ∂v

∂s

∣∣2 + 1
s2 |∇ωv |2

)
s n−1 d s dω

) ϑ
2
(∫ ∞

0

∫
Sd−1

|v |p+1 s n−1 d s dω

) 1−ϑ
p+1

,

with Cβ,γ,p =αζKα,n,p and ζ := ϑ

2
+ 1−ϑ

p +1
− 1

2 p
= (β+2−γ) (p −1)

2 p
(
d +β+2−2γ−p (d −β−2)

) .

Using the notation

Dαv =
(
α
∂v

∂s
,

1

s
∇ωv

)
,

with

α= 1+ β−γ
2

and n = 2
d −γ

β+2−γ ,

Inequality (1) is equivalent to a Gagliardo-Nirenberg type inequality corresponding to an artificial dimension n
or, to be precise, to a Caffarelli-Kohn-Nirenberg inequality with weight |x|n−d in all terms. Notice that

p? = n

n −2
.

Corollary 1.3 Assume that α, n and p are such that

d ≥ 2, α> 0, n > d and p ∈ (
1, p?

]
.

Then the inequality

‖v‖L2p,d−n (Rd ) ≤Kα,n,p ‖Dαv‖ϑ
L2,d−n (Rd )

‖v‖1−ϑ
Lp+1,d−n (Rd )

∀v ∈ Hp
d−n,d−n(Rd ) , (7)

holds with optimal constant Kα,n,p = α−ζCβ,γ,p as above and optimality is achieved among radial functions if
and only if

α≤αFS with αFS :=
√

d −1

n −1
. (8)

When symmetry holds, optimal functions are equal, up to a scaling and a multiplication by a constant, to

v?(x) := (
1+|x|2)−1/(p−1) ∀x ∈Rd .

We may notice that neitherαFS nor βFS depend on p and that the curveα=αFS determines the same thresh-
old for the symmetry breaking region as in the critical case p = p?. In the case p = p?, this curve was found by
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V. Felli and M. Schneider, who proved in [19] the linear instability of all radial critical points if α > αFS. When
p = p?, symmetry holds under Condition (8) as was proved in [14]. Our goal is to extend this last result to the
subcritical regime p ∈ (1, p?).

The change of variables s = rα is an important intermediate step, because it allows to recast the problem
as a more standard interpolation inequality in which the dimension n is, however, not necessarily an integer.
Actually n plays the role of a dimension in view of the scaling properties of the inequalities and, with respect to
this dimension, they are critical if p = p? and sub-critical otherwise. The critical case p = p? has been studied
in [14] using tools of entropy methods, a critical fast diffusion flow and, in particular, a reformulation in terms
of a generalized Fisher information. In the subcritical range, we shall replace the entropy by a Rényi entropy
power as in [21,18], and make use of the corresponding fast diffusion flow. As in [14], the flow is used only at
heuristic level in order to produce a well-adapted test function. The core of the method is based on the Bakry-
Emery computation, also known as the carré du champ method, which is well adapted to optimal interpolation
inequalities: see for instance [2] for a general exposition of the method and [12,13] for its use in presence of
nonlinear flows. Also see [6] for earlier considerations on the Bakry-Emery method applied to nonlinear flows
and related functional inequalities in unbounded domains. However, in non-compact manifolds and in pres-
ence of weights, integrations by parts have to be justified. In the critical case, one can rely on an additional
invariance to use an Emden-Fowler transformation and rewrite the problem as an autonomous equation on a
cylinder, which simplifies the estimates a lot. In the subcritical regime, estimates have to be adapted since after
the Emden-Fowler transformation, the problem in the cylinder is no longer autonomous.

This paper is organized as follows. We recall the computations which characterize the linear instability of
radially symmetric minimizers in Section 2. In Section 3, we expose the strategy for proving symmetry in the
subcritical regime when there are no weights. Section 4 is devoted to the Bakry-Emery computation applied
to Rényi entropy powers, in presence of weights. This provides a proof of our main results, if we admit that no
boundary term appears in the integrations by parts in Section 4. To prove this last result, regularity and decay
estimates of positive solutions to (5) are established in Section 5, which indeed show that no boundary term
has to be taken into account (see Proposition 5.1).

2. Symmetry breaking

For completeness, we summarize known results on symmetry breaking for (1). Details can be found in [4].
With the notations of Corollary 1.3, let us define the functional

J [v] :=ϑ log
(‖Dαv‖L2,d−n (Rd )

)+ (1−ϑ) log
(‖v‖Lp+1,d−n (Rd )

)+ logKα,n,p − log
(‖v‖L2p,d−n (Rd )

)
obtained by taking the difference of the logarithm of the two terms in (7). Let us define dµδ :=µδ(x)d x, where

µδ(x) := 1

(1+|x|2)δ
.

Since v? as defined in Corollary 1.3 is a critical point of J , a Taylor expansion at order ε2 shows that

‖Dαv?‖2
L2,d−n (Rd )

J
[
v?+εµδ/2 f

]= 1
2 ε

2ϑQ[ f ]+o(ε2)

with δ= 2 p
p−1 and

Q[ f ] =
∫
Rd

|Dα f |2 |x|n−d dµδ−
4 pα2

p −1

∫
Rd

| f |2 |x|n−d dµδ+1 .

The following Hardy-Poincaré inequality has been established in [4].

Proposition 2.1 Let d ≥ 2, α ∈ (0,+∞), n > d and δ≥ n. Then

5



∫
Rd

|Dα f |2 |x|n−d dµδ ≥Λ
∫
Rd

| f |2 |x|n−d dµδ+1 (9)

holds for any f ∈ L2(Rd , |x|n−d dµδ+1), with Dα f ∈ L2(Rd , |x|n−d dµδ), such that
∫
Rd f |x|n−d dµδ+1 = 0, with an

optimal constant Λ given by

Λ=


2α2 (2δ−n) if 0 <α2 ≤ (d −1)δ2

n (2δ−n) (δ−1)
,

2α2δη if α2 > (d −1)δ2

n (2δ−n) (δ−1)
,

where η is the unique positive solution to

η (η+n −2) = d −1

α2 .

Moreover,Λ is achieved by a non-trivial eigenfunction corresponding to the equality in (9). Ifα2 > (d−1)δ2

n (2δ−n) (δ−1) ,
the eigenspace is generated by ϕi (s,ω) = sηωi , with i = 1, 2,. . . d and the eigenfunctions are not radially sym-
metric, while in the other case the eigenspace is generated by the radially symmetric eigenfunction ϕ0(s,ω) =
s2 − n

2δ−n .

As a consequence, Q is a nonnegative quadratic form if and only if 4 pα2

p−1 ≤ Λ. Otherwise, Q takes negative
values, and a careful analysis shows that symmetry breaking occurs in (1) if

2α2δη< 4 pα2

p −1
⇐⇒ η< 1,

which means
d −1

α2 = η (η+n −2) < n −1,

and this is equivalent to α>αFS.

3. The strategy for proving symmetry without weights

Before going into the details of the proof we explain the strategy for the case of the Gagliardo-Nirenberg
inequalities without weights. There are several ways to compute the optimizers, and the relevant papers
are [11,7,8,6,2,18] (also see additional references therein). The inequality is of the form

‖w‖L2p (Rd ) ≤C0,0,p ‖∇w‖ϑ
L2(Rd )

‖w‖1−ϑ
Lp+1(Rd )

with 1 < p < d

d −2
(10)

and

ϑ= d (p −1)

p
(
d +2−p (d −2)

) .

It is known through the work in [11] that the optimizers of this inequality are, up to multiplications by a
constant, scalings and translations, given by

w?(x) = (
1+|x|2)− 1

p−1 ∀x ∈Rd .

In our perspective, the idea is to use a version of the carré du champ or Bakry-Emery method introduced in [1]:
by differentiating a relevant quantity along the flow, we recover the inequality in a form which turns out to be
sharp. The version of the carré du champ we shall use is based on the Rényi entropy powers whose concavity
as a function of t has been studied by M. Costa in [10] in the case of linear diffusions (see [21] and references
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therein for more recent papers). In [23], C. Villani observed that the carré du champ method gives a proof of
the logarithmic Sobolev inequality in the Blachman-Stam form, also known as the Weissler form: see [3,24].
G. Savaré and G. Toscani observed in [21] that the concavity also holds in the nonlinear case, which has been
used in [18] to give an alternative proof of the Gagliardo-Nirenberg inequalities, that we are now going to sketch.

The first step consists in reformulating the inequality in new variables. We set

u = w2p ,

which is equivalent to w = um−1/2, and consider the flow given by

∂u

∂t
=∆um , (11)

where m is related to p by

p = 1

2m −1
.

The inequalities 1 < p < d
d−2 imply that

1− 1

d
< m < 1. (12)

For some positive constant κ> 0, one easily finds that the so-called Barenblatt-Pattle functions

u?(t , x) = κd t−
d

d m−d+2 w2p
?

(
κ t−

1
d m−d+2 x

)
= (

a +b |x|2)− 1
1−m

are self-similar solutions of (11), where a = a(t ) and b = b(t ) are explicit. Thus, we see that w? = um−1/2
? is

an optimizer for (10) for all t and it makes sense to rewrite (10) in terms of the function u. Straightforward
computations show that (10) can be brought into the form(∫

Rd
u d x

)(σ+1)m−1

≤C E σ−1 I where σ= 2

d (1−m)
−1 (13)

for some constant C which does not depend on u, where

E :=
∫
Rd

um d x

is a generalized Ralston-Newman entropy, also known in the literature as Tsallis entropy, and

I :=
∫
Rd

u |∇P|2 d x

is the corresponding generalized Fisher information. Here we have introduced the pressure variable

P= m

1−m
um−1 .

The Rényi entropy power is defined by
F := E σ

as in [21,18]. With the above choice of σ, F is an affine function of t if u = u?. For an arbitrary solution of (11),
we aim at proving that it is a concave function of t and that it is affine if and only if u = u?. For further refer-
ences on related issues see [11,22]. Note that one of the motivations for choosing the variable P is that it has a
particular simple form for the self-similar solutions, namely

P? = m

1−m

(
a +b |x|2) .

Differentiating E along the flow (11) yields

E ′ = (1−m)I ,

7



so that
F ′ =σ (1−m)G with G := E σ−1 I .

More complicated is the derivative for the Fisher information:

I ′ =−2
∫
Rd

um
[

Tr
((

HessP− 1
d ∆P Id

)2
)
+ (

m −1+ 1
d

)
(∆P)2

]
d x .

Here HessP and Id are respectively the Hessian of P and the (d ×d) identity matrix. The computation can be
found in [18]. Next we compute the second derivative of the Rényi entropy power F with respect to t :

(F )′′

σE σ
= (σ−1)

E ′2

E 2 + E ′′

E
= (σ−1)(1−m)2 I 2

E 2 + (1−m)
I ′

E
=: (1−m)H .

With σ= 2
d

1
1−m −1, we obtain

H =−2
〈

Tr
((

HessP− 1
d ∆P Id

)2
)〉

+ (1−m) (1−σ)
〈

(∆P−〈∆P〉)2〉 (14)

where we have used the notation

〈A〉 :=
∫
Rd um A d x∫
Rd um d x

.

Note that by (12), we have that σ> 1 and hence we find that F ′′ = (E σ)′′ ≤ 0, which also means that G = E σ−1 I

is a non-increasing function. In fact it is strictly decreasing unless P is a polynomial function of order two in x
and it is easy to see that the expression (14) vanishes precisely when P is of the form a +b |x − x0|2, where a,
b ∈R, x0 ∈Rd are constants (but a and b may still depend on t ).

Thus, while the left side of (13) stays constant along the flow, the right side decreases. In [18] it was shown
that the right side decreases towards the value given by the self-similar solutions u? and hence proves (10) in
the sharp form. In our work we pursue a different tactic. The variational equation for the optimizers of (10) is
given by

−∆w = a w 2 p−1 −b w p .

A straightforward computation shows that this can be written in the form

2m um−2 div
(
u∇P

)+|∇P|2 + c1 um−1 = c2

for some constants c1, c2 whose precise values are explicit. This equation can also be interpreted as the varia-
tional equation for the sharp constant in (13). Hence, multiplying the above equation by ∆um and integrating
yields ∫

Rd

[
2m um−2 div

(
u∇P

)+|∇P|2]∆um d x + c1

∫
Rd

um−1∆um d x = c2

∫
Rd
∆um d x = 0.

We recover the fact that, in the flow picture, H is, up to a positive factor, the derivative of G and hence vanishes.
From the observations made above we conclude that P must be a polynomial function of order two in x. In
this fashion one obtains more than just the optimizers, namely a classification of all positive solutions of the
variational equation. The main technical problem with this method is the justification of the integrations by
parts, which in the case at hand, without any weight, does not offer great difficulties: see for instance [6]. This
strategy can also be used to treat the problem with weights, which will be explained next. Dealing with weights,
however, requires some special care as we shall see.

4. The Bakry-Emery computation and Rényi entropy powers in the weighted case

Let us adapt the above strategy to the case where there are weights in all integrals entering into the inequality,
that is, let us deal with inequality (7) instead of inequality (10). In order to define a new, well-adapted fast
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diffusion flow, we introduce the diffusion operator Lα =−D∗
αDα , which is given in spherical coordinates by

Lαu =α2
(
u′′+ n −1

s
u′

)
+ 1

s2 ∆ωu

where ∆ω denotes the Laplace-Betrami operator acting on the (d −1)-dimensional sphere Sd−1 of the angular
variables, and ′ denotes here the derivative with respect to s. Consider the fast diffusion equation

∂u

∂t
=Lαum (15)

in the subcritical range 1− 1
n < m = 1− 1

ν < 1. The exponents m in (15) and p in (7) are related as in Section 3 by

p = 1

2m −1
⇐⇒ m = p +1

2 p

and ν is defined by

ν := 1

1−m
.

We consider the Fisher information defined as

I [P] :=
∫
Rd

u |DαP|2 dµ with P= m

1−m
um−1 and dµ= sn−1 d s dω= sn−d d x .

Here P is the pressure variable. Our goal is to prove that P takes the form a +b s2, as in Section 3. It is useful to
observe that (15) can be rewritten as

∂u

∂t
=D∗

α (u DαP)

and, in order to compute dI
dt , we will also use the fact that P solves

∂P
∂t

= (1−m)PLαP− |DαP|2 . (16)

4.1. First step: computation of dI
dt

Let us define

K [P] :=A [P]− (1−m) (LαP)2 where A [P] := 1

2
Lα |DαP|2 − DαP ·DαLαP

and, on the boundary of the centered ball Bs of radius s, the boundary term

b(s) :=
∫
∂Bs

(
∂
∂s

(
P

m
m−1 |DαP|2

)
− 2(1−m)P

m
m−1 P′LαP

)
dς

= sn−1
(∫
Sd−1

(
∂
∂s

(
P

m
m−1 |DαP|2

)
− 2(1−m)P

m
m−1 P′LαP

)
dω

)
(s) , (17)

where by dς= sn−1 dω we denote the standard Hausdorff measure on ∂Bs .

Lemma 4.1 If u solves (15) and if
lim

s→0+
b(s) = lim

S→+∞
b(S) = 0, (18)

then,
d

dt
I [P] =−2

∫
Rd

K [P]um dµ . (19)

Proof. For 0 < s < S < +∞, let us consider the set A(s,S) := {
x ∈Rd : s < |x| < S

}
, so that ∂A(s,S) = ∂Bs ∪ ∂BS .
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Using (15) and (16), we can compute

d

dt

∫
A(s,S)

u |DαP|2 dµ

=
∫

A(s,S)

∂u

∂t
|DαP|2 dµ+ 2

∫
A(s,S)

u DαP ·Dα
∂P
∂t

dµ

=
∫

A(s,S)

Lα (um) |DαP|2 dµ+ 2
∫

A(s,S)

u DαP ·Dα

(
(1−m)PLαP−|DαP|2

)
dµ

=
∫

A(s,S)

um Lα |DαP|2 dµ+ 2(1−m)
∫

A(s,S)

u PDαP ·DαLαPdµ

+2(1−m)
∫

A(s,S)

u DαP ·DαPLαPdµ− 2
∫

A(s,S)

u DαP ·Dα |DαP|2 dµ

+α2
∫
∂BS

(
(um)′ |DαP|2 −um ∂

∂s (|DαP|2)
)

dς

−α2
∫
∂Bs

(
(um)′ |DαP|2 −um ∂

∂s (|DαP|2)
)

dς

= −
∫

A(s,S)

um Lα |DαP|2 dµ+ 2(1−m)
∫

A(s,S)

u PDαP ·DαLαPdµ

+2(1−m)
∫

A(s,S)

u DαP ·DαPLαPdµ

+α2
∫
∂BS

(
(um)′ |DαP|2 +um ∂

∂s (|DαP|2)
)

dς

−α2
∫
∂Bs

(
(um)′ |DαP|2 +um ∂

∂s (|DαP|2)
)

dς ,

where the last line is given by an integration by parts, upon exploiting the identity u DαP=−Dα (um):∫
A(s,S)

u DαP ·Dα |DαP|2 dµ=−
∫

A(s,S)

Dα (um) ·Dα |DαP|2 dµ

=
∫

A(s,S)

um Lα |DαP|2 dµ− α2
∫
∂BS

um ∂
∂s (|DαP|2)dς+α2

∫
∂Bs

um ∂
∂s (|DαP|2)dς .

1) Using the definition of A [P], we get that

−
∫

A(s,S)

um Lα |DαP|2 dµ=−2
∫

A(s,S)

um A [P]dµ− 2
∫

A(s,S)

um DαP ·DαLαPdµ . (20)

2) Taking advantage again of u DαP=−Dα (um), an integration by parts gives∫
A(s,S)

u DαP ·DαPLαPdµ=−
∫

A(s,S)

Dα (um) ·DαPLαPdµ

=
∫

A(s,S)

um (LαP)2 dµ +
∫

A(s,S)

um DαP ·DαLαPdµ

− α2
∫
∂BS

um P′LαPdς+α2
∫
∂Bs

um P′LαPdς .

and, with u P= m
1−m um , we find that
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2(1−m)
∫

A(s,S)

u PDαP ·DαLαPdµ+ 2(1−m)
∫

A(s,S)

u DαP ·DαPLαPdµ

= 2(1−m)
∫

A(s,S)

um (LαP)2 dµ+2
∫

A(s,S)

um DαP ·DαLαPdµ

− 2(1−m)α2
∫
∂BS

um P′LαPdς+2(1−m)α2
∫
∂Bs

um P′LαPdς . (21)

Summing (20) and (21), using (17) and passing to the limits as s → 0+, S →+∞, establishes (19). ä

4.2. Second step: two remarkable identities.

Let us define
k[P] := 1

2 ∆ω |∇ωP|2 −∇ωP ·∇ω∆ωP− 1
n−1 (∆ωP)2 − (n −2)α2 |∇ωP|2

and

R[P] :=K [P]−
(

1

n
− (1−m)

)
(LαP)2 .

We observe that

R[P] = 1

2
Lα |DαP|2 − DαP ·DαLαP− 1

n
(LαP)2

is independent of m. We recall the result of [14, Lemma 5.1] and give its proof for completeness.

Lemma 4.2 Let d ∈N, n ∈R such that n > d ≥ 2, and consider a function P ∈C 3(Rd \ {0}). Then,

R[P] =α4
(
1− 1

n

)[
P′′− P′

s
− ∆ωP
α2 (n −1) s2

]2

+ 2α2

s2

∣∣∣∣∇ωP′− ∇ωP
s

∣∣∣∣2

+ k[P]

s4 .

Proof. By definition of R[P], we have

R[P] = α2

2

[
α2 P′2 + |∇ωP|2

s2

]′′
+ α2

2

n −1

s

[
α2 P′2 + |∇ωP|2

s2

]′
+ 1

2 s2 ∆ω

[
α2 P′2 + |∇ωP|2

s2

]
−α2 P′

(
α2 P′′+α2 n −1

s
P′+ ∆ωP

s2

)′
− 1

s2 ∇ωP ·∇ω
(
α2 P′′+α2 n −1

s
P′+ ∆ωP

s2

)
− 1

n

(
α2 P′′+α2 n −1

s
P′+ ∆ωP

s2

)2

,

which can be expanded as

R[P] = α2

2

[
2α2 P′′2 +2α2 P′P′′′+2

|∇ωP′|2 +∇ωP ·∇ωP′′

s2 −8
∇ωP ·∇ωP′

s3 +6
|∇ωP|2

s4

]
+α2 n −1

s

[
α2 P′P′′+ ∇ωP ·∇ωP′

s2 − |∇ωP|2
s3

]
+ 1

s2

[
α2 P′∆ωP′+α2 |∇ωP′|2 + ∆ω |∇ωP|2

2 s2

]
−α2 P′

(
α2 P′′′+α2 n −1

s
P′′− α2 n −1

s2 P′−2
∆ωP

s3 + ∆ωP′

s2

)
− 1

s2

(
α2∇ωP ·∇ωP′′+α2 n −1

s
∇ωP ·∇ωP′+ ∇ωP ·∇ω∆ωP

s2

)
− 1

n

[
α4 P′′2 +α4 (n −1)2

s2 P′2 + (∆ωP)2

s4 +2α4 n −1

s
P′P′′+2α2 P′′∆ωP

s2 +2α2 n −1

s3 P′∆ωP
]

.

Collecting terms proves the result. ä
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Now let us study the quantity k[P] which appears in the statement of Lemma 4.2. The following computations
are adapted from [12] and [14, Section 5]. For completeness, we give a simplified proof in the special case of the
sphere (Sd−1, g ) considered as a Riemannian manifold with standard metric g . We denote by H f the Hessian
of f , which is seen as (d −1)× (d −1) matrix, identify its trace with the Laplace-Beltrami operator on Sd−1 and
use the notation ‖A‖2 := A : A for the sum of the squares of the coefficients of the matrix A. It is convenient to
define the trace free Hessian, the tensor Z f and its trace free counterpart respectively by

L f := H f − 1

d −1
(∆ω f ) g , Z f := ∇ω f ⊗∇ω f

f
and M f := Z f − 1

d −1

|∇ω f |2
f

g

whenever f 6= 0. Elementary computations show that

‖L f ‖2 = ‖H f ‖2 − 1

d −1
(∆ω f )2 and ‖M f ‖2 = ‖Z f ‖2 − 1

d −1

|∇ω f |4
f 2 = d −2

d −1

|∇ω f |4
f 2 . (22)

The Bochner-Lichnerowicz-Weitzenböck formula on Sd−1 takes the simple form

1
2 ∆ω (|∇ω f |2) = ‖H f ‖2 +∇ω(∆ω f ) ·∇ω f + (d −2) |∇ω f |2 (23)

where the last term, i.e., Ric(∇ω f ,∇ω f ) = (d −2) |∇ω f |2, accounts for the Ricci curvature tensor contracted with
∇ω f ⊗∇ω f .

We recall that αFS :=
√

d−1
n−1 and ν= 1/(1−m). Let us introduce the notations

δ := 1

d −1
− 1

n −1

and

B[P] :=
∫
Sd−1

( 1
2 ∆ω(|∇ωP|2)−∇ω(∆ωP) ·∇ωP− 1

n−1 (∆ωP)2) P1−νdω ,

so that ∫
Sd−1

k[P]P1−νdω=B[P]− (n −2)α2
∫
Sd−1

|∇ωP|2 P1−νdω .

Lemma 4.3 Assume that d ≥ 2 and 1/(1−m) = ν> n > d . There exists a positive constant c(n,m,d) such that,
for any positive function P ∈C 3(Sd−1),∫

Sd−1
k[P]P1−νdω≥ (n −2)

(
α2

FS − α2)∫
Sd−1

|∇ωP|2 P1−νdω+ c(n,m,d)
∫
Sd−1

|∇ωP|4
P2 P1−νdω .

Proof. If d = 2, we identify S1 with [0,2π) 3 θ and denote by Pθ and Pθθ the first and second derivatives of P
with respect to θ. As in [14, Lemma 5.3], a direct computation shows that

k[P] = n −2

n −1
|Pθθ|2 − (n −2)α2 |Pθ|2 = (n −2)

(
α2

FS |Pθθ|2 − α2 |Pθ|2
)

.

By the Poincaré inequality, we have∫
S1

∣∣∣∣ ∂∂θ
(
P

1−ν
2 Pθ

)∣∣∣∣2

dθ ≥
∫
S1

∣∣∣P 1−ν
2 Pθ

∣∣∣2
dθ .

On the other hand, an integration by parts shows that∫
S1

Pθθ
|Pθ|2

P P1−νdθ = 1

3

∫
S1

∂

∂θ

(|Pθ|2 Pθ

)
P−νdθ = ν

3

∫
S1

|Pθ|4
P2 P1−νdθ

and, as a consequence, by expanding the square, we obtain
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∫
S1

∣∣∣∣ ∂∂θ
(
P

1−ν
2 Pθ

)∣∣∣∣2

dθ =
∫
S1

∣∣∣∣Pθθ+
1−ν

2

|Pθ|2
P

∣∣∣∣2

P1−νdθ =
∫
S1

|Pθθ|2 P1−νdθ− (ν−1)(ν+3)

12

∫
S1

|Pθ|4
P2 P1−νdθ .

The result follows with c(n,m,2) = n−2
n−1

1
12 (ν−1)(ν+3) = n−2

n−1
m (4−3m)
12(1−m)2 from∫

S1
|Pθθ|2 P1−νdθ ≥

∫
S1

|Pθ|2 P1−νdθ+ (ν−1)(ν+3)

12

∫
S1

|Pθ|4
P2 P1−νdθ .

Assume next that d ≥ 3. We follow the method of [14, Lemma 5.2]. Applying (23) with f = P and multiplying
by P1−ν yields, after an integration on Sd−1, that B[P] can also be written as

B[P] =
∫
Sd−1

(‖HP‖2 + (d −2) |∇ωP|2 − 1
n−1 (∆ωP)2) P1−νdω .

We recall that n > d ≥ 3 and set P = f β with β = 2
3−ν . A straightforward computation shows that H f β =

β f β−1
(
H f + (β−1)Z f

)
and hence

B[P] =β2
∫
Sd−1

(
‖H f + (β−1)Z f ‖2 + (d −2) |∇ω f |2 − 1

n−1

(
Tr(H f + (β−1)Z f )

)2
)

dω

=β2
∫
Sd−1

(
‖L f + (β−1)M f ‖2 + (d −2) |∇ω f |2 +δ(

Tr(H f + (β−1)Z f )
)2

)
dω .

Using (22), we deduce from∫
Sd−1

∆ω f
|∇ω f |2

f
dω=

∫
Sd−1

|∇ω f |4
f 2 dω−2

∫
Sd−1

H f : Z f dω

= d −1

d −2

∫
Sd−1

‖M f ‖2 dω−2
∫
Sd−1

L f : Z f dω− 2

d −1

∫
Sd−1

∆ω f
|∇ω f |2

f
dω

that∫
Sd−1

∆ω f
|∇ω f |2

f
dω= d −1

d +1

[∫
Sd−1

d −1

d −2
‖M f ‖2 dω−2

∫
Sd−1

L f : Z f dω

]
= d −1

d +1

[∫
Sd−1

d −1

d −2
‖M f ‖2 dω−2

∫
Sd−1

L f : M f dω

]
on the one hand, and from (23) integrated on Sd−1 that∫

Sd−1
(∆ω f )2 dω= d −1

d −2

∫
Sd−1

‖L f ‖2 dω+ (d −1)
∫
Sd−1

|∇ω f |2 dω

on the other hand. Hence we find that∫
Sd−1

(
Tr(H f + (β−1)Z f )

)2 dω=
∫
Sd−1

(
(∆ω f )2 +2(β−1)∆ω f

|∇ω f |2
f

+ (β−1)2 |∇ω f |4
f 2

)
dω

= d −1

d −2

∫
Sd−1

‖L f ‖2 dω+ (d −1)
∫
Sd−1

|∇ω f |2 dω

+2(β−1)
d −1

d +1

[∫
Sd−1

d −1

d −2
‖M f ‖2 dω−2

∫
Sd−1

L f : M f dω

]
+ (β−1)2 d −1

d −2

∫
Sd−1

‖M f ‖2 dω .

Altogether, we obtain

B[P] =β2
∫
Sd−1

(
a‖L f ‖2 + 2bL f : M f + c‖M f ‖2

)
dω+β2 (

d −2+δ (d −1)
)∫
Sd−1

|∇ω f |2 dω

13



where

a= 1+δ d −1

d −2
, b= (β−1)

(
1− 2δ

d −1

d +1

)
and c= (β−1)2

(
1+δ d −1

d −2

)
+2(β−1)

δ (d −1)2

(d +1)(d −2)
.

A tedious but elementary computation shows that

B[P] = aβ2
∫
Sd−1

∥∥∥L f + b
a M f

∥∥∥2
dω+ (

c− b2

a
)
β2

∫
Sd−1

∥∥M f
∥∥2 dω+β2 (n −2)α2

FS

∫
Sd−1

|∇ω f |2 dω

can be written in terms of P as

B[P] =
∫
Sd−1

Q[P]P1−νdω+ (n −2)α2
FS

∫
Sd−1

|∇ωP|2 P1−νdω

where

Q[P] :=α2
FS

n −2

d −2

∥∥∥LP+ 3(ν−1)(n−d)
(d+1)(n−2)(ν−3) MP

∥∥∥2 + (d−1)(ν−1)(n−d) [((4d−5)n+d−8)ν+9(n−d))]
(d−2)(d+1)2 (ν−3)2 (n−2)(n−1)

‖MP‖2

is positive definite. This concludes the proof in the case d ≥ 3 with c(n,m,d) = m (n−d) [4(d+1)(n−2)−9m (n−d)]
(d+1)2 (3m−2)2 (n−2)(n−1)

. ä
Let us recall that

K [P] =R[P]+
(

1

n
− (1−m)

)
(LαP)2 .

We can collect the two results of Lemmas 4.2 and 4.3 as follows.

Corollary 4.4 Let d ∈N, n ∈ R be such that n > d ≥ 2, and consider a positive function P ∈ C 3(Rd \ {0}). If u is
related to P by P= m

1−m um−1 for some m ∈ (1− 1
n ,1), then there exists a positive constant c(n,m,d) such that∫

Rd
R[P]um dµ≥α4

(
1− 1

n

)∫
Rd

[
P′′− P′

s
− ∆ωP
α2 (n −1) s2

]2

um dµ+2α2
∫
Rd

1

s2

∣∣∣∣∇ωP′− ∇ωP
s

∣∣∣∣2

um dµ

+ (n −2)
(
α2

FS − α2)∫
Rd

1

s4 |∇ωP|2 um dµ+ c(n,m,d)
∫
Rd

1

s4

|∇ωP|4
P2 um dµ .

4.3. Third step: concavity of the Rényi entropy powers and consequences

We keep investigating the properties of the flow defined by (11). Let us define the entropy as

E :=
∫
Rd

um dµ

and observe that
E ′ = (1−m)I

if u solves (15), after integrating by parts. The fact that boundary terms do not contribute, i.e.,

lim
s→0+

∫
∂Bs

um P′ dς= lim
S→+∞

∫
∂BS

um P′ dς= 0 (24)

will be justified in Section 5: see Proposition 5.1. Note that we use ′ both for derivation w.r.t. t and w.r.t. s, at
least when this does not create any ambiguity. As in Section 3, we introduce the Rényi entropy power

F := E σ

for some exponent σ to be chosen later, and find that F ′ = σ (1−m)G where G := E σ−1 I . With H := E−σG ′,
by using Lemma 4.1, we also find that E−σF ′′ =σ (1−m)H where
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E 2 H = E 2−σG ′ = 1

σ (1−m)
E 2−σF ′′ = (1−m) (σ−1)

(∫
Rd

u |DαP|2 dµ

)2

− 2
∫
Rd

um dµ
∫
Rd

K [P]um dµ

= (1−m) (σ−1)

(∫
Rd

u |DαP|2 dµ

)2

− 2

(
1

n
− (1−m)

)∫
Rd

um dµ
∫
Rd

(LαP)2 um dµ

− 2
∫
Rd

um dµ
∫
Rd

R[P]um dµ

if lims→0+ b(s) = limS→+∞b(S) = 0. Using u DαP=−Dα (um), we know that∫
Rd

u |DαP|2 dµ=−
∫
Rd

Dα (um) ·DαPdµ=
∫
Rd

um LαPdµ

and so, with the choice

σ= 2

n

1

1−m
−1,

we may argue as in Section 3 and get that

E 2 H + (1−m) (σ−1)E
∫
Rd

um

∣∣∣∣∣LαP−
∫
Rd u |DαP|2 dµ∫

Rd um dµ

∣∣∣∣∣
2

dµ+ 2E

∫
Rd

R[P]um dµ= 0

if lims→0+ b(s) = limS→+∞b(S) = 0. So, ifα≤αFS and P is of class C 3, by Corollary 4.4, as a function of t , F is con-
cave, that is, G = E σ−1 I is non-increasing in t . Formally, G converges towards a minimum, for which necessar-
ily LαP is a constant and R[P] = 0, which proves that P(x) = a+b |x|2 for some real constants a and b, according
to Corollary 4.4. Since 2(1−ϑ)

ϑ (p+1) =σ−1, the minimization of G under the mass constraint
∫
Rd u dµ= ∫

Rd v2p dµ is
equivalent to the Caffarelli-Kohn-Nirenberg interpolation inequalities (1), since for some constant κ,

G = E σ−1 I = κ
(∫
Rd

v p+1 dµ

)σ−1 ∫
Rd

|Dαv |2 dµ with v = um−1/2 .

We emphasize that (15) preserves mass, that is, d
dt

∫
Rd v2p dµ = d

dt

∫
Rd u dµ = ∫

Rd Lαum dµ = 0 because, as we
shall see in Proposition 5.1, no boundary terms appear when integrating by parts if v is an extremal function
associated with (7). In particular, for mass conservation we need

lim
s→0+

∫
∂Bs

u P′ dς= lim
S→+∞

∫
∂BS

u P′ dς= 0. (25)

The above remarks on the monotonicity of G and the symmetry properties of its minimizers can in fact be
extended to the analysis of the symmetry properties of all critical points of G . This is actually the contents of
Theorem 1.2.

Proof of Theorem 1.2. Let w be a positive solution of equation (5). As pointed out above, by choosing

w(x) = um−1/2(rα,ω) ,

we know that u is a critical point of G under a mass constraint on
∫
Rd u d x, so that we can write the cor-

responding Euler-Lagrange equation as dG [u] = C , for some constant C . That is,
∫
Rd dG [u] · Lαum dµ =

C
∫
Rd Lαum dµ= 0 thanks to (25). Using Lαum as a test function amounts to apply the flow of (15) to G with

initial datum u and compute the derivative with respect to t at t = 0. This means

0 =
∫
Rd

dG [u] ·Lαum dµ= E σH

=− (1−m) (σ−1)E σ−1
∫
Rd

um

∣∣∣∣∣LαP−
∫
Rd u |DαP|2 dµ∫

Rd um dµ

∣∣∣∣∣
2

dµ− 2E σ−1
∫
Rd

R[P]um dµ
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if lims→0+ b(s) = limS→+∞b(S) = 0 and (24) holds. Here we have used Lemma 4.1. We emphasize that this proof
is purely variational and does not rely on the properties of the solutions to (15), although using the flow was
very useful to explain our strategy. All we need is that no boundary term appears in the integrations by parts.
Hence, in order to obtain a complete proof, we have to prove that (18), (24) and (25) hold with b defined by (17),
whenever u is a critical point of G under mass constraint. This will be done in Proposition 5.1. Using Corol-

lary 4.4, we know that R[P] = 0, ∇ωP = 0 a.e. in Rd and LαP =
∫
Rd u |DαP|2 dµ∫

Rd um dµ
a.e. in Rd , with P = m

1−m um−1. We

conclude as in [14, Corollary 5.5] that P is an affine function of s2. 2

5. Regularity and decay estimates

In this last section we prove the regularity and decay estimates on w (or on P or u) that are necessary to
establish the absence of boundary terms in the integrations by parts of Section 4.

Proposition 5.1 Under Condition (2), if w is a positive solution in Hp
β,γ(Rd ) of (5), then (18), (24) and (25) hold

with b as defined by (17), u = v2p and v given by (6).

To prove this result, we split the proof in several steps: we will first establish a uniform bound and a decay rate
for w inspired by [17] in Lemmas 5.2, 5.3, and then follow the methodology of [14, Appendix] in the subsequent
Lemma 5.4.

Lemma 5.2 Let β, γ and p satisfy the relations (2). Any positive solution w of (5) such that

‖w‖L2p,γ(Rd ) +‖∇w‖L2,β(Rd ) +‖w‖1−ϑ
Lp+1,γ(Rd )

<+∞ . (26)

is uniformly bounded and tends to 0 at infinity, uniformly in |x|.
Proof. The strategy of the first part of the proof is similar to the one in [17, Lemma 3.1], which was restricted to
the case β= 0.

Let us set δ0 := 2(p?−p). For any A > 0, we multiply (5) by (w∧A)1+δ0 and integrate by parts (or, equivalently,
plug it in the weak formulation of (5)): we point out that the latter is indeed an admissible test function since
w ∈ Hp

β,γ(Rd ). In that way, by letting A →+∞, we obtain the identity

4(1+δ0)

(2+δ0)2

∫
Rd

∣∣∣∇w1+δ0/2
∣∣∣2 |x|−βd x +

∫
Rd

w p+1+δ0 |x|−γd x =
∫
Rd

w2p+δ0 |x|−γd x .

By applying (1) with p = p? (so that ϑ= 1) to the function w = w1+δ0/2, we deduce that

‖w‖2+δ0

L2p+δ1,γ(Rd )
≤ (2+δ0)2

4(1+δ0)
C2
β,γ,p?

‖w‖2p+δ0

L2p+δ0,γ(Rd )

with 2 p +δ1 = p? (2+δ0). Let us define the sequence {δn} by the induction relation δn+1 := p? (2+δn)−2 p for
any n ∈N, that is,

δn = 2 p?−p
p?−1

(
pn+1
? −1

) ∀n ∈N ,

and take qn = 2 p +δn . If we repeat the above estimates with δ0 replaced by δn and δ1 replaced by δn+1, we get

‖w‖2+δn

Lqn+1,γ(Rd )
≤ (2+δn)2

4(1+δn)
C2
β,γ,p?

‖w‖qn

Lqn ,γ(Rd )
.

By iterating this estimate, we obtain the estimate

‖w‖Lqn ,γ(Rd ) ≤Cn ‖w‖ζn

L2p? ,γ(Rd )
with ζn = (p?−1) pn

?

p −1+ (p?−p) pn
?
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where the sequence {Cn} is defined by C0 = 1 and

C 2+δn
n+1 = (2+δn)2

4(1+δn)
C2
β,γ,p?

C qn
n ∀n ∈N .

The sequence {Cn} converges to a finite limit C∞. Letting n →∞ we obtain the uniform bound

‖w‖L∞(Rd ) ≤C∞ ‖w‖ζ∞
L2p? ,γ(Rd )

≤C∞
(
Cβ,γ,p? ‖∇w‖L2,β(Rd )

)ζ∞ ≤C∞
(
Cβ,γ,p? ‖w‖p

L2p,γ(Rd )

)ζ∞
where ζ∞ = p?−1

p?−p = limn→∞ ζn .

In order to prove that lim|x|→+∞ w(x) = 0, we can suitably adapt the above strategy. We shall do it as follows:
we truncate the solution so that the truncated function is supported outside of a ball of radius R0 and apply the
iteration scheme. Up to an enlargement of the ball, that is, outside of a ball of radius R∞ = a R0 for some fixed
numerical constant a > 1, we get that ‖w‖L∞(B c

R∞ ) is bounded by the energy localized in B c
R0

. The conclusion

will hold by letting R0 →+∞. Let us give some details.
Let ξ ∈ C∞(R+) be a cut-off function such that 0 ≤ ξ ≤ 1, ξ ≡ 0 in [0,1) and ξ ≡ 1 in (2,+∞). Given R0 ≥ 1,

consider the sequence of radii defined by

Rn+1 =
(
1+ 1

n2

)
Rn ∀n ∈N .

By taking logarithms, it is immediate to deduce that {Rn} is monotone increasing and that there exists a > 1
such that

R∞ := lim
n→∞Rn = a R0 .

Let us then define the sequence of radial cut-off functions {ξn} by

ξn(x) := ξ2
( |x|−Rn

Rn+1 −Rn
+1

)
∀x ∈Rd .

Direct computations show that there exists some constant c > 0, which is independent of n and R0, such that

|∇ξn(x)| ≤ c
n2

Rn
χBRn+1 \BRn

,
∣∣∇ξ1/2

n (x)
∣∣≤ c

n2

Rn
χBRn+1 \BRn

, |∆ξn(x)| ≤ c
n4

R2
n
χBRn+1 \BRn

∀x ∈Rd . (27)

From here on we denote by c, c ′, etc. positive constants which are all independent of n and R0. We now in-
troduce the analogue of the sequence {δn} above, which we relabel {σn} to avoid confusion. Namely, we set
σ0 := 2 p −2 and σn+1 = p? (2+σn)−2, so that σn = 2(p pn

?−1). If we multiply (5) by ξn w1+σn and integrate by
parts, we obtain:∫

Rd
∇(
ξn w1+σn

) ·∇w |x|−βd x +
∫
Rd
ξn w p+1+σn |x|−γd x =

∫
Rd
ξn w2p+σn |x|−γd x ,

whence

4(1+σn)

(2+σn)2

∫
Rd
ξn

∣∣∇w1+σn /2∣∣2 |x|−βd x + 1

2+σn

∫
Rd

∇ξn ·∇w2+σn |x|−βd x ≤
∫

B c
Rn

w2p+σn |x|−γd x .

By integrating by parts the second term in the l.h.s. and combining this estimate with∫
Rd

∣∣∇(
ξ1/2

n w1+σn /2)∣∣2 |x|−βd x ≤ 2
∫
Rd
ξn

∣∣∇w1+σn /2∣∣2 |x|−βd x +2
∫
Rd

∣∣∇ξ1/2
n

∣∣2
w2+σn |x|−βd x ,

we end up with
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2(1+σn)

(2+σn)2

∫
Rd

∣∣∇(
ξ1/2

n w1+σn /2)∣∣2 |x|−βd x − 4(1+σn)

(2+σn)2

∫
Rd

∣∣∇ξ1/2
n

∣∣2
w2+σn |x|−βd x

− 1

2+σn

∫
Rd

(
|x|−β∆ξn −β |x|−β−2x ·∇ξn

)
w2+σn d x ≤

∫
B c

Rn

w2p+σn |x|−γd x .

Thanks to (27), we can deduce that∫
Rd

∣∣∇(
ξ1/2

n w1+σn /2)∣∣2 |x|−βd x ≤
∫

BRn+1 \BRn

(
2c2 + c

R2
n

n4 + βc

Rn
n2 |x|−1

)
w2+σn |x|−βd x

+ (2+σn)2

2(1+σn)

∫
B c

Rn

w2p+σn |x|−γd x .

In particular,∫
Rd

∣∣∇(
ξ1/2

n w1+σn /2)∣∣2 |x|−βd x ≤ c ′n4
∫

B c
Rn

w2+σn |x|−β−2 d x + (2+σn)2

2(1+σn)
‖w‖2p−2

∞
∫

B c
Rn

w2+σn |x|−γd x .

Since (2) implies that β+2 > γ, by exploiting the explicit expression of σn and applying (1) with p = p? (and
ϑ= 1) to the function ξ1/2

n w1+σn /2, we can rewrite our estimate as

‖w‖2+σn

L2+σn+1,γ(B c
Rn+1

)
≤ c ′′pn

? ‖w‖2+σn

L2+σn ,γ(B c
Rn

)
.

After iterating the scheme and letting n →∞ we end up with

‖w‖L∞(B c
R∞ ) ≤ c ′′′ ‖w‖L2p,γ(B c

R0
) .

Since w is bounded in L2p,γ(Rd ), in order to prove the claim it is enough to let R0 →+∞. ä
Lemma 5.3 Let β, γ and p satisfy the relations (2). Any positive solution w of (5) satisfying (26) is such that
w ∈C∞(Rd \ {0}) and there exists two positive constants, C1 and C2 with C1 <C2, such that for |x| large enough,

C1 |x|(γ−2−β)/(p−1) ≤ w(x) ≤C2 |x|(γ−2−β)/(p−1) .

Proof. By Lemma 5.2 and elliptic bootstrapping methods we know that w ∈ C∞(Rd \ {0}). Let us now consider
the function h(x) :=C |x|(γ−2−β)/(p−1), which satisfies the differential inequality

−div
(
|x|−β∇h

)
+ (1−ε) |x|−γhp ≥ 0 ∀x ∈Rd \ {0}

for any ε ∈ (0,1) and C such that C p−1 > 2−γ+β
1−ε

d−γ−p (d−2−β)
(p−1)2 . On the other hand, by Lemma 5.2, w2p−1 is neg-

ligible compared to w p as |x| →∞ and, as a consequence, for any ε > 0 small enough, there is an Rε > 0 such
that

−div
(
|x|−β∇w

)
+ (1−ε) |x|−γ w p ≤ 0 if |x| ≥ Rε .

With q := (1−ε) |x|−γ hp−w p

h−w ≥ 0, it follows that

−div
(
|x|−β∇(h −w)

)
+q (h −w) ≥ 0 if |x| ≥ Rε .

Hence, for C large enough, we know that h(x) ≥ w(x) for any x ∈ Rd such that |x| = Rε, and we also have that
lim|x|→+∞

(
h(x)− w(x)

) = 0. Using the Maximum Principle, we conclude that 0 ≤ w(x) ≤ h(x) for any x ∈ Rd

such that |x| ≥ Rε. The lower bound uses a similar comparison argument. Indeed, since

−div
(
|x|−β∇w

)
+|x|−γ w p ≥ 0 ∀x ∈Rd \ {0}

and
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−div
(
|x|−β∇h

)
+|x|−γhp ≤ 0 ∀x ∈Rd \ {0}

if we choose C such that C p−1 ≤ (2−γ+β) d−γ−p (d−2−β)
(p−1)2 , we easily see that

w(x) ≥
(
min
|x|=1

w(x)∧C

)
|x|(γ−2−β)/(p−1) ∀x ∈Rd \ B1 .

This concludes the proof. ä
Our next goal is to obtain growth and decay estimates, respectively, on the functions P and u as they appear

in the proof of Theorem 1.2 in Section 4, in order to prove Proposition 5.1. We also need to estimate their deriva-
tives near the origin and at infinity. Let us start by reminding the change of variables (6), which in particular, by
Lemma 5.3, implies that for some positive constants C1 and C2,

C1 s2/(1−p) ≤ v(s,ω) ≤C2 s2/(1−p) as s →+∞ .

Then we perform the Emden-Fowler transformation

v(s,ω) = sa ϕ(z,ω) with z =− log s , a = 2−n

2
, (28)

and see that ϕ satisfies the equation

−α2ϕ′′−∆ωϕ+a2α2ϕ= e((n−2) p−n) z ϕ2p−1 −e((n−2) p−n−2) z/2ϕp =: h in C :=R×Sd−1 3 (z,ω) . (29)

From here on we shall denote by ′ the derivative with respect either to z or to s, depending on the argument. By
definition of ϕ and using Lemma 5.3, we obtain that

ϕ(z,ω) ∼ e
(

2−n
2 + 2

p−1

)
z as z →−∞ ,

where we say that f (z,ω) ∼ g (z,ω) as z →+∞ (resp. z →−∞) if the ratio f /g is bounded from above and from
below by positive constants, independently ofω, and for z (resp. −z) large enough. Concerning z →+∞, we first
note that Lemma 5.2 and (28) show thatϕ(z,ω) ≤O(ea z ). The lower bound can be established by a comparison
argument as in [14, Proposition A.1], after noticing that |h(z,ω)| ≤O(e(a−2)z ). Hence we obtain that

ϕ(z,ω) ∼ ea z = e
2−n

2 z as z →+∞ .

Moreover, uniformly in ω, we have that

|h(z,ω)| ≤O
(
e−

n+2
2 z)

as z →+∞ , |h(z,ω)| ∼ e

(
− n+2

2 + 2 p
p−1

)
z

as z →−∞ ,

which in particular implies

|h(z,ω)| = o
(
ϕ(z,ω)

)
as z →+∞ and |h(z,ω)| ∼ϕ(z,ω) as z →−∞ .

Finally, using [20, Theorem 8.32, p. 210] on local C 1,δ estimates, as |z|→+∞ we see that all first derivatives ofϕ
converge to 0 at least with the same rate as ϕ. Next, [20, Theorem 8.10, p. 186] provides local Wk+2,2 estimates
which, together with [20, Corollary 7.11, Theorem 8.10, and Corollary 8.11], up to choosing k large enough,
prove that

|ϕ′(z,ω)| , |ϕ′′(z,ω)| , |∇ωϕ(z,ω)| , |∇ωϕ′(z,ω)| , |∇ωϕ′′(z,ω)| , |∆ωϕ(z,ω)| ≤O(ϕ(z,ω)) , (30)

uniformly in ω. Here we denote by ∇ω the differentiation with respect to ω. As a consequence, we have, uni-
formly in ω, and for ` ∈ {0,1,2}, t ∈ {0,1},

|∂`z∇t
ωh(z,ω)| ≤O

(
e−

n+2
2 z)

as z →+∞ , |∂`z∇t
ωh(z,ω)| ≤O(e

(
− n+2

2 + 2 p
p−1

)
z

) as z →−∞ , (31)
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|∆ωh(z,ω)| ≤O
(
e−

n+2
2 z)

as z →+∞ , |∆ωh(z,ω)| ≤O(e

(
− n+2

2 + 2 p
p−1

)
z

) as z →−∞ . (32)

Lemma 5.4 Let β, γ and p satisfy the relations (2) and assume α ≤ αFS. For any positive solution w of (5)
satisfying (26), the pressure function P= m

1−m um−1 is such that P′′, P′/s, P/s2, ∇ωP′/s, ∇ωP/s2 and LαP are of
class C∞ and bounded as s →+∞. On the other hand, as s → 0+ we have

(i)
∫
Sd−1 |P′(s,ω)|2 dω≤O(1),

(ii)
∫
Sd−1 |∇ωP(s,ω)|2 dω≤O(s2),

(iii)
∫
Sd−1 |P′′(s,ω)|2 dω≤O(1/s2),

(iv)
∫
Sd−1

∣∣∇ωP′(s,ω)− 1
s ∇ωP(s,ω)

∣∣2
dω≤O(1),

(v)
∫
Sd−1

∣∣∣ 1
s2 ∆ωP(s,ω)

∣∣∣2
dω≤O(1/s2).

Proof. By using the change of variables (28), we see that

P(s,ω) = p+1
p−1 e−

1
2 (n−2)(p−1) z ϕ1−p (z,ω) , z =− log s .

From (30) we easily deduce that uniformly in ω, P′′, P′/s, P/s2, ∇ωP′/s, ∇ωP/s2 and LαP are of class C∞ and
bounded as s →+∞. Moreover, as s → 0+, we obtain that∣∣P′(s,ω)

∣∣≤O

(
1

s

(
ϕ′(z,ω)

ϕ(z,ω)
−a

))
and

∣∣∣1

s
∇ωP(s,ω)

∣∣∣≤O

(
1

s

(∇ωϕ(z,ω)

ϕ(z,ω)

))
are of order at most 1/s uniformly in ω. Similarly we obtain that

|P′′(s,ω)| ≤O

(
1

s2

(
ϕ′′(z,ω)

ϕ(z,ω)
− p

|ϕ′(z,ω)|2
|ϕ(z,ω)|2 + (

1−2 a (1−p)
) ϕ′(z,ω)

ϕ(z,ω)
+a2 (1−p)−a

))
,∣∣∣∣∇ωP′(s,ω)

s
− a(1−p)

s2 ∇ωP(s,ω)

∣∣∣∣≤O

(
1

s2

(∇ωϕ′(z,ω)

ϕ(z,ω)
− pϕ′(z,ω)∇ωϕ(z,ω)

|ϕ(z,ω)|2
))

,

1

s2 |∆ωP(s,ω)| ≤O

(
1

s2

(
∆ωϕ(z,ω)

ϕ(z,ω)
− p

|∇ωϕ(z,ω)|2
|ϕ(z,ω)|2

))
,

are at most of order 1/s2 uniformly in ω. This shows that |b(s)| ≤ O(sn−4) as s → 0+ and concludes the proof if
4 ≤ d < n. When d = 2 or 3 and n ≤ 4, more detailed estimates are needed. Properties (i)–(v) amount to prove
that

(i)
∫
Sd−1

∣∣∣ϕ′(z,ω)
ϕ(z,ω) −a

∣∣∣2
dω≤O(e−2 z ),

(ii)
∫
Sd−1

∣∣∣∇ωϕ(z,ω)
ϕ(z,ω)

∣∣∣2
dω≤O(e−2 z ),

(iii)
∫
Sd−1

∣∣∣ϕ′′(z,ω)
ϕ(z,ω) − p |ϕ′(z,ω)|2

|ϕ(z,ω)|2 + (
1−2 a (1−p)

)ϕ′(z,ω)
ϕ(z,ω) +a2 (1−p)−a

∣∣∣2
dω≤O(e−2 z ),

(iv)
∫
Sd−1

∣∣∣∇ωϕ′(z,ω)
ϕ(z,ω) − pϕ′(z,ω)∇ωϕ(z,ω)

|ϕ(z,ω)|2
∣∣∣2

dω≤O(e−2 z ),

(v)
∫
Sd−1

∣∣∣∆ωϕ(z,ω)
ϕ(z,ω) − p |∇ωϕ(z,ω)|2

|ϕ(z,ω)|2
∣∣∣2

dω≤O(e−2 z ),

as z →+∞.

Step 1: Proof of (ii) and (iv). If w is a positive solution of (5), thenϕ is a positive solution to (29). With ` ∈ {0,1,2},
applying the operator ∇ω∂`z to the equation (29) we obtain

−α2 (∇ω∂`zϕ)′′− ∇ω∆ω∂`zϕ+a2α2∇ω∂`zϕ=∇ω∂`z h(z,ω) in C .
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Define

χ`(z) := 1

2

∫
Sd−1

|∇ω∂`zϕ|2 dω ,

which by (30) converges to 0 as z →±∞. Assume first that χ` is a positive function. After multiplying the above
equation by ∇ω∂`zϕ, integrating over Sd−1, integrating by parts and using

χ′` =
∫
Sd−1

∇ω∂`zϕ∇ω∂`zϕ′ dω

and

χ′′` =
∫
Sd−1

∇ω∂`zϕ∇ω∂`zϕ′′ dω+
∫
Sd−1

|∇ω∂`zϕ′|2 dω ,

we see that χ` satisfies

−χ′′`+
∫
Sd−1

|∇ω∂`zϕ′|2 dω+ 1

α2

(∫
Sd−1

|∆ω∂`zϕ|2 dω−λ1

∫
Sd−1

|∇ω∂`zϕ|2 dω

)
+2

(
a2 + λ1

α2

)
χ` =

h`
α2 ,

with h` := ∫
Sd−1 ∇ω∂`z h∇ω∂`zϕdω. Then, using

∫
Sd−1 ∇ω∂`zϕdω= 0, by the Poincaré inequality we deduce∫

Sd−1
|∆ω∂`zϕ|2 dω≥λ1

∫
Sd−1

|∇ω∂`zϕ|2 dω

as e.g. in [12, Lemma 7], where λ1 := d −1. A Cauchy-Schwarz inequality implies that

−χ′′`+
|χ′
`
|2

2χ`
+ 2

(
a2 + λ1

α2

)
χ` ≤

|h`|
α2 .

The function ζ` :=p
χ` satisfies

−ζ′′`+
(

a2 + λ1

α2

)
ζ` ≤

|h`|
2α2 ζ`

.

By the Cauchy-Schwarz inequality and (31) we infer that |h`/ζ`| = O
(
e(a−2) z

)
for z → +∞, and |h`/ζ`| =

O
(
e(a+2/(p−1)) z

)
for z → −∞. By a simple comparison argument based on the Maximum Principle, and using

the convergence of χ` to 0 at ±∞, we infer that

ζ`(z) ≤− e−νz

2να2

∫ z

−∞
eν t |h`(t )|

ζ`(z)
dt − eνz

2να2

∫ ∞

z
e−ν t |h`(t )|

ζ`(z)
dt

if ν :=
√

a2 +λ1/α2. This is enough to deduce that ζ`(z) ≤O
(
e(a−1)z

)
as z →+∞ after observing that the condi-

tion

−ν=−
√

a2 +λ1/α2 ≤ a −1

is equivalent to the inequality α≤αFS. Hence we have shown that if χ` is a positive function, then for α≤αFS,

χ`(z) ≤O
(
e 2(a−1) z)

as z →+∞ . (33)

In the case where χ` is equal to 0 at some points of R, it is enough to do the above comparison argument on
maximal positivity intervals ofχ` to deduce the same asymptotic estimate. Finally we observe thatϕ(z,ω) ∼ ea z

as z →+∞, which ends the proof of (ii) considering the above estimate for χ` when `= 0. Moreover, the same
estimate for `= 1 together with (ii) and (30) proves (iv).

Step 2: Proof of (v). By applying the operator ∆ω to (29), we obtain

−α2 (∆ωϕ)′′− ∆2
ωϕ+a2α2∆ωϕ=∆ωh in C .

We proceed as in Step 1. With similar notations, by defining
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χ5(z) := 1

2

∫
Sd−1

|∆ωϕ|2 dω ,

after multiplying the equation by ∆ωϕ and using the fact that

−
∫
Sd−1

∆ωϕ∆
2
ωϕdω=

∫
Sd−1

|∇ω∆ωϕ|2 dω≥λ1

∫
Sd−1

|∆ωϕ|2 dω ,

we obtain

−χ′′5 +
|χ′5|2
2χ`

+ 2

(
a2 + λ1

α2

)
χ5 ≤ |h5|

α2

with h5 := ∫
Sd−1 ∆ωh∆ωϕdω. Again using the same arguments as above, together with (32), we deduce that

χ5(z) ≤O
(
e 2(a−1) z)

as z →+∞ .

This ends the proof of (v), using (ii), (30) and noticing again that ϕ(z,ω) ∼ ea z as z →+∞.

Step 3: Proof of (i) and (iii). Let us consider a positive solution ϕ to (29) and define on R the function

ϕ0(z) := 1∣∣Sd−1
∣∣
∫
Sd−1

ϕ(z,ω)dω .

By integrating (29) on Sd−1, we know that ϕ0 solves

−ϕ′′
0 +a2ϕ0 = 1

α2
∣∣Sd−1

∣∣
∫
Sd−1

h(z,ω)dω=:
h0(z)

α2 ∀z ∈R ,

with

|h0(z)| ≤O
(
e−

n+2
2 z)

as z →+∞ , |h0(z)| ∼ e

(
− n+2

2 + 2 p
p−1

)
z

as z →−∞ .

From the integral representation

ϕ0(z) =− ea z

2 aα2

∫ z

−∞
e−at h0(t )dt − e−a z

2 aα2

∫ ∞

z
eat h0(t )dt ,

we deduce that as z →+∞, ϕ0(z) ∼ ea z and

ϕ′
0(z)−aϕ0(z)

ϕ(z,ω)
∼ e−2a z

∫ ∞

z
eat h0(t )dt =O(e−2 z ) .

If we define the function ψ(z,ω) := e−a z
(
ϕ(z,ω)−ϕ0(z)

)
, we may observe that it is bounded for z positive

and moreover
ϕ′(z,ω)

ϕ(z,ω)
−a =O(e−2 z )+ ψ′(z,ω)

e−a z ϕ(z,ω)
as z → +∞ .

We recall that e−a z ϕ(z,ω) is bounded away from 0 by a positive constant as z →+∞. Hence we know that∣∣∣ϕ′(z,ω)

ϕ(z,ω)
−a

∣∣∣≤O
(|ψ′(z,ω)

)+O(e−2 z ) . (34)

By the Poincaré inequality and estimate (33) with `= 0, we have∫
Sd−1

|ψ|2 dω= e−2az
∫
Sd−1

|ϕ−ϕ0|2 dω≤ e−2az

λ1

∫
Sd−1

|∇ωϕ|2 dω≤O(e−2z ) .

Moreover, by the estimate (33) with `= 1, we also obtain

e−2az
∫
Sd−1

|ϕ′−ϕ′
0|2 dω≤ e−2az

λ1

∫
Sd−1

|∇ωϕ′|2 dω≤O(e−2z ) .
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Hence, since ψ′ =−aψ+e−az (ϕ′−ϕ′
0), the above estimates imply that∫
Sd−1

|ψ|2 dω +
∫
Sd−1

|ψ′|2 dω≤O(e−2z ) ,

which together with (34) ends the proof of (i).
To prove (iii), we first check that

ϕ′′

ϕ
− p

|ϕ′|2
|ϕ|2 + (

1−2 a (1−p)
)ϕ′

ϕ
+a2 (1−p)−a =O(|ψ′|+ |ψ′|2 +|ψ′′|)+O(e−2 z ) ,

and so it remains to prove that
∫
Sd−1 |ψ′′|2 dω is of order O(e−2 z ). Since

ψ′′ = a2ψ− 2 a e−az (ϕ′−ϕ′
0)+e−az (ϕ′′−ϕ′′

0 ) ,

using the above estimates, we have only to estimate the term with the second derivatives. This can be done as
above by the Poincaré inequality,

e−2az
∫
Sd−1

|ϕ′′−ϕ′′
0 |2 dω≤ e−2az

λ1

∫
Sd−1

|∇ωϕ′′|2 dω≤O(e−2z ) ,

based on the estimate (33) with `= 2. This ends the proof of (iii). ä
Proof of Proposition 5.1 It is straightforward to verify that the boundedness of P′′, P′/s, P/s2, ∇ωP′/s, ∇ωP/s2,
LαP as s → +∞ and the integral estimates (i)-(v) as s → 0+ from Lemma 5.4 are enough in order to estab-
lish (18), (24) and (25). 2
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