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Abstract
& Key message Increasing human impacts on forests, in-
cluding unintentional movement of pathogens, climate
change, and large-scale intensive plantations, are associated
with an unprecedented rate of new diseases. An evolution-
ary ecology perspective can help address these challenges
and provide direction for sustainable forest management.

& Context Forest pathology has historically relied on an eco-
logical approach to understand and address the practical man-
agement of forest diseases. A widening of this perspective to
include evolutionary considerations has been increasingly de-
veloped in response to the rising rates of genetic change in
both pathogen populations and tree populations due to human
activities.
& Aims Here, five topics for which the evolutionary perspec-
tive is especially relevant are highlighted.
&Results The first relates to the evolutionary diversity of fungi
and fungal-like organisms, with issues linked to the identifi-
cation of species and their ecological niches. The second
theme deals with the evolutionary processes that allow forest
pathogens to adapt to new hosts after introductions or to be-
come more virulent in homogeneous plantations. The third
theme presents issues linked to disease resistance in tree
breeding programs (e.g., growth-defense trade-offs) and pro-
poses new criteria and methods for more durable resistance.

Handling Editor: Jean-Michel Leban

Contribution of the co-authors J. Aguayo, C. Husson, and B. Marçais
wrote the first draft of the part dealing with fungal diversity, C. Dutech of
the part dealing with pathogen evolution, M.-L. Desprez-Loustau and K.
Hayden of the part on disease resistance, C. Robin of the part on hyper-
parasitism, C. Vacher and B. Jakushkin of the part on the tree microbiote,
M. L. Desprez-Loustau of the introduction and conclusion. D. Piou,M. L.
Desprez-Loustau and B. Marçais conceived Fig. 1. All co-authors con-
tributed to the final writing and revision of the manuscript, with a special
contribution of K. Hayden. Marie-Laure Desprez-Loustau initiated and
coordinated the review.

* Marie-Laure Desprez-Loustau
loustau@bordeaux.inra.fr

Jaime Aguayo
jaime.aguayo@anses.fr

Cyril Dutech
cdutech@bordeaux.inra.fr

Katherine J. Hayden
katherine.hayden@nancy.inra.fr

Claude Husson
chusson@nancy.inra.fr

Boris Jakushkin
boris.jakuschkin@gmail.com

Benoît Marçais
marcais@nancy.inra.fr

Dominique Piou
piou@pierroton.inra.fr

Cécile Robin
robin@bordeaux.inra.fr

Corinne Vacher
vacher@bordeaux.inra.fr

1 INRA, UMR1202 BIOGECO, 33610 Cestas, France
2 Univ. Bordeaux, BIOGECO, UMR 1202, 33600 Pessac, France
3 ANSES, Laboratoire de la Santé des Végétaux LSV, Unité de

Mycologie, Domaine de Pixérécourt, 54220 Malzéville, France
4 INRA, UMR1136 Interactions Arbres/Microorganismes,

54280 Champenoux, France
5 Université De Lorraine, UMR1136 Interactions Arbres/

Microorganismes, 54506 Vandœuvre-lès-Nancy, France
6 Département de la Santé des Forêts, Ministère de l’Agriculture, de

l’Agroalimentaire et de la Forêt, 69 route d’Arcachon, 33612 Cestas
Cedex, France

Annals of Forest Science (2016) 73:45–67
DOI 10.1007/s13595-015-0487-4



The last two themes are dedicated to the biotic environment of
the tree–pathogen system, namely, hyperparasites and tree mi-
crobiota, as possible solutions for health management.
& Conclusion We conclude by highlighting three major con-
ceptual advances brought by evolutionary biology, i.e., that (i)
“not everything is everywhere”, (ii) evolution of pathogen
populations can occur on short time scales, and (iii) the tree
is a multitrophic community. We further translate these into a
framework for immediate policy recommendations and future
directions for research.

Keywords Emerging disease . Invasive pathogen .

Microbiota . Mycoparasite . Fungal diversity . Coevolution .

Tree breeding

1 Introduction: a brief history of forest pathology
and its primary concepts

Forest pathology deals with the diseases of forest trees, which
are mainly caused by fungal and oomycete pathogens, in both
their fundamental and applied aspects. As such, the history of
forest pathology has been shaped not only by the progress of
ideas and concepts in the more general disciplines of micro-
biology and health sciences but also by changes in the practice
of forestry. Forest pathology has obvious common roots with
plant pathology, but is not simply one of its specialities. Long
time scales, diversity, and heterogeneity are hallmarks of for-
ests, in both their biological and socio-economic dimensions.
Forest trees are still mostly nondomesticated species, highly
diverse, growing in richly biotic and heterogeneous environ-
ments. Until recently, forest products have been harvested for
the greatest part from natural or seminatural forests, with ro-
tation periods generally exceeding 50 years (FAO 2010). As a
consequence, forest pathology, as a speciality of forestry, has
had a tradition of systemic and long-term thinking and, prob-
ably more so and earlier than plant pathology, an ecological
approach. Integrating an evolutionary perspective is a natural
extension, especially in the context of global changes.

Robert Hartig, the author of two forest pathology textbooks
in 1874 and 1882, is generally recognized as the father of
forest pathology, following in Anton de Bary’s footsteps,
who is considered to be the father of plant pathology
(Kutschera and Hossfeld 2012). In support to the germ theory
of disease, de Bary provided experimental evidence of the role
of Phytophthora infestans in potato late blight epidemics, re-
futing the old theory of spontaneous generation, while Hartig
proposed a new concept of tree decay whereby fungi were the
cause and not the consequence of the degradation (Merrill and
Shigo 1979). The identification and biological characteriza-
tion of the causal agents of the diseases affecting trees were
still the primary objectives of forest pathologists at the end of
the nineteenth and the beginning of the twentieth centuries.

From the very beginning, forest pathologists were concerned
with both productivity (fungi affecting wood production and
preservation) and conservation issues (pathogens threatening
natural resources) (Peterson and Griffith 1999). As the potato
late blight epidemics did for plant pathology, severe outbreaks
caused by the introduction of exotic pathogens have marked
the history of forest pathology, such as chestnut blight and
white pine blister rust in North America and Europe
(Anagnostakis 1987; Delatour et al. 1985). Forest health has
also been recurrently marked by regionally important declines
affecting a variety of species, e.g., oaks in Europe or maple in
North America (Delatour 1983; Tainter and Baker 1996). The-
se phenomena, leading to progressive debilitation of trees and
ultimately mortality, highlight the potential long-term effects
of weakening factors, especially soil and climate, interacting
with the genetic background of trees. As early as 1963,
George (Hepting 1963) wrote that “field crops [mostly annual
plants]…reflect weather changes; whereas trees […] will re-
flect, in addition, climate changes.” The “tree decline concept,”
with biotic and abiotic factors acting and interacting in se-
quence as predisposing, inciting, or contributing factors was
later formalized by Manion (1981). More generally, forest pa-
thologists have long been interested in and have studied the
relationships between environment, e.g., local site factors, and
disease. In contrast to more intensively managed agricultural
systems, forest environments are heterogeneous, and their nat-
ural constraints (fertility, water availability) are not usually
overcome by external, human inputs. Moreover, direct control
of diseases through fungicide applications has usually not been
considered to be necessary or appropriate, for reasons such as
cost, practical feasibility, and environmental concerns. Disease
management in forests has thus traditionally been viewed as
necessarily based on “good” silvicultural practices and preven-
tive actions deriving from the knowledge of risk factors.
Hazard-rating systems, which identify sites where pathogens
are likely to have a high impact and which should thus be
avoided for the planting of susceptible species, are examples
of successful applications of forest epidemiology (Tainter and
Baker 1996).

The issues faced by forest pathologists today would not be
so different than those addressed by their predecessors, but for
the dramatic acceleration and intensity of changes. The appa-
rition of new diseases caused by alien invasive pathogens is
rapidly increasing with the intensification of international
trade and travels (Brasier 2008; Desprez-Loustau et al. 2010;
Pyšek et al. 2010; Santini et al. 2013; Roy et al. 2014), pre-
senting a major challenge to forest pathology today. Mean-
while, climate change is expected to affect the probability of
establishment of introduced pathogens and more generally to
affect the distribution and severity of diseases (e.g., Shaw and
Osborne 2011; Sturrock et al. 2011). Indeed, forest patholo-
gists pioneered the use of risk mapping for plant disease under
climate change by combining epidemiological models and
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climate change scenarios (Brasier 1996; Booth et al. 2000;
Bergot et al. 2004). The rapid intensification of forestry is
likewise influencing forest pathology. The increasing demand
for wood, biomass, fuel, and other forest-derived products has
led to a large expansion of planted forests, by around 5 million
hectares per year on average in the last decade, with the aim to
increase productivity (FAO 2010). In some countries, especial-
ly in the southern hemisphere and Southeast Asia, where forest
industries have implemented large-scale, management-
intensive monocultures of Eucalyptus, Acacia, and Pinus, plan-
tations currently account for most of the wood supply (Paquette
andMessier 2009). However, new disease emergences threaten
productivity in these new forest ecosystems, as has been report-
ed for stem cankers and leaf and shoot blight of Eucalypts or
root rots of Acacia spp. (Su-See 1999; Mohan and Manokaran
2013; Liebhold and Wingfield 2014). The strong impact of
pathogen introductions and forest management practices on
forest diseases can be illustrated by trends observed in the da-
tabase of the French Forest Health service (Fig. 1).

Long before disease regulation was formally recognized as
an ecosystem service (Millennium Ecosystem Assessment
2005), forest pathology took an empirical approach to the
study of the ecological processes that regulate forest health.
The overall low level of disease in natural and seminatural
forests, with a few exceptions of devastating native diseases
(Hansen and Goheen 2000), is consistent with the general
observation that native plant populations rarely suffer from
devastating epidemics, contrary to what is observed in crops
without fungicide applications (Jousimo et al. 2014). A major
exception to the effectiveness of natural disease regulation, at
least in the short term, is constituted by diseases caused by
some exotic pathogens. The awareness of the increasing im-
pacts of human activities on ecosystems, including forests, has
emphasized the need for global approaches and has changed
our views on evolution of species. It has been increasingly
realized that evolutionary changes can be observed at short
time-scales, especially in ecosystems under strong anthropo-
genic influence (Palumbi 2001; Burdon and Thrall 2008;
Jousimo et al. 2014). Thus, the traditional view considering
evolutionary biology and ecology as two independent fields
has changed dramatically (Koch et al. 2014). The speed of
adaptation of organisms to keep pace with the human alter-
ations of the environment has become a matter of concern
(Carroll et al. 2014). In particular, the ever-faster pace of dis-
ease emergences and the severity of the damage they cause
has emphasized the need to better understand and take into
consideration the coevolutionary processes between patho-
gens and their host tree populations (Parker and Gilbert
2004; Schoettle and Sniezko 2007; Hendry et al. 2011; Ennos
2015). At the same time, the revolution brought by DNA
technologies and their reducing costs has opened new pros-
pects for population genetic and environmental metagenomic
studies (Neale and Ingvarsson 2008; Di Bella et al. 2013),

which can shed new light on the ecology and evolution of
forest diseases and open new avenues for disease control.

In the current context of human-induced accelerated
changes, applying evolutionary principles to disease and
pest management has been advocated by several authors
as the way forward to slow the pathogen arms race in
human, animal, or plant diseases, (Combes 2001; Palumbi
2001; Varki 2012; Vander Wal et al. 2014). Anton de Bary
himself referred to Darwin’s principle of natural selection
when defining plant–parasite interactions (Kutschera and
Hossfeld 2012). Indeed, evolutionary biology provides the
concepts and methods to understand the diversity and
adaptive characteristics of organisms, thus allowing the
identification of pathogens through phylogenetics, and
the prediction and even manipulation of selection and ad-
aptation processes involved in immune or pathogenic
functions (Carroll et al. 2014). The idea that “nothing in
forest pathology makes sense except in the light of evolu-
tion,” paraphrasing Dobzhansky, could now seem obvious
and not deserving of further development (Varki 2012).
Many recent articles dealing with forest pathology indeed
have an evolutionary background (e.g., Hansen and
Goheen 2000; Pinon and Frey 2005; Kinloch et al. 2008;
Garbelotto et al. 2010; Hayden et al. 2011; Cruikshank
and Jaquish 2014; Franceschini et al. 2014). However,
we contend that an evolutionary perspective is still not
sufficiently emphasized and applied to the management
of forest diseases. For example, evolutionary consider-
ations, especially relating to interactions with pathogens,
are still ignored in a recently proposed “novel tree breed-
ing strategy” advocating domestication of forest trees in a
changing world (Harfouche et al 2012). In line with other
recent initiatives in forest pathology (e.g., Cavers 2015;
Cavers and Cottrell 2015) and taking benefit of insights
from other fields (plant pathology, invasion ecology, ecol-
ogy of parasitism, etc.), this article aims to show how an
evolutionary ecology perspective can improve and even
change our understanding of forest diseases and help ad-
dress the challenges of today and tomorrow. Rather than a
comprehensive review of recent developments in forest
pathology, we highlight and focus on some key topics,
for which the evolutionary perspective is especially rele-
vant and could provide new directions for forest research
or disease management: (i) fungal evolutionary diversity
(species diversity of forest pathogens and their ecological
niches); (ii) pathogen evolution (how forest pathogens be-
come adapted to their hosts); (iii) forest resistance to dis-
ease, especially in relation to tree breeding (trade-offs,
tolerance, emerging properties in populations); and (iv)
the role of hyperparasites and tree microbiota in the regu-
lation of pathogen populations and disease. Finally, we
show how knowledge acquired in an evolutionary frame-
work can translate into recommendations for forest

Evolutionary ecology for forest pathology 47



pathology in the future, both from an academic and an applied
perspective. Although we focus here on forest pathology as the
art and science of forest diseases and their control, it should be
reminded that forest pathologists more generally contribute to
the ecology of parasitism. In this ecosystem perspective, fungal
pathogens are no longer “enemies” but key actors of the evo-
lution and ecology of local communities, andmore generally of
the ecosystem health (e.g., Burdon 1987; Gilbert 2002; Hudson
et al. 2006; Ostry and Laflamme 2009).

2 Towards a better knowledge of the diversity,
biogeography, and ecology of forest pathogenic fungi
and Phytophthora spp.

The emergence of new diseases has underlined the poor cur-
rent knowledge of microbial evolutionary diversity. Here, we
refer not only to the diversity of organisms as taxonomic units
but as evolutionary lineages that have diverged and thus pres-
ent specific distributions and ecological niches (Taylor et al.
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Fig. 1 The database of the French Health Service includes approximately
60,000 reports, from 1989 to 2014, which provides a general view of all
pathogens (and other causes) affecting forest health. A total of 24,375
records have been identified at the pathogen species level, for a total of
231 species, among which 29 introduced species for 8634 records and
202 nonintroduced species for 15741 records. a Introduced pathogens are
overrepresented among the most frequent forest diseases; Fisher’s exact
test ; **p=0.0014. The value above each column indicates the number of

pathogen species. The 19 more frequent pathogens represent 81% of all
disease records. b The part of reports associated with introduced
pathogens has much increased in the recent period especially since the
detection of Hymenoscyphus fraxineus in 2008 in eastern France. c A
much higher rate of reports is observed in forest plantations compared
to less intensively managed forests (1989–2006 data). This probably
includes both higher pathogen load but also higher attention paid to
growth losses in these systems (lower tolerance to damage by the forester)
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2006). In many cases, new diseases of forest trees and wild
animals have been caused by introduced organisms, including
fungi and oomycetes, which were not even formally described
before their invasive behavior (Kupferschmidt 2012). Well-
documented examples are forest epidemics caused by
Cryphonectria parasitica on American chestnut, the Dutch
elm disease caused by Ophiostoma ulmi and Ophiostoma
novo-ulmi, the beech bark disease caused by Neonectria
faginata, the Port-Orford cedar rot by P. lateralis and sudden
oak death by Phytophthora ramorum (Garbelotto 2008; Loo
2009). Indeed, the kingdom Fungi alone has been estimated to
include between one to fivemillion species among which only
approximately 5% are identified (Blackwell 2011). Similarly,
diversity in taxonomic groups such as Phytophthora spp. is
probably still largely undescribed (Brasier 2009; Hansen et al.
2011; Hayden et al. 2013; Hüberli et al. 2013; Oh et al. 2013).
Understudied areas of Asia, Central America, or Africa are
thought to host a huge diversity of undescribed fungi and
fungal-like organisms that probably go unnoticed on their na-
tive hosts and could potentially be destructive pathogens if
introduced outside their native area. (Hyde 2001; Brasier
2009; Schmit and Mueller 2007; Blackwell 2011). The lack
of baseline data on fungal diversity and biogeography makes
it difficult to say whether an emerging disease is caused by an
alien species or a pre-existing pathogen, which has evolved
increased virulence or been favored by changing environmen-
tal conditions (Jeger and Pautasso 2008; Shaw et al. 2008;
Linzer et al. 2009; Shaw and Osborne 2011). Identifying the
origin of fungal introductions solely from historical and geo-
graphical arguments is rarely feasible because temporal or
spatial data retracing the chronology of invasion are often
missing, and species descriptions are inaccurate, making it
difficult to separate different putative population sources (see
for example Kim et al. 2010; Goss et al. 2014). Once the
causal organism has been isolated, only a rigorous phyloge-
netic study associated with epidemiological studies can deci-
pher the causes of emergence among introduction of an exotic
pathogen by human-mediated long-distance transport, chang-
es in climatic conditions, and human disturbance to forests
ecosystems, in particular, changes in host density, which often
interact (Anderson et al. 2004; Desprez-Loustau et al. 2007;
Stukenbrock and McDonald 2008; Stenlid et al. 2011; Santini
et al. 2013).

The full recognition of fungal and fungal-like diversity has
long been hampered by a lack of diagnostic criteria, but the
availability of improved molecular techniques now allows the
recognition of fungal species consistent with the Evolutionary
Species Concept (Taylor et al. 2000). For example, detailed
phylogenetical studies have demonstrated that the fungal lin-
eage causing ash dieback was different from the indigenous
European species Hymenoscyphus albidus, which is not path-
ogenic, and that it was conspecific to the Asian species for-
merly reported as Lambertella albida (Queloz et al. 2011;

Husson et al. 2011; Zhao et al. 2012). In many cases, species
defined from morphological traits were shown to be pools of
genetically isolated lineages that differed significantly in bio-
logically relevant features such as geographic distribution and
pathogenicity (Taylor et al. 2000, 2006). Many plant diseases
have thus been shown to be caused by a complex of cryptic
species (de Wet et al. 2003; Fitt et al. 2006; Crous et al. 2004;
Cai et al. 2011; Pérez et al. 2012). In particular, recent studies
using DNA sequences have clarified the taxonomic confusion
that existed for some important forest pathogens, leading to
revisions such as the split of the red band needle blight of Pinus
into two distinct species: Dothistroma septosporum and
Dothistroma pini (Barnes et al. 2004), the redefinition of the
genus Ceratocystis (de Beer et al. 2014), and the description
and characterization of the Gibberella fujikuroi complex (Kvas
et al. 2009). Another example is oak powdery mildew in Eu-
rope, which was shown to be associated with four different
cryptic species often coexisting in the same stands: Erysiphe
alphitoides, Erysiphe quercicola, Erysiphe hypophylla, and
Phyllactinia roboris (Mougou et al. 2008; Mougou-Hamdane
et al. 2010). The geographic origin of these species is still
hypothetical (Desprez-Loustau et al. 2011), as is the possibility
that some of them evolved in sympatry in their region of origin,
as a result of evolutionary branching. Such evolutionary
branching could explain their temporal niche differentiation,
in which certain species predominate at different points in the
season (Feau et al. 2012; Hamelin et al. 2011).

The resolution of species complexes and the reappraisal of
fungal phylogeny has not only produced taxonomic clarification
but also changed our views on the biology of the fungi and their
ecological niche. For example, Fabre et al. (2011) showed that
the two different Dothistroma species causing similar foliar
symptoms in pines,D. septosporum andD. pini, have a different
climatic niche, the latter being present in warmer climate. The
use of species-specific tools proved that the disease outbreak in
the 1990s in France could not be explained by a recent introduc-
tion of D. pini, as it was already present in the country in old
herbarium samples, but rather by increased temperature condi-
tions in recent years. The long-held belief that powderymildews,
like many biotrophic pathogens, are highly specialized was put
into question when the same species were found on distantly
related hosts, as wereE. alphitoides andE. quercicola on various
tropical hosts in plant families very distant to Fagaceae
(Takamatsu et al. 2007). Similarly, Fusarium circinatum, part
of the large G. fujikuroi complex (Kvas et al. 2009), which had
been thought to be specialized on the Pinus genus, was recently
shown to be able to behave as an endophyte of different grasses
(Swett andGordon 2012) and to infect maize (Swett andGordon
2015). This finding raises the question whether grass species can
act as reservoir for F. circinatum.

Pathogens that cause minor damage are often unseen—es-
pecially in the region of origin of diseases, where pathogens
and hosts have coevolved (Parker and Gilbert 2004; Loo
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2009; Jousimo et al. 2014). Tracking the origin of invasive
fungi and Phytophthora spp. has thus improved our knowl-
edge of these organisms in their natural environments. A few
well-documented epidemics caused by introduced pathogens
have allowed the reconstruction of the invasion pathways or
the exclusion of potential sources by testing different scenarii
of introduction, using recent advances in molecular and statis-
tical Bayesian analysis (Grünwald and Goss 2011; Barrès
et al. 2012; Dutech et al; 2012; Graça et al. 2013; Tsui et al.
2014). For instance, molecular studies completed since the
European invasion ofHymenoscyphus fraxineus strongly sug-
gested that the fungus originates from East Asia, (Gross et al.
2014), where no epidemics have been reported on the local
ash species. The number of described Phytophthora species
has dramatically increased in the last years, and it is now clear
that forest soils host numerous and diverse resident commu-
nities of Phytophthora species (Hansen 2008). The bulk of the
increase is attributable to better survey and discrimination of
Phytophthora spp. in temperate forests and wild land ecosys-
tems (e.g., Burgess et al. 2009; Oh et al. 2013). Whereas these
surveys originally focused on highly pathogenic and mostly
introduced Phytophthora species, they allowed the discovery
of several species unassociated with disease symptoms
(Kroon et al. 2011; Hansen et al. 2011). One example is
Phytophthora uniformis which does not cause decline of its
host, Alnus incana, in its native environment in Alaska (Ad-
ams et al. 2009), but is one of the parental species of P.×alni,
which has decimated riparian populations of black alder in
Europe since the early 1990s (Brasier et al. 1995, see below
for the hybridization process).

3 Pathogen evolution: understanding and predicting
the success of invasive forest pathogens
and the adaptation of pathogens in intensively
managed plantations

Invasions by forest pathogens most often lead to new species
interactions, without any previous coevolutionary history
(Parker and Gilbert 2004). This differs from what is observed
in widely planted crop plants, which have a worldwide distri-
bution and are mainly affected by pathogens with which the
plant species coevolved in the center of origin. New interac-
tions in these cases occur at the intraspecific level between
cultivars and strains of the pathogens, after a period of inter-
ruption in the natural coevolutionary process, as in the famous
example of potato late blight in Europe (Desprez-Loustau
et al. 2007). How a species introduced into a new environment
can thrive and develop biotic interactions in the invaded com-
munity is a central question in invasion ecology (Elton 1958;
Parker and Gilbert 2004; Facon et al. 2006; Keller and Taylor
2008; Vacher et al. 2010). In particular, the outcomes of evo-
lutionary novelty in plant–pathogen interactions, i.e., new

encounters between pathogens and naive plants, have led to
contradictory predictions. Some have argued for biotic resis-
tance: that is, the novelty of a new environment will be too
difficult to overcome, thus only a fraction of introduced path-
ogens will cause disease (Newcombe and Dugan 2010). In-
deed, it has been shown for plants that most biological inva-
sions fail (Williamson and Fitter 1996). In contrast, evolution-
ary novelty has been suggested to generally benefit plant en-
emies, since there will have been no selective pressure on
resident plants to develop or maintain resistance to the new
antagonist (Parker et al. 2006). Verhoeven et al. (2009)) pro-
posed that the outcomes of novel interactions between plants
and pathogens or insects can be predicted by the mechanisms
underlying the interaction. In particular, novelty is expected to
benefit pathogens in the case of recognition-based defense, as
occurs in the elicitor–receptor system (Jones and Dangl 2006),
since, in this case, the plants have not evolved receptors able
to recognize the specific elicitors of the new pathogen and
ultimately to trigger resistance responses.

The success of pathogen invasions relies on various pro-
cesses, from preadaptation or plasticity to postinvasion adap-
tation (Agosta and Klemens 2008). Deciphering the relative
contributions of these processes requires genetic and pheno-
typic comparisons between source and introduced populations
(Keller and Taylor 2008). These analyses have been only rare-
ly performed for forest pathogens, notably in a study demon-
strating key differences in transmission between native and
introduced species ofHeterobasidion (Garbelotto et al. 2010).

In many cases, successful invasive forest pathogens have
jumped to new hosts with close phylogenetic relationship,
often in the same genus, e.g. C. parasitica from Asian to
American or European Castanea spp. (Anagnostakis 1987),
Cronartium ribicola from Asian to American or European
Pinus spp. (Kim et al. 2010), O. novo-ulmi from Asian to
European and American elms (Brasier and Mehrotra 1995),
Phytophthora lateral is f rom Asian to American
Chamaecyparis (Brasier et al. 2010), and H. fraxineus from
Asian to European ash (Zhao et al. 2012; Goss et al. 2014).
The close relationship between original and new hosts fits
with the experimental demonstration that the likelihood that
a pathogen can infect two plant species decreases continuous-
ly with phylogenetic distance (Gilbert and Webb 2007; De
Vienne et al. 2009). This relationship between ease of host
jumps and phylogenetic distance could be explained by “eco-
logical fitting” or exaptation, i.e., that infectivity traits evolved
in a host interaction in its place of origin would allow the
pathogen to be able to infect a closely related host species in
its area of introduction (Agosta and Klemens 2008; Agosta
et al. 2010). A second, not mutually exclusive hypothesis is
that fewer evolutionary changes in the pathogen are required
to adapt to a new host more closely related to its original host
(Altizer et al. 2003; Schulze-Lefert and Panstruga 2011). Only
a fewmutations events in pathogen effectors and their targeted
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host proteins were shown to explain successful host jumps
among sister species in Phytophthora (Dong et al. 2014).
The phylogenetic signal in plant pathogen–host range could
help identify potential risks for forest ecosystems and cautions
against the introduction of seedlings or trees of exotic species
to an area with wild relatives among the indigenous trees
(Vacher et al. 2010; Gilbert et al. 2012). However, the gener-
ality of these predictions is questioned by the observation of
several invasions with apparent host jumps to more distantly
related hosts, for example, in the case of P. ramorum (Hansen
et al. 2005; Brasier and Webber 2010), oak powdery mildew
(Takamatsu et al. 2007; Desprez-Loustau et al. 2011), or
Neofusicoccum parvum (Sakalidis et al. 2013). In some in-
stances, ecological proximity plays a larger role than phylo-
genetic proximity in host jumps (Roy 2001; Refregier et al.
2008). Agosta et al. (2010) proposed a scenario to explain
hosts jumps by specialized pathogens with a two-step process.
In a first phase, host expansion is favored by ecological per-
turbations, which put into contact pathogens and new hosts,
with a high level of stochasticity. The success of this first
phase, i.e., the initiation of a new interaction, is enabled by
mechanisms such as ecological fitting or exaptation, which do
not require evolutionary innovation. This phase is followed by
a phase of host specialization based on evolutionary changes.

This raises the question of the evolutionary potential
for introduced pathogens. Indeed, species introductions
are often accompanied by severe genetic bottlenecks
(Lee 2002). The resulting reduced genetic diversity could
happen to be insufficient to allow adaptation to the new
environment (i.e., the invasion paradox, Frankham 2005).
Multiple introductions from genetically divergent popula-
tions have often been invoked to explain the successful
invasion of plants or animals despite this apparent para-
dox (e.g., Kolbe et al. 2004; Lavergne and Molofsky
2007). Multiple introductions not only increase the prop-
agule pressure but also increase overall population genetic
variance, hence evolutionary potential. In particular, re-
combination can occur between previously allopatric, di-
vergent genetic lineages, what is called genetic admixture
(Rius and Darling 2014). Such intraspecific hybridization
generates novel allelic combinations that can be beneficial
for the colonization of new hosts and environments
(Lavergne and Molofsky 2007; Rius and Darling 2014).
Multiple introductions have been documented for some
forest pathogens, such as C. parasitica in Europe (Dutech
et al. 2010), F. circinatum in Spain (Berbegal et al. 2013),
or Diplodia pinea in South Africa (Burgess et al. 2001).
Genetic admixture among genetically divergent popula-
tions has been identified in some examples, such as
C. parasitica (Dutech et al. 2012), but the demonstration
of a benefit for invasion has not yet been rigorously
established (Dlugosch and Parker 2008). The respective
roles of admixture and adaptation within populations thus

represent an important and as-yet unanswered question in
understanding the causes of invasive success in forest
pathogens.

Interspecific recombination events involving nuclear and
mitochondrial genomes have been increasingly recognized
as an important factor in the evolution of plant pathogens
and their adaptation to new environmental conditions, for ex-
ample enabling them to perform host jumps between phylo-
genetically divergent species (Newcombe et al. 2000; Schardl
and Craven 2003; Parker and Gilbert 2004; Giraud et al.
2008a,b; Stukenbrock and McDonald 2008; Stukenbrock
2013). Partial sexual compatibility between phylogenetically
close species (Le Gac and Giraud 2008) and regular non-
Mendelian genetic transmission (Roper et al. 2011) are com-
monly observed in fungi. These genetic processes increase the
probability of genetic introgression among species and, there-
fore, the likelihood of acquisition of new genes associated
with pathogenic functions (Dhillon et al. 2015). Furthermore,
the dramatic increase in worldwide movement of pathogens
through plant trade (Roy et al. 2014) has favored the encounter
in the same environment of phylogenetic taxa that did not
develop interfertility barriers during allopatric speciation
(Taylor et al. 2006; Le Gac and Giraud 2008). Recent studies
on Phytophthora alni, the causal agent of alder decline in
Europe, clearly illustrate the consequences of hybridization
on the emergence of a new disease. A hybrid origin of the
P. alni complex was first concluded from the study of mor-
phological and physiological characters (Brasier et al. 1999).
The investigation of ploidy and mitochondrial and nuclear
genes in the P. alni complex have confirmed that the epidemic
taxon P. xalni was the result of an interspecific hybridization
between two close phylogenetic species, P. uniformis and
Phytophthora×multiformis (Ioos et al. 2006; Husson et al.
2015). In addition, genetic studies using polymorphic micro-
satellite markers strongly suggested that the parental species
P. uniformiswas alien to Europe (Aguayo et al. 2013) and that
its introduction subsequently led to its hybridization with P.×
multiformis and to the emergence of the aggressive hybrid
species P.×alni, which is responsible for the epidemics.

Once the species barrier has been overcome and very high
mortality rates have occurred in a new host, it has long been
supposed that pathogen populations should evolve towards
lesser virulence, in the meaning used by evolutionary biolo-
gists, i.e., the amount of damage a parasite causes to its host,
encompassing both infectivity (the ability to colonize a host)
and severity of the disease (Frank 1996; Parker and Gilbert
2004). Such a decline in virulence is expected as populations
move toward equilibrium so long as there are trade-offs be-
tween pathogen transmission and virulence—that is, patho-
gens that cause their hosts to die more quickly have fewer
opportunities to spread (May and Anderson 1983; Frank
1993; Alizon et al. 2009). In the case of oak powdery mildew,
for example, the severity of epidemics in Europe (associated
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with mortalities) rapidly declined after the first outbreaks.
However, whether this decreased disease severity is attribut-
able to a decreased virulence of the pathogen or to other fac-
tors (e.g., changes in forest practices, such as abandonment of
pollarding and coppicing, or regulation by hyperparasites) re-
mains unclear (Mougou et al. 2008). In other, long-time inva-
sions, no decrease in virulence has yet been observed (e.g.,
O. novo-ulmi in Europe or C. parasitica in North America;
Jarosz and Davelos 1995). In addition to the classic virulence/
transmission trade-off and subsequent intermediate optimum,
several factors such as cost of virulence/resistance, trait corre-
lations, and geographic distributions can determine the out-
comes for virulence evolution (Bull 1994; Frank 1996;
Gandon 2002; May and Anderson 1983). Moreover, the
transmission-virulence trade-off may be released in some sit-
uations, especially when high transmission rates are favored,
allowing virulence to be maintained or increased (Gandon and
Michalakis 2002). The strength of the virulence-transmission
link varies according to pathogen life-history traits. For exam-
ple, transmission is expected to remain high even for virulent
strains for pathogens that can persist on their dead host as
saprobes, as is often observed for necrotroph forest pathogens
(e.g., Prospero et al. 2006 for C. parasitica). An increase in
virulence is also expected to occur as a consequence of im-
proved pathogen transmission in artificialized ecosystems,
such as agroecosystems or planted forests (Stukenbrock and
McDonald 2008). Large host plants surfaces with low genetic
diversity maintain large pathogen populations, with high evo-
lutionary potential and great opportunities for transmission,
thus allowing rapid adaptation to the hosts (Stukenbrock and
Bataillon 2012). Increased incidence of qualitative virulence
types in response to forest host density has been clearly dem-
onstrated, as in the examples of the breakdown of rust resis-
tance types in plantation poplars (Pinon and Frey 2005). Sim-
ilarly, C. ribicola populations have been demonstrated to in-
crease in the proportion of strains carrying virulence types in
the presence of five-needle pines with corresponding qualita-
tive resistance (Kinloch et al. 2004, 2008). Increased virulence
in the quantitative sense (often referred to aggressiveness by
plant pathologists ) has been reported in some agroecosystems
(Milus et al. 2009; Delmotte et al. 2014). The risk of evolution
of increased virulence in response to quantitative resistance
has been acknowledged for forest diseases (Ennos 2001),
but there is still no clear empirical demonstration. Increasing
damage caused by some endemic pathogen species following
the extension of host plantations on large surfaces have been
reported in the last decades (Woods et al. 2005; Lieberei 2007;
Fabre et al. 2011; Xhaard et al. 2012). However, climatic
changes (Fabre et al. 2011; Woods et al. 2005) or simply the
increase in host density and extent (Lieberei 2007; Xhaard
et al. 2012) have been invoked as causes of increasing damage
in these studies. Because planted forests are expected to in-
crease rapidly in the next future, special attention toward

predicting pathogen evolution in interaction with future forest
management practices is surely required.

4 Disease resistance: revisiting the ideotype concept
for breeding trees

The forces that allow disease to persist at an overall moderate
level in otherwise undisturbed ecosystems have long been a
subject of study and speculation (May and Anderson 1983).
Wide genetic variation in host resistance and pathogen viru-
lence have been evidenced in such ecosystems, where they are
sustained by and result from coevolutionary dynamics be-
tween hosts and pathogens (Burdon and Thrall 2000; Keesing
et al. 2006; Burdon et al. 2013; Ennos 2015; Jousimo et al.
2014). In contrast, the association between low diversity and
high disease incidence has been called the “monoculture ef-
fect” in reference to the agricultural context in which frequent,
severe epidemics require the use of pesticides to maintain
yield loss below acceptable levels (King and Lively 2012).
This model of intensification with a strong dependence on
external, fossil fuel inputs has been increasingly put into ques-
tion, and new paradigms for intensification have been widely
adopted (Tittonell 2014). However, recent forest intensifica-
tion has largely followed the old model, with a great expan-
sion of monospecific, and sometimes monoclonal, plantations
(Paquette and Messier 2009). The philosophy of some tree
breeding strategies still strongly relies on selecting or design-
ing an ideal tree, i.e., “superior genotypes” for mass propaga-
tion using biotechnology and genome engineering (Campbell
et al. 2003, Harfouche et al. 2012). The questions raised by
this approach—what should be an ideal tree? how to select the
ideal tree?—have been addressed by many studies and re-
views (e.g., Dickmann et al. 1994; Martin et al. 2001;
Dubouzet etal. 2013; Franklin et al. 2014). Here, we would
like to highlight three topics that have been comparatively
little dealt with or applied in the field of tree breeding: trade-
offs, tolerance, and group selection.

The idea of an “ideal tree” derives from the ideotype con-
cept, first coined by Donald (1968) for crop plants. In general,
targeted phenotypes are mostly defined from growth-related
traits (Martin et al. 2001; Harfouche et al. 2012). However,
selecting fast-growing trees may be at the expense of defense
traits, due to trade-offs between growth and defense (Franklin
et al. 2014). A predicted lower resistance to pathogens and
herbivores in faster growing plants due to the metabolic cost
of resistance has gained empirical support (Lind et al. 2013),
and has been observed in trees (Loehle and Namkoong 1987;
Fine et al. 2006; Oliva et al 2012, 2014). In a recent study with
Populus trichocarpa, McKown et al. (2014) demonstrated the
occurrence of trade-offs in the evolution of stomatal traits that
were positively related to growth (photosynthesis and shoot
elongation) and negatively to defense (foliar tannins and
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Melampsora infection). Such negative relationships between
growth and disease resistance could have important implica-
tions for breeding programs. A recent meta-analysis demon-
strated that the selection of poultry lines for rapid growth
unintentionally resulted in a strongly reduced immune func-
tion (Van der Most et al. 2011). The authors however conclud-
ed that, by explicitly taking the relative costs of growth and
immune functions into consideration during selection, it may
be possible to breed animals for increased growth without loss
of immune function. It has also been shown for plants that the
growth-defense trade-offs are complex and may vary accord-
ing to the resistance traits involved, e.g., constitutive vs. in-
duced resistance, or resistance sensu stricto vs. tolerance
(Kempel et al. 2011). Moreover, environmental constraints
also interact with the growth-defense trade-off to determine
fitness. In a recent study, Franklin et al. (2014) proposed a
mechanistic model of tree fitness integrating the most relevant
traits involved in growth and survival (including defense allo-
cation), in addition to limiting factors, such as light environ-
ment and drought, disturbance frequency (including pests and
pathogens), and competition. This modeling framework can
be used to explore the potential and limitations of artificial
selection to increase productivity in a managed forest environ-
ment, by identifying optimal combinations of traits for a given
goal and explicitly relating expected productivity gains to
changes in tree vulnerability to biotic and abiotic risks in var-
ious environmental conditions. Using a similar framework,
selection for qualitative disease resistance in limber pine has
been shown to alter trees’ drought and temperature tolerances,
potentially changing their environmental range (Vogan and
Schoettle 2015).

When dealing with plant (tree) defense against pathogens,
much emphasis has been put on resistance in its restricted
meaning, i.e., mechanisms that prevent or limit the develop-
ment of the pathogen (see review in Telford et al. 2015). These
mechanisms therefore exert a selection pressure on pathogen
populations, the strength of which depends, on the plant side,
on the level of resistance (from partial to complete) and the
spatial scale of the deployment of resistant genotypes
(McDonald and Linde 2002; REX Consortium 2013; Ennos
2015). The evolutionary constraints affecting the long-term
efficacy of resistance strategies are well illustrated by past
failures in the breeding programs of rust resistant poplar cul-
tivars in Europe. The complete resistance conferred by race-
specific genes widely deployed inmonoclonal plantations was
rapidly overcome by virulent races of the pathogen, in several
boom-and-bust cycles (Pinon and Frey 2005). These failures
have pushed breeders to consider other types of resistance,
such as polygenic partial resistance, with the goal to slow
down the evolution of virulent pathogen variants, thus in-
crease the durability of resistance (Dowkiw et al. 2012). The
increasing knowledge of plant–pathogen molecular interac-
tions and technological advances are enabling the discovery

and functional profiling of new resistance genes, the break-
down of which would incur high fitness costs in correspond-
ing virulent pathogens (Vleeshouwers et al. 2008;
Michelmore et al. 2013). Tolerance in its restricted meaning
(i.e., mechanisms that reduce the host fitness costs of infec-
tion, Roy and Kirchner 2000; Simms 2000) has been the sub-
ject of a growing interest as a potentially more stable defense
component than true resistance since it was considered to
place little or no selective pressure on the pathogen (Schafer
1971; Ney et al. 2013; Ennos 2015). Tolerance, however, is in
nearly all cases expected to impose positive feedbacks leading
to more prevalent and/or more virulent pathogens (Little et al.
2010; Miller, White, and Boots 2006; Roy and Kirchner
2000). Therefore, introducing tolerant hosts to a population,
through breeding for example, has the potential to increase
pathogen pressure overall (Restif and Koella 2004). More
pathogens in the landscape can lead to negative effects on
nontarget host species such as wild relatives (Power and
Mitchell 2004), or even to host jumps to new species, since
the probability of eventual emergence on new hosts is in-
creased with a larger pathogen reservoir (Antia et al. 2003).
While it has been observed that asymptomatic infections can
be important drivers in the epidemiology of forest diseases
(Elegbede et al. 2010; Denman et al. 2008), the potential for
host tolerance to increase disease prevalence in adjacent pop-
ulations or nontolerant host species is rarely acknowledged in
a management context (Hayden et al. 2013; Little et al. 2010).
Breeding strategies combining both resistance and tolerance
mechanisms therefore appear to be the most desirable (Walters
et al. 2012). This requires an accurate assessment of resistance
and tolerance traits and their interactions (Simms and Triplett
1994), as investigated in the Douglas fir–Armillaria ostoyae
pathosystem (Cruikshank and Jaquish 2014).

Just as disease tolerance has the potential to increase dis-
ease overall, a major challenge for breeders lies in the fact that
characters of interest are relevant at stand level, while selec-
tion is based on individual performance. This issue was central
to Colin Donald’s ideotype concept, which balanced individ-
ual performance against competitive ability and population
performance, but it was largely overlooked (Zhang et al.
1999). As an agronomist, Donald focused on yield, but his
arguments are particularly relevant for disease resistance. Dis-
ease resistance can be visualized as an emerging property of
populations, in that it is strongly affected by density- and
frequency-dependent ecological and evolutionary processes
(Burdon et al. 2014; Ennos 2015; Telford et al. 2015; Papaïx
et al. 2015). Indeed, durable resistance to pathogens is a pop-
ulation attribute that can only be assigned retrospectively
(Johnson 1984). Rather than relying on “durable resistance
genes,” durable resistance should be considered in terms of a
strategy to minimise the pace of evolution of virulence in the
pathogen population (REX Consortium 2013; Michelmore
et al. 2013). This can be achieved by a variety of approaches
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based on an adequate deployment of multiple resistance genes
either by pyramiding and/or by heterogeneous deployment in
space and time, so as to diversify the selection pressure on the
pathogen (McDonald and Linde 2002; Michelmore et al.
2013; REX Consortium 2013). Growing clonal mixtures of
5–20 genotypes for short-rotation coppice of willow has prov-
en to be feasible and effective for both disease reduction and
yield increase over a long term (McCracken et al. 2011). Nev-
ertheless, such experiments with trees are relatively few, and
are centered on genotypes that were selected on their individ-
ual performance. Going still further, breeding for genetically
diverse populations has received increasing attention in recent
years, especially in the context of a “Darwinian agriculture” to
address future challenges of changing climate and sustainable
management (e.g., Denison et al. 2003; Dawson and
Goldringer 2011). In particular, human-mediated (artificial)
group selection has been suggested to offer a wider scope
for improvement than selection on individual fitness traits
(Zhang et al. 1999; Denison et al. 2003). Natural selection is
thought to operate mostly among individuals and more weak-
ly at a group level, and is thus expected to have favored traits
linked to individual performance even if costly to group pro-
ductivity. As a consequence, individual traits that improve
group performance could offer greater opportunities for artifi-
cial selection (Carroll et al. 2014). An application of this con-
cept for resistance traits was recently proposed by Anche et al.
(2014), who investigated the use the basic reproduction ratio,
R0, which is a key epidemiological parameter defined at the
population level, in breeding programs using individual as-
sessments. The theoretical basis of breeding strategies
targeting population traits, i.e., an association of “cooperative
phenotypes,” has been developed and applied with success in
animals and cereals (Ellen et al. 2014; Carroll et al. 2014).
Recently initiated tree species diversity experiments have
allowed for the testing of associational effects (those linked
to interactions between species) on traits including disease
resistance and susceptibility (Castagneyrol et al. 2014;
Hantsch et al. 2013, 2014). The same type of experiments
could be used to explore within-species associational effects,
which may be even higher in magnitude than between-species
effects (Crawford and Rudgers 2013).

5 Hyperparasitism of fungal pathogens: a poorly
understood but promising means of bio-control

The long-stable coexistence of plants and their pathogens is
generally explained by coevolutionary processes (Newton
et al. 2010; Jousimo et al. 2014). However, pathogens and
plants are included in larger networks where interacting spe-
cies may also contribute to the natural regulation of disease
(Lafferty et al. 2006; Selakovic et al. 2014). In particular,
trophic cascades, where negative effects of herbivores on plant

biomass are reversed by the effects of herbivore predators,
have been widely studied and used in agricultural and forest
entomology systems, including predatory insects, parasitoids,
or disease-causing pathogens (Wainhouse 2005). Developing
these methods for pathogens presents a challenge to forest
pathologists and managers, in order to face increasing forest
disease risks in the context of global change and new planta-
tions. A necessary prerequisite for achieving this goal is im-
proved understanding of mycoparasite diversity, ecology, and
evolution (Roderick et al. 2012).

Because of their deleterious effect on host fitness (i.e., vir-
ulence), hyperparasites play a key role in the ecology and the
evolution of parasite populations (Tollenaere et al. 2014).
Koskella (2013, 2014) has nicely demonstrated that bacterial
populations on horse-chestnut trees are engaged in coevolu-
tionary dynamics with their virus phage parasites and more-
over exhibit reciprocal adaptation across time and space.
However, very few tri-trophic interactions involving a
mycoparasite, a fungal or oomycete pathogen, and a tree host
have been studied so far. This can be explained by the diffi-
culty of detecting the hyperparasites (the biodiversity of which
is even less known that that of parasites) and the complexity of
these interactions due to the life cycles of both microbial pro-
tagonists. The best studied examples of hyperparasites of fun-
gi are hypovirulent viruses, which decrease the virulence of
their fungal hosts [e.g., Cryphonectria Hypovirus1 (CHV1)
infecting the chestnut blight fungus and Dutch elm fungi
O. ulmi and O. novo-ulmi]. Their role in the regulation of
diseases has been established (Davelos and Jarosz 2004;
Springer et al 2013; Swinton and Gilligan 1999). Insights
gained in CHV1 ecology (phenotypic and genetic diversity,
transmission and evolution), which is used for biocontrol in
chestnut orchards (Grente 1981) could help to improve bio-
control strategies. However, fungi can also be parasitized by
other fungi (Barnett 1963; Kiss 2003). This fungal lifestyle
has attracted an increased interest in recent years, with studies
of the ecological impact of mycoparasites on fungal host pop-
ulations (Tollenaere et al. 2014) and investigations about their
mode of action at the molecular level (Mukherjee et al. 2013;
Siozios et al. 2015). Metagenomic studies applied to
mycoviruses (Pearson et al. 2009; Ghabrial and Suzuki
2009; Roossinck et al. 2010; Xie and Jiang 2014) and fungi
(see next section) point to new hyperparasite or fungal antag-
onist candidates. Some mycoviruses have followed the route
of invasion of their invasive fungal hosts and have been first
detected in the introduced range of their hosts (Bryner et al.
2012; Feau et al. 2014; Voth et al. 2006; Schoebel et al. 2014;
Martinez-Alvarez et al. 2014). However, according to the en-
emy release hypothesis (Mitchell and Power 2003), hyperpar-
asites are expected be more frequent in the native range of
their hosts than elsewhere, and thus, systematic searches
should be concentrated in these areas (Roderick and Navajas
2003; Hale et al. 2014; Ridout and Newcombe 2015). Such a
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search for hyperparasites requires a known centre of origin of
the parasite, which is far from the rule, as seen before.

Releases of biocontrol agents outside their native ranges
have not always been successful (Roderick and Navajas
2003). For example, in spite of several introductions of
CHV1 in Northern America, the hyperparasite never
established there (Milgroom and Cortesi 2004). As it has been
shown for invasive species, hyperparasite establishment suc-
cess depends on demographic, genetic, and environmental
factors (Hufbauer and Roderick 2005; Roderick et al. 2012;
Fauvergue et al. 2012). The identification and selection of
transmission and virulence traits is a necessary step for
short-term success of hyperparasites strains for biological con-
trol (Robin et al. 2010; Swinton and Gilligan 1999). For dif-
ferent reasons, transmission and virulence are not easy to
quantify for hyperparasites. Most mycoviruses have no extra-
cellular life stages and are transmitted both vertically and hor-
izontally (Pearson et al. 2009). The horizontal transmission of
mycoviruses is controlled by the fungal vegetative incompat-
ibility system, which, until recently, was thought to impede
virus transmission in populations. However, some
mycoviruses have a global distribution [e.g., CHV1 (Bryner
et al 2012), Gremmenellia virus (Botella et al 2014)]. Recent
results showed that in situ transmission rates of CHV1 are
higher than in vitro studies had suggested (Carbone et al.
2004; Brusini and Robin 2013). Moreover, different strate-
gies, aiming at decreasing the vegetative incompatibility reac-
tion, finding a universal mycovirus donor, or creating vectors
for mycoviruses, have been proposed to increase transmission
efficiency of mycovirus within and among fungal species (Xie
and Jiang 2014). Mycovirus virulence results from interac-
tions of both parasite and hyperparasite genomes, which give
it the attribute of an extended phenotype (Lambrechts et al.
2006). In conditions where transmission between hosts is not
restricted, “mild” hyperparasite strains, characterized by low
virulence and high transmission rates, are more apt to regulate
disease than severe strains because they more readily establish
in a host population than severe strains (Morozov et al. 2007).
When between-host transmission is restricted by fungal veg-
etative incompatibility (transmission rates varying from 0 to
100%), mycoviruses exert a frequency-dependent selection on
their host, which increases with increasing virulence of the
mycovirus, resulting in an increase in fungal population diver-
sity (Brusini et al. 2011). However, highest levels of polymor-
phism in the host population result in unfavorable conditions
for mycovirus transmission. Thus, by this feedback mecha-
nism, less virulent mycoviruses are likely favored in diverse
fungal host populations. This theoretical result supports regu-
lation efforts to impede an increase in the diversity of Euro-
pean C. parasitica populations in Europe where biological
control of chestnut blight is still effective and used.

Establishment success of hyperparasites may also be
strongly dependent on the biotic and abiotic environment.

Milgroom and Cortesi (2004) have argued that failures of
biological control against chestnut blight disease in eastern
North America could be linked to forest ecosystem character-
istics, quite different from the European orchard
agroecosystems where virus-infected strains are successfully
released. This suggests that biological control may have great-
er success in forest plantations with higher tree density and
lower heterogeneity than in seminatural forests, due to the
facilitated development of the fungal parasite (Xie and Jiang
2014). Moreover, virus×fungus×environment interactions al-
so affect the outcome of hyperparasite×parasite interactions
(Bryner and Rigling 2011), which suggests that adaptation of
mycovirus lineages to new environments can occur.

The hyperparasite’s evolutionary history can also provide
useful insights to develop a successful biocontrol strategy.
Genetic analyses of CHV1 populations in western and south-
ern Europe have demonstrated that establishment and spread
of the mycovirus are associated with a few recombinant virus
lineages (Feau et al. 2014). These results, together with the
known effect of hybridization on vigor of biological control
agents (Szucs et al. 2012), the high rate of beneficial recom-
binations in viruses (Vuillaume et al. 2011), and the demon-
strated high cost of bacterial resistance in coevolution with
multiple phage viruses (Koskella et al. 2012) suggest to use
several hyperparasite lineages in biological control strategies,
especially in areas where releases of hyperparasites have
failed until now. Coinfection strategies should be thoroughly
studied in experimental systems prior to deployment, since the
coexistence of different strains of a mycovirus within one host
may not only lead to homologous recombinations but also
result in the selection of more virulent strains, with lower
transmission efficiency (Frank 1996; Mosquera and Adler
1998).

6 The tree microbiota: a rapidly evolving trait that
will allow trees to face anthropogenic environmental
change?

Due to their short generation time, pathogens are expected to
quickly adapt to human-driven environmental change through
changes in distribution and physiology, with or without host
switches. By comparison, trees are expected to adapt more
slowly and to experience a phenotype–environment mismatch
(Carroll et al. 2014). There is, however, one facet of the tree
phenotype that may evolve as quickly as the pathogens: the
tree microbiota, which belongs to the extended phenotype of a
tree (Dawkins 1999; Whitham et al. 2006; Partida-Martínez
and Heil 2011). Indeed, virtually, all tissues of trees are colo-
nized by microorganisms (Turner et al. 2013). These microbi-
al communities, which are the outcome of millions of years of
coevolution (Partida-Martínez and Heil 2011), modulate the
tree’s resistance against multiple stresses, including pathogens
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(Arnold et al. 2003; Hacquard and Schadt 2015). Within the
current context of rapid environmental change, it is thus cru-
cial to tackle the following issues: (i) Which properties of the
resident microbiota protect the tree against biotic and abiotic
stresses? (ii) How will these properties respond to environ-
mental change? (iii) Can we select tree genotypes with bene-
ficial microbiota to facilitate their adaptation to environmental
change? Theoretical ecology provides a powerful framework
for approaching the first issue. For instance, the biodiversity–
ecosystem function (BEF) theory posits that biodiversity in-
creases the intensity and stability of ecosystem functions
(Cardinale et al. 2012). Future research aimed at improving
tree performance could examine whether this relationship
holds at the individual level. For instance, it could examine
whether the diversity of tree microbiota improves the various
components of tree fitness, including the resistance to patho-
gens. Such microbiota diversity-individual fitness (MIF) rela-
tionship can now be studied by using new sequencing tech-
nologies (Di Bella et al. 2013; Vayssier-Taussat et al. 2014),
which allow the various properties of tree microbiota (com-
munity richness; taxonomic, phylogenetic, or functional di-
versity; and composition) to be readily described (Buée et al.
2009; Jumpponen and Jones 2009). By combining these novel
technologies with methods for network inference (Faust and
Raes 2012), the networks of microbial interactions can also be
deciphered. Such an approach could enable the identification
of potential pathogen antagonists, and thus facilitate protec-
tion strategies based on microbial epiphytes and endophytes
(Witzell et al. 2014). This approach may also reveal network
properties driving the stability of the residential microbiota, in
particular its invasibility by pathogens (Kemen 2014).

The second issue is to assess how fast and in which direc-
tion the beneficial properties of the resident microbiota will
respond to environmental change. There is already a large
body of knowledge showing that the composition and struc-
ture of the tree microbiota strongly respond to environmental
factors such as temperature, drought, atmospheric CO2, or
urbanization (Jumpponen and Jones 2010; Compant et al.
2010; Peñuelas et al. 2012; Cordier et al. 2012a; Coince
et al. 2014; Rico et al. 2014). There is also increasing evidence
showing that the tree microbiota is influenced by the genetic
variability of trees, both at intraspecific (Schweitzer et al.
2008; Cordier et al. 2012b; Bálint et al. 2013) and interspecific
(Knief et al. 2010; Redford et al. 2010; Kembel and Mueller
2014; Kembel et al. 2014) levels. Tree microbiota properties
can thus be considered to be phenotypic traits that are influ-
enced by both the environment and the tree genotype (Bálint
et al. 2015). Phenotypic plasticity may induce a rapid change
in tree microbiota properties, in response to anthropogenic
environmental change. This change may then be followed
by an evolutionary change, caused by the genetic adaptation
of tree populations (Donnelly et al. 2012). Both mechanisms,
plasticity and genetic adaptation of the tree microbiota, may

allow tree populations to cope with novel, emerging patho-
gens; thus, a current challenge for forest pathologists is to
assess their relative influence.

Finally, the last challenge will be to integrate the benefi-
cial properties of the tree microbiota into the selection pro-
cess for tree genotypes (Newton et al. 2010;Chakraborty and
Newton 2011). After the characterization of the beneficial
properties through observations and manipulative experi-
ments, their genetic architecture will have to be deciphered
and their heritability to be assessed (Peiffer et al. 2013;
Horton et al. 2014). Evolutionary models simulating the
complex network of interactions formed by the novel tree
genotypes, their pathogens, and microbiota (Kemen 2014)
could then be used to define tree breeding strategies that will
sustain forest health. However, such simulations are far from
being trivial. Numerous evolutionary models have been de-
veloped in the case of simple, pairwise plant–pathogen inter-
actions (Gilligan 2008; REX Consortium 2013). Extending
these models to a greater number of species remains a chal-
lenge for evolutionary biologists (Brännström et al. 2012;
Fortuna et al. 2013).

7 Conclusions and recommendations for the future

At the turn of the twenty-first century, Paul Manion (2003)
reviewed some recently evolved concepts in forest pathol-
ogy, which had modified the way of thinking about diseases
and their practical management. Shortly more than 10 years
after, the ecological view advocated in this prospective ar-
ticle has gained increasing recognition, and has also been
the subject of substantial new evolution. It is remarkable to
note that neither of the terms “global” nor “evolution” (ex-
cept for that of concepts) were used by Manion. The rec-
ognition of global change in all its dimensions, including
not only climate change but also accelerating global trade,
habitat destruction, and other human-caused effects on the
environment, has profoundly affected all areas of science
and society in the last 15 years. In particular, two major
changes affecting forest pathology—the world movement
of species with trade, and the rise of plantation forestry to
meet growing needs of an increasing human population—
have led to an increasing number of emerging diseases,
mobilizing the efforts of forest pathologists, and these
trends are expected to continue (Essl et al. 2011; FAO
2010). In this context of global changes, characterized by
strong new selective pressures put on entire ecosystems by
human activities, the coupling of ecology and evolutionary
biology has become essential for the understanding of for-
est diseases and their management. Three important ad-
vances, which have important practical implications and
which also open new questions for future research, can be
highlighted (see Table 1).
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Table 1 Three important evolutionary concepts that have gained increased supporting evidence and have direct policy and practical implications and
open directions for future research. A few key references are given; more are included throughout the main text

Supporting evidence Practical and policy recommendations Directions for future research

Not everything is everywhere

• Data on the biogeography of
fungi and Phytophthora spp
(Taylor et al. 2006)

• Emerging diseases in naive
tree populations susceptible
to new pathogens (Santini
et al 2013)

• Emergence of aggressive
pathogen species by
hybridization of allopatric
species with low
interfertility barriers
(Brasier 2001)

• “Lucky monoculture
plantations” of exotic tree
species that benefit from
enemy escape (Pautasso
et al. 2005)

• Appropriate trade regulations to decrease the
risks associated with exotic pathogens
(pathway approach) (Goss et al. 2009;
Liebhold et al. 2012; Roy et al. 2014):

– traceability (passports) for plants-for-planting
(Parke and Grünwald 2012)

– inclusion of the phylogenetic signal (Gilbert
et al. 2012) and network theory applied to
trade exchanges (Dehnen-Schmutz et al. 2010)
in phytosanitary risk analysis

• Improvement of phytosanitary inspections
(Liebhold et al. 2012; Eschen et al. 2015;

• Monitoring and surveillance
– improved and non-specific detection: generic
detection (e.g. of Phytophthoras) and
detection without a priori identification (Fears
et al. 2014); sentinel trees in areas of origin of
imported plants and use of arboreta

– improvement of disease management in
nurseries (Parke et al. 2014)

• Further investigations of fungal diversity, especially in
poorly studied and taxonomically rich ecosystems
(Tedersoo et al. 2014)

• Theoretical developments for general predictions about the
intensity of infection in various host-pathogen interactions;
in-depth analyses of some communities, including life-
history traits of host and pathogens, and genomic analyses
of resistance genes in order to test predictions (Garcia-
Guzman and Heil 2014; Gilbert andWebb 2007, Gilbert et
al. 2012)

• Diversification, specialization and speciation in fungi and
Phytophthora spp.: theoretical models and empirical
approaches (Hamelin et al. 2011; Giraud et al. 2010)

Pathogen evolution can occur at short time scales

• Adaptation of pathogens
after introduction (Gladieux
et al. 2015)

• Breakdown of resistance
developed in breeding
programs and deployed on
large scales (McDonald and
Linde 2002)

•Avoidmultiple introductions: regulations aimed
not only at the species but also intra-specific
level, to avoid admixture and increase
efficiency of biological control

• Evolutionary breeding and forestry (Lefevre
et al 2014; Cavers and Cottrell 2015)

– use natural disease regulation mechanisms
associated with tree diversity (Pautasso et al.
2005)

- consideration of defense trade-offs in tree
breeding (Vogan and Schoettle 2015; Franklin
et al. 2014)

- combination of resistance and tolerance
mechanisms

- study and prediction of associational traits:
target an "ideapop" or "ideacomm" instead of
an ideotype (Anche et al. 2014)

• Evolutionary potential of pathogens
– experimental approach to the relative contributions of
preadaptation and adaptation processes in invasive
pathogens (Dlugosch and Parker 2008)

– species barrier effect: genes explaining the determinants of
host range in fungal species and their potential for
evolution (Schulze-Lefert and Panstruga 2011)

– trade-offs between virulence and other adaptive traits in
pathogens: transmission, phenology (adaptation to
climate) (Lively et al. 2014)

– effect of hybridization, admixture and multiple infections
on the evolution of virulence (Susi et al. 2014)

– empirical studies of the impact of host tolerance and
qualitative and quantitative resistance to disease on the
evolution of virulence in forest systems

• Study of general/cross resistance mechanisms to disease in
trees (Yanchuk and Allard 2009)

– nonhost resistance (Schulze-Lefert and Panstruga 2011),
recessive resistance (van Schie and Takken 2014)

• Development of demo-genetic models of host–parasite
interactions (e.g., Bazin et al. 2014)

• Ecological and evolutionary mechanisms regulating disease
in wild plant pathosystems (Jousimo et al. 2014)

• Ecoimmunology (Schulenburg et al 2009)

The tree is a multitrophic community

• Tree pathogens have their
own enemies

(Kiss 2003; Pearson et al
2009)

• Microbial communities
around and inside trees are
highly diverse (Buée et al.
2009; Peay et al. 2013)

• More systematic search of antagonists and
hyperparasites in the native ranges of forest
pathogens (Hale et al. 2014; Ridout and
Newcombe 2015)

• Development of platforms for the coupling of
metagenomic and phenotypic characterization
of microbial communities (Lebeis 2014)

• Mycoparasitism by fungi, bacteria, virus
– significance in natural ecosystems (Tollenaere et al. 2014)
– role of hybridization, admixture and multiple infections on
the efficiency and evolution of the biocontrol agents(Feau
et al. 2014)

• Tree endophytic fungi: continuum or shift from
opportunistic, weak pathogenicity, and their interaction
with true pathogens (Pautasso et al. 2014).
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1. Not everything is everywhere (especially forest patho-
gens)

The view on the processes underlying geographic var-
iation in microbial distributions has changed from purely
ecological explanations (“everything is everywhere but
the environment selects,” according to Beijerinck’s and
Becking’s famous claim; see in O'Malley 2008) to a com-
bination of ecological and evolutionary (diversification)
explanations supported by evidence of limited (natural)
dispersal in many microbial taxa (Taylor et al. 2006;
Hanson et al. 2012; Tedersoo et al. 2014 ). Human-
mediated transfers putting into contact non-coevolved
species therefore result in ecological and evolutionary dy-
namics that challenge processes operating in natural com-
munities (Burdon et al 2013). These new introductions
may overwhelm the ability of the community, or even of
artificial selection, to respond (Cobb et al. 2012). For
instance, European and American chestnuts have been
successively impacted by three exotic pests and patho-
gens in the last century, Phytophthora cinnamomi,
C. parasitica, and Dryocosmus kiruphilus, showing the
increasing difficulty for breeding programs to keep pace
with biotic threats in woody perennials (Anagnostakis
2012).

2. Pathogen evolution can occur at short time scales
The recognition that evolution can take place at short

time scales is not very new (e.g., Cook and Askew 1970),
but it has been increasingly supported by evidence linked
to anthropogenic changes, such as breakdowns of human-
selected resistance in a medical or agricultural context
(McDonald and Linde 2002; REX 2013) and adaptation
of invasive organisms (Gladieux et al. 2015). Forests have
already paid heavy tribute to invasions by exotic patho-
gens, but still, limited domestication of forest trees has up
to now restricted impacts on forest pathogen virulence as
those seen in agriculture. Phytosanitary problems in
monospecific (monoclonal) planted forests are likely to
increase in the future, since experience demonstrates that

high productivity achieved in the first rotations, often as-
sociated with enemy escape, is likely to fade away with
time due to the progressive arrival of natural enemies, i.e.
tree pests and diseases (Harwood and Nambiar 2014;
Liebhold andWingfield 2014). New prospects for an eco-
logical and evolutionary intensification could benefit
from rapid changes in technology and wood usages as
material or fuel (e.g., engineered wood products, compos-
ite materials, wood pellets), which will likely remove
some of the obstacles to the use of diverse plantations.

3. The tree is a multitrophic community
Community fingerprinting methods, and, more recent-

ly, high-throughput sequencing techniques, have revealed
that the epiphytic and endophytic microbial communities
are much more complex than previously realized (e.g.,
Yang et al. 2001; Jumpponen and Jones 2009). Pathogens
themselves host a diversity of parasites, especially
mycoviruses ( Witzell et al. 2014). Some experimental
manipulations at small spatial scales have highlighted
the role of microbial communities in disease control
(Arnold et al. 2003;Matos et al. 2005), while observations
at larger scales have revealed environmental factors driv-
ing these communities (Cordier et al. 2012a; Peñuelas
et al. 2012). Both approaches are required to predict,
and ultimately manage, microbial interactions and func-
tions in the context of global change (Kinkel et al. 2011;
Berlec 2012; Borer et al. 2013; Lebeis 2014; Vayssier-
Taussat et al. 2014; Hacquard and Schadt 2015). Future
studies working toward this aim will benefit from the
development of functional metagenomics (Knief et al.
2012), microbial interactions modeling (Faust and Raes
2012), as well as evolutionary platforms predicting the
outcomes of multispecies interactions (Fortuna et al.
2013).

Uncertainties, especially regarding the emergence of
new diseases, are likely a key component of the future
of forest pathology (Shaw and Osborne 2011). An obvi-
ous policy recommendation is therefore to maintain the

Table 1 (continued)

Supporting evidence Practical and policy recommendations Directions for future research

• Mechanisms through which plants control their microbiota
and through which the microbiome controls plant health
(Berendsen et al. 2012; Pautasso et al. 2014).

– identifying the microbial species and community properties
sustaining tree health (Hacquard and Schadt 2015)

– understanding the genetic vs. environmental determinism of
beneficial microbiota (Lively et al. 2014; Pautasso et al.
2014); how does plant immune system regulate plant
microbiote? (Lebeis 2014; Kliebenstein 2014)

– integration of the microbiota into epidemiological and
evolutionary models of tree disease (Bálint et al. 2015)
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expertise in the taxonomy, biology, epidemiology, and
ecology of forest fungal pathogens needed to respond
quickly to disease outbreaks in more economically devel-
oped countries (BSPP 2012). Special efforts should also
be developed in regions, such as tropical areas, where
high biological diversity is present but has received lim-
ited attention so far due to a lack of funding and trained
researchers (Kamgan et al. 2008). Spectacular advances
and reducing costs in DNA technologies have recently
enabled considerable progress in the knowledge of phy-
logenetic diversity (inter- and intraspecies) of forest path-
ogens. However, an ecological and evolutionary forest
pathology cannot neglect the study of phenotypes and
functional traits. Investigations of a greater number of
forest pathosystems (not only focused on recent introduc-
tions) and the development of high-throughput phenotyp-
ing methods are certainly deserving more efforts.

Forest pathologists have increasingly tried to dissemi-
nate their research outcomes to contribute to policy rec-
ommendations (e.g. the Montesclaros declaration, http://
www.iufro.org/science/divisions/division-7/70000/
publications/montesclaros-declaration/; Cavers 2015).
Increasing links between biologists, sociologists, and
economists, for example to investigate the perception of
risks or the economic impacts of pathogens, or to assess
the ecological service of disease regulation, could help
identify the best levers to tackle forest health issues in a
globalised and changing environment (Stenlid et al. 2011;
Fears et al. 2014). Particular effort should also be
dedicated to education, not only to raise awareness in
the public and stakeholders of forest health issues and
their dependence on human activities but also to attract
young scientists, from diverse scientific horizons, to the
field of forest pathology.

Acknowledgments The authors are very grateful to Catherine Bastien,
Isabelle Goldringer, and François Lefevre for stimulating discussions, and
to Sylvain Delzon for helpful comments.

Funding BJ was funded by a grant from the French Ministry of Re-
search and Education (MENRT no. 2011/AF/57).

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

Adams GC, Catal M, Trummer LM (2009) Distribution and severity of
Alder Phytophthora in Alaska. In: Proceedings of the sudden oak
death fourth science symposium (ed. by Gen. Tech. Rep. PSW-
GTR-229. Department of Agriculture FS), pp. 29–49

Agosta SJ, Klemens JA (2008) Ecological fitting by phenotypically flex-
ible genotypes: implications for species associations, community
assembly, and evolution. Ecol Lett 11:1123–1134

Agosta SJ, Janz N, Brooks DB (2010) How specialists can be generalists:
resolving the “parasite paradox” and implications for emerging in-
fectious disease. Zoologia 27:151–162

Aguayo J, Adams GC, Halkett F, Catal M, Husson C, Nagy ZA, Hansen
EM, Marcais B, Frey P (2013) Strong genetic differentiation be-
tween North American and European populations of Phytophthora
alni subsp. uniformis. Phytopathology 10:190–199

Alizon S, Hurford A,Mideo N, VanBaalenM (2009) Virulence evolution
and the trade-off hypothesis: history, current state of affairs and the
future. J Evol Biol 22:245–259

Altizer S, Harvell CD, Friedle E (2003) Rapid evolutionary dynamics and
disease threats to biodiversity. Trends Ecol Evol 18:589–596

Anagnostakis SL (1987) Chestnut blight: the classical problem of an
introduced pathogen. Mycologia 79:23–37

Anagnostakis SL (2012) Chestnut breeding in the United States for dis-
ease and insect resistance. Plant Dis 96:1392–1403

Anche MT, de Jong MCM, Bijma P (2014) On the definition and utiliza-
tion of heritable variation among hosts in reproduction ratio R0 for
infectious diseases. Heredity 113:364–374

Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR,
Daszak P (2004) Emerging infectious diseases of plants: pathogen
pollution, climate change and agrotechnology drivers. Trends Ecol
Evol 19:535–544

Antia R, Regoes RR, Koella JC, Bergstrom CT (2003) The role of evo-
lution in the emergence of infectious diseases. Nature 426:658–661

Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre
EA (2003) Fungal endophytes limit pathogen damage in a tropical
tree. Proc Natl Acad Sci U S A 100:15649–15654

Bálint M, Tiffin P, Hallström B, O'Hara RB, Olson MS, Fankhauser JD,
Piepenbring M, Schmitt I (2013) Host genotype shapes the foliar
fungal microbiome of balsam poplar (Populus balsamifera). PLoS
One 8, e53987. doi:10.1371/journal.pone.0053987

Bálint M, Barta L, Hara RBO, Olson MS, Otte J, Pfenninger M,
Robertson AL, Tiffin P, Schmitt I (2015) Relocation, high-latitude
warming and host genetic identity shape the foliar fungal
microbiome of poplars. Mol Ecol. doi:10.1111/mec.13018

Barnes I, Crous PW, Wingfield BD, Wingfield MJ (2004) Multigene
phylogenies reveal that red band needle blight of Pinus is caused
by two distinct species of Dothistroma, D-septosporum and D-pini.
Stud Mycol 50:551–565

Barnett HL (1963) The nature of mycoparasitism by fungi. Annu Rev
Microbiol 17:1–14

Barrès B, Carlier J, Seguin M, Fenouillet C, Cilas C, Ravigne V (2012)
Understanding the recent colonization history of a plant pathogenic
fungus using population genetic tools and Approximate Bayesian
Computation. Heredity (Edinb) 109:269–279

Bazin E, Mathe-Hubert H, Facon B, Carlier J, Ravigne V (2014) The
effect of mating system on invasiveness: some genetic load may
be advantageous when invading new environments. Biol Invasions
16:875–886

Berbegal M, Perez-Sierra A, Armengol J, Grünwald NJ (2013) Evidence
for multiple introductions and clonality in Spanish populations of
Fusarium circinatum. Phytopathology 103:851–861

Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere
microbiome and plant health. Trends Plant Sci 17:478–486

Bergot M, Cloppet E, Perarnaud V, Déqué M, Marcais B, Desprez-
Loustau ML (2004) Simulation of potential range expansion of
oak disease caused by Phytophthora cinnamomi under climate
change. Glob Chang Biol 10:1–14

Berlec A (2012) Novel techniques and findings in the study of plant
microbiota: search for plant probiotics. Plant Sci Int J Exp Plant
Biol 193–194:96–102

Evolutionary ecology for forest pathology 59

http://www.iufro.org/science/divisions/division-7/70000/publications/montesclaros-declaration/
http://www.iufro.org/science/divisions/division-7/70000/publications/montesclaros-declaration/
http://www.iufro.org/science/divisions/division-7/70000/publications/montesclaros-declaration/
http://dx.doi.org/10.1371/journal.pone.0053987
http://dx.doi.org/10.1111/mec.13018


Blackwell M (2011) The Fungi: 1, 2, 3… 5.1 million species? Am J Bot
98:426–438

Booth TH, Jovanovic T, Old KM, Dudzinski MJ (2000) Climatic map-
ping to ident ify high-risk areas for Cylindrocladium
quinqueseptatum leaf blight on eucalypts in mainland South East
Asia and around the world. Environ Pollut 108:365–372

Borer ET, Kinkel LL, May G, Seabloom EW (2013) The world within:
quantifying the determinants and outcomes of a host’s microbiome.
Basic Appl Ecol 14:533–539

Botella L, Tuomivirta TT, Vervuurt S, Diez JJ, Hantula J (2014)
Occurrence of two different species of mitoviruses in the European
race of Gremmeniella abietina var. abietina, both hosted by the
genetically unique Spanish population. Fungal Biol 116:872–882

Brännström Å, Johansson J, Loeuille N, Kristensen N, Troost T, Hille Ris
Lambers R, Dieckmann U (2012) Modelling the ecology and evo-
lution of communities : a review of past achievements, current ef-
forts, and future promises. Evol Ecol Res 14:601–625

Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern
Europe. Environmental constraints including climate change. Ann
Sci For 53:347–358

Brasier CM (2001) Rapid evolution of introduced plant pathogens via
interspecific hybridization. Bioscience 51:123–133

Brasier CM (2008) The biosecurity threat to the UK and global environ-
ment from international trade in plants. Plant Pathol 57:792–808

Brasier CM (2009) Phytophthora biodiversity: how many Phytophthora
species are there? General Technical Report—Pacific Southwest
Research Station, USDA Forest Service

Brasier CM, Mehrotra MD (1995) Ophiostoma himal-ulmi sp-nov, a new
species of Dutch elm disease fungus endemic to the Himalayas.
Mycol Res 99:205–215

Brasier CM, Webber J (2010) Plant pathology. Sudden larch death.
Nature 466:824–825

Brasier CM, Rose J, Gibbs JN (1995) An unusual Phytophthora associ-
ated withwidespread alder mortality in Britain. Plant Pathol 44:999–
1007

Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new
Phytophthora pathogen through interspecific hybridization. Proc
Natl Acad Sci U S A 96:5878–5883

Brasier CM, Vettraino AM, Chang TT, Vannini A (2010) Phytophthora
lateralis discovered in an old growth Chamaecyparis forest in
Taiwan. Plant Pathol 59:595–603

Brusini J, Robin C (2013) Mycovirus transmission revisited by in situ
pairings of vegetatively incompatible isolates of Cryphonectria
parasitica. J Virol Methods 187:435–442

Brusini J, Robin C, Franc A (2011) Parasitism and maintenance of diver-
sity in fungal vegetative incompatibility system: the role of selection
by deleterious cytoplasmic elements. Ecol Lett 14:444–452

Bryner SF, Rigling D (2011) Temperature-dependent genotype-by-
henotype interaction between a pathogenic fungus and its hyperpar-
asitic virus. Am Nat 177:65–74

Bryner SF, Rigling D, Brunner PC (2012) Invasion history and demo-
graphic pattern of Cryphonectria hypovirus 1 across European pop-
ulations of the chestnut blight fungus. Ecol Evol 2:3227–3241

BSPP (2012) Plant pathology education and training in the UK: an audit.
http://www.bspp.org.uk

Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F
(2009) 454 Pyrosequencing analyses of forest soils reveal an unex-
pectedly high fungal diversity. New Phytol 184:449–456

Bull J (1994) Perspective: virulence. Evolution 48:1423–1437
Burdon JJ (1987) Diseases and plant population biology. Cambridge

University Press, Cambridge
Burdon JJ, Thrall PH (2008) Pathogen evolution across the agro-

ecological interface: implications for disease management. Evol
Appl 1:57–65

Burdon JJ, Thrall PH (2000) Coevolution at multiple spatial scales - from
population to continent and beyond. Evol Ecol 14:261-281

Burdon JJ, Thrall PH, Ericson L (2013) Genes, Communities and
Invasive Species: Understanding the Ecological and Evolutionary
Dynamics of Host–Pathogen Interactions. Curr Opin Plant Biol
16: 1–6

Burdon JJ, Barrett LG, Rebetzke G, Thrall PH (2014) Guiding deploy-
ment of resistance in cereals using evolutionary principles. Evol
Appl 7:609–624

Burgess T, Wingfield BD, Wingfield MJ (2001) Comparison of
genotypic diversity in native and introduced populations of
Sphaeropsis sapinea isolated from Pinus radiata. Mycol Res
105:1331–1339

Burgess TI, Webster JL, Ciampini JA, White D, Hardy GES, Stukely
MJC (2009) Re-evaluation of Phytophthora species isolated during
30 years of vegetation health surveys in Western Australia using
molecular techniques. Plant Dis 93:215–223

Cai L, Giraud T, Zhang N, Begerow D, Cai G, Shivas R (2011) The
evolution of species concepts and species recognition criteria in
plant pathogenic fungi. Fungal Divers 50:121–133

Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry's
fertile crescent: the application of biotechnology to forest trees. Plant
Biotechnol J 1:141–154

Carbone I, Liu YC, Hillman BI, Milgroom MG (2004) Recombination
and migration of Cryphonectria hypovirus 1 as inferred from gene
genealogies and the coalescent. Genetics 166:1611–1629

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P,
Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily
GC, Loreau M, Grace JB, Larigauderie A, Srivastava D, Naeem S
(2012) Biodiversity loss and its impact on humanity. Nature 486:59–
67

Carroll SP, Jørgensen PS, Kinnison MT, Bergstrom CT, Denison RF,
Gluckman P, Smith TB, Strauss SY, Tabashnik BE (2014)
Applying evolutionary biology to address global challenges.
Science 80:1–16

Castagneyrol B, Jactel H, Vacher C, Brockerhoff EG, Koricheva J (2014)
Effects of plant phylogenetic diversity on herbivory depend on her-
bivore specialization. J Appl Ecol 51:134–141

Cavers S (2015) Evolution, ecology and tree health: finding ways to
prepare Britain’s forests for future threats. Forestry 88:1–2

Cavers S, Cottrell JE (2015) The basis of resilience in forest tree species
and its use in adaptive forest management in Britain. Forestry 88:
13–26

Chakraborty S, Newton AC (2011) Climate change, plant diseases and
food security: an overview. Plant Pathol 60:2–14

Cobb RC, Filipe JAN,Meentemeyer RK, Gilligan CA, Rizzo DM (2012)
Ecosystem transformation by emerging infectious disease: loss of
large tanoak from California forests. J Ecol 100:712–722

Coince A, Cordier T, Lengellé J, Defossez E, Vacher C, Robin C, Buée
M, Marçais B (2014) Leaf and root-associated fungal assemblages
do not follow similar elevational diversity patterns. PLoS One 9,
e100668

Combes C (2001) Parasitism : ecology and evolution of intimate interac-
tions. Press, Chicago University, 552 pp

Compant S, van der Heijden MG, Sessitsch A (2010) Climate change
effects on beneficial plant-microorganism interactions. FEMS
Microbiol Ecol 73:197–214

Cook LM, Askew RR (1970) Increasing frequency of the typical formof
the peppered moth in Manchester. Nature 227:1155

Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau
ML, Vacher C (2012a) The composition of phyllosphere fungal
assemblages of European beech (Fagus sylvatica) varies significant-
ly along an elevation gradient. New Phytol 196:510–519

Cordier T, Robin C, Capdevielle X, Desprez-Loustau M-L, Vacher C
(2012b) Spatial variability of phyllosphere fungal assemblages: ge-
netic distance predominates over geographic distance in a European
beech stand (Fagus sylvatica). Fungal Ecol 5:509–520

60 M.-L. Desprez-Loustau et al.

http://www.bspp.org.uk/


Crawford KM, Rudgers JA (2013) Genetic diversity within a dominant
plant outweighs plant species diversity in structuring an arthropod
community. Ecology 94:1025–1035

Crous PW, Groenewald JZ, Pongpanich K, Himaman W, Arzanlou M,
Wingfield MJ (2004) Cryptic speciation and host specificity among
Mycosphaerella spp. occurring on Australian Acacia species grown
as exotics in the tropics. Stud Mycol 50:457–469

Cruikshank MG, Jaquish B (2014) Resistance and tolerance in juvenile
interior Douglas-fir trees Pseudotsuga menziesii var. glauca artifi-
cially inoculated with Armillaria ostoyae. For Pathol 44:362–371

Davelos AL, Jarosz AM (2004) Demography of American chestnut pop-
ulations: effects of a pathogen and a hyperparasite. J Ecol 92:675–
685

Dawkins R (1999) The extended phenotype. Oxford University Press,
Oxford

Dawson JC, Goldringer I (2011) Breeding for genetically diverse popu-
lations: variety mixtures and evolutionary populations. In:
Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding.
Wiley-Blackwell, Hoboken, pp 77–98

de Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ (2014)
Redefining Ceratocystis and allied genera. Stud Mycol 79:187–219

de Vienne DM, HoodME, Giraud T (2009) Phylogenetic determinants of
potential host shifts in fungal pathogens. J Evol Biol 22:2532–2541

de Wet J, Burgess T, Slippers B, Preisig O, Wingfield BD, Wingfield MJ
(2003) Multiple gene genealogies and microsatellite markers reflect
relationships between morphotypes of Sphaeropsis sapinea and dis-
tinguish a new species of Diplodia. Mycol Res 107:557–566

Dehnen-Schmutz K, Holdenrieder O, Jeger MJ, Pautasso M (2010)
Structural change in the international horticultural industry: some
implications for plant health. Sci Hortic 125:1–15

Delatour C (1983) Les dépérissements de Chênes en Europe. Rev For
France 35:262–282

Delatour C, Pinon J, Morelet M (1985) Histoire et avenir de la pathologie
forestière en France. Rev For France 37:65–82

Delmotte F, Mestre P, Schneider C, Kassemeyer HH, Kozma P, Richart-
Cervera S, Rouxel M, Delière L (2014) Rapid and multiregional
adaptation to host partial resistance in a plant pathogenic oomycete:
evidence from European populations of Plasmopara viticola, the
causal agent of grapevine downy mildew. Infect Genet Evol 27:
500–508

Denison RF, Kiers ET, West SA (2003) Darwinian agriculture: when can
humans find solutions beyond the reach of natural selection? Q Rev
Biol 78:145–168

Denman S, Mralejo E, Kirk S, et al (2008) Sporulation of Phytophthora
ramorum and P. kernoviae on asymptomatic foliage and fruit. Proc
Sudd Oak Death Third Sci Symp General Technical Report PSW-
GTR-214: 201–207

Desprez-Loustau ML, Robin C, Buee M, Courtecuisse R, Garbaye J,
Suffert F, Sache I, Rizzo DM (2007) The fungal dimension of bio-
logical invasions. Trends Ecol Evol 22:472–480

Desprez-Loustau ML, Courtecuisse R, Robin C, Husson C, Moreau PA,
Blancard D, Selosse MA, Lung-Escarmant B, Piou D, Sache I
(2010) Species diversity and drivers of spread of alien fungi (sensu
lato) in Europe with a particular focus on France. Biol Invasions 12:
157–172

Desprez-Loustau M-L, Feau N, Mougou-Hamdane A, Dutech C (2011)
Interspecific and intraspecific diversity in oak powdery mildews in
Europe: coevolution history and adaptation to their hosts.
Mycoscience 52:163–175

Dhillon B, Feau N, Aerts AL, Beauseigle S, Bernier L, Copeland A,
Foster A, Gill N, Henrissat B, Herath P, LaButti KM, Levasseur
A, Lindquist EA, Majoor E, Ohm RA, Pangilinan JL, Pribowo A,
Saddler JN, Sakalidis ML, de Vries RP, Grigoriev IV, Goodwin SB,
Tanguay P, Hamelin RC (2015) Horizontal gene transfer and gene
dosage drives adaptation to wood colonization in a tree pathogen.
Proc Natl Acad Sci U S A 112:3451–3456

Di Bella JM, Bao Y, Gloor GB, Burton JP, Reid G (2013) High through-
put sequencing methods and analysis for microbiome research. J
Microbiol Methods 95:401–414

Dickmann DI, Gold MA, Flore JA (1994) The ideotype concept and the
genetic improvement of tree crops. Plant Breed Rev 12: 163–193

Dlugosch K, Parker I (2008) Founding events in species invasions: ge-
netic variation, adaptive evolution, and the role of multiple introduc-
tions. Mol Ecol 17:431–449

Donald CM (1968) The breeding of crop ideotype. Euphytica 17:385–
403

Dong S, Stam R, Cano LM, Song J, Sklenar J, Yoshida K, Bozkurt TO,
Oliva R, Liu Z, Tian M, Win J, Banfield MJ, Jones AM, van der
Hoorn RA, Kamoun S (2014) Effector specialization in a lineage of
the Irish potato famine pathogen. Science 343:552–555

Donnelly A, Caffarra A, Kelleher CT, O'neill BF, Diskin E, Pletsers A,
Proctor H, Stirnemann R, O'Halloran J, Peñuelas J, Hodkinson TR,
Sparks TH (2012) Surviving in a warmer world: environmental and
genetic responses. Clim Res 53:245–262

Dowkiw A, Jorge V, Villar M, Voisin E, Guérin V, Faivre-Rampant P,
Bresson A, Bitton F, Duplessis S, Frey P, Petre B, Guinet C, Xhaard
C, Fabre B, Halkett F, Plomion C, Lalanne C, Bastien C (2012)
Breeding poplars with durable resistance to Melampsora larici-
populina leaf rust: a multidisciplinary approach to understand and
delay pathogen adaptation. In: Sniezko RA et al (eds) Proceedings
of the fourth international workshop on the genetics of host-parasite
interactions in forestry: disease and insect resistance in forest trees,
Gen. Tech. Rep. PSW-GTR-240. Pacific Southwest Research Station,
Forest Service, U.S. Department of Agriculture, Albany, pp 31–38

Dubouzet JG, Strabala TJ,Wagner A (2013) Potential transgenic routes to
increase tree biomass. Plant Sci 212:72-101

Dutech C, Fabreguettes O, Capdevielle X, Robin C (2010) Multiple in-
troductions of divergent genetic lineages in an invasive fungal path-
ogen, Cryphonectria parasitica, in France. Heredity 105:220–228

Dutech C, Barres B, Bridier J, Robin C, Milgroom MG, Ravigne V
(2012) The chestnut blight fungus world tour: successive introduc-
tion events from diverse origins in an invasive plant fungal patho-
gen. Mol Ecol 21:3931–3946

Elegbede CF, Pierrat J-C, Aguayo J, Husson C, Halkett F, Marçais B
(2010) A statistical model to detect asymptomatic infectious indi-
viduals with an application in the Phytophthora alni-induced alder
decline. Phytopathology 100:1262–1269

Ellen ED, Rodenburg TB, Albers GA, Bolhuis JE, Camerlink I,
Duijvesteijn N, Knol EF, Muir WM, Peeters K, Reimert I, Sell-
Kubiak E, van Arendonk JA, Visscher J, Bijma P (2014) The pros-
pects of selection for social genetic effects to improve welfare and
productivity in livestock. Front Genet 5:377

Elton CS (1958) The ecology of invasions by animals and plants,
University of Chicago Press edth edn. University of Chicago
Press, Chicago

Ennos RA (2001) The introduction of lodgepole pine as a major forest
crop in Sweden: implications for host–pathogen evolution. For Ecol
Manag 141:85–96

Ennos RA (2015) Resilience of forests to pathogens: an evolutionary
ecology perspective. Forestry 88:41–52

Eschen R, Rigaux L, Sukovata L, Vettraino AM, Marzano M, Gregoire
JC (2015) Phytosanitary inspection of woody plants for planting at
European Union entry points: a practical enquiry. Biol Invasions.
doi:10.1007/s10530-015-0883-6

Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarosík V,
Kleinbauer I, Krausmann F, Kühn I, Nentwig W, Vilà M,
Genovesi P, Gherardi F, Desprez-Loustau ML, Roques A, Pysek P
(2011) Socioeconomic legacy yields an invasion debt. Proc Natl
Acad Sci U S A 108:203–207

Fabre B, Ioos R, Piou D, Marçais B (2011) Is the emergence of
Dothistroma needle blight of pine in France caused by the cryptic
species Dothistroma pini? Phytopathology 102:47–54

Evolutionary ecology for forest pathology 61

http://dx.doi.org/10.1007/s10530-015-0883-6


Facon B, Genton B, Shykoff J, Jarne P, Estoup A, David P (2006) A
general eco-evolutionary framework for understanding
bioinvasions. Trends Ecol Evol 21:130–135

FAO (2010) Global forest resources assessment, FAOForestry Paper 163,
Rome

Faust K, Raes J (2012) Microbial interactions: from networks to models.
Nat Rev Microbiol 10:538–550

Fauvergue X, Vercken E, Malausa T, Hufbauer RA (2012) The biology of
small, introduced populations, with special reference to biological
control. Evol Appl 5:424–443

Fears R, Aroemail EM, Pais MS, ter Meulen V (2014) How should we
tackle the global risks to plant health? Trends Plant Sci 19:206–208

Feau N, Lauron-Moreau A, Piou D, Marçais B, Dutech C, Desprez-
Loustau ML (2012) Niche partitioning of genetic lineages involved
in the oak powdery mildew complex. Fungal Ecol 5:154–162

Feau N, Dutech C, Brusini J, Rigling D, Robin C (2014) Multiple intro-
ductions and recombination in Cryphonectria hypovirus 1: perspec-
tive for a sustainable biological control of chestnut blight. Evol Appl
7:580–596

Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH,
Saaksjarvi I, Schultz LC, Coley PD (2006) The growth defense
trade-off and habitat specialization by plants in Amazonian forests.
Ecology 87:S150–S162

Fitt BDL, Huang YJ, van den Bosch F, West JS (2006) Coexistence of
related pathogen species on arable crops in space and time. Annu
Rev Phytopathol 44:163–182

Fortuna MA, Zaman L, Wagner AP, Ofria C (2013) Evolving digital
ecological networks. PLoS Comput Biol 9, e1002928. doi:10.
1371/journal.pcbi.1002928

Franceschini S, Webber JF, Sancisi-Frey S, Brasier CM (2014) Gene×
environment tests discriminate the new EU2 evolutionary lineage of
Phytophthora ramorum and indicate that it is adaptively different.
For Pathol 44:219–232

Frank SA (1993) Evolution of host–parasite diversity. Evolution 47:
1721–1732

Frank S (1996) Models of parasite virulence. Q Rev Biol 71:37–78
Frankham R (2005) Invasion biology—resolving the genetic paradox in

invasive species. Heredity 94:385
Franklin O, Palmroth S, Nasholm T (2014) How eco-evolutionary prin-

ciples can guide tree breeding and tree biotechnology for enhanced
productivity. Tree Physiol 34:1149–1166

Gandon S (2002) Local adaptation and the geometry of host–parasite
coevolution. Ecol Lett 5:246–256

Gandon S, Michalakis Y (2002) Local adaptation, evolutionary potential
and host-parasite coevolution: interactions between migration, mu-
tation, population size and generation time. J Evol Biol 15:451–462

Garbelotto M (2008) Molecular analysis to study invasions by forest
pathogens: examples from Mediterranean ecosystems. Phytopathol
Mediterr 47:183–203

Garbelotto M, Linzer R, Nicolotti G, Gonthier P (2010) Comparing the
influences of ecological and evolutionary factors on the successful
invasion of a fungal forest pathogen. Biol Invasions 12:943–957

García-Guzmán G, Heil M (2014) Life histories of hosts and pathogens
predict patterns in tropical fungal plant diseases. New Phytol 201:
1106–1120

Ghabrial SA, Suzuki N (2009) Viruses of plant pathogenic fungi. Annu
Rev Phytopathol 47:353–384

Gilbert G (2002) Evolutionary ecology of plant diseases in natural eco-
systems. Annu Rev Phytopathol 40:13–43

Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen–host
range. Proc Natl Acad Sci U S A 104:4979–4983

Gilbert GS,Magarey R, Suiter K,Webb CO (2012) Evolutionary tools for
phytosanitary risk analysis: phylogenetic signal as a predictor of host
range of plant pests and pathogens. Evol Appl 5:869–878

Gilligan CA (2008) Sustainable agriculture and plant diseases: an epide-
miological perspective. Philos Trans R Soc Lond B Biol Sci 363:
741–759

Giraud T, Enjalbert J, Fournier E, Delmotte F, Dutech C (2008a)
Population genetics of fungal diseases of plants. Parasite 15:449–
454

Giraud T, Refrégier G, Le Gac M, De Vienne DM, Hood ME (2008b)
Speciation in fungi. Fungal Genet Biol 45:791–802

Giraud T, Gladieux P, Gavrilets S (2010) Linking the emergence of fungal
plant diseases with ecological speciation. Trends Ecol Evol 25:387–
395

Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J, Dutech C, Roy M,
Giraud T (2015) The population biology of fungal invasions. Mol
Ecol. doi:10.1111/mec.13028

Goss EM, Larsen M, Chastagner GA, Givens DR, Grünwald NJ (2009)
Population genetic analysis infers migration pathways of
Phytophthora ramorum in US nurseries. PLoS Pathog 5, e1000583

Goss EM, Tabima JF, Cooke DEL, Restrepo S, Fry WE, Forbes GA,
Fieland VJ, Cardenas M, Grünwald NJ (2014) The Irish potato
famine pathogen Phytophthora infestans originated in central
Mexico rather than the Andes. Proc Natl Acad Sci U S A 111:
8791–8796

Graça RN, Ross-Davis AL, Klopfenstein NB, Kim M-S, Peever TL,
Cannon PG, Aun CP, Mizubuti ESG, Alfenas AC (2013) Rust dis-
ease of eucalypts, caused by Puccinia psidii, did not originate via
host jump from guava in Brazil. Mol Ecol 22:6033–6047

Grente J (1981) Les variants hypovirulents de l’Endothia parasitica et la
lutte biologique contre le chancre du châtaignier. Université de
Bretagne Occidentale, Brest, France, Dissertation

Gross A, Hosoya T, Queloz V (2014) Population structure of the invasive
forest pathogenHymenoscyphus pseudoalbidus. Mol Ecol 23:2943–
2960

Grünwald NJ, Goss EM (2011) Evolution and population genetics of
exotic and re-emerging pathogens: novel tools and approaches.
Annu Rev Phytopathol 49:249–267

Hacquard S, Schadt CW (2015) Towards a holistic understanding of the
beneficial interactions across the Populus microbiome. New Phytol
205:1425–1430

Hale IL, Broders K, Iriarte G (2014) AVavilovian approach to discover-
ing crop-associated microbes with potential to enhance plant immu-
nity. Front Plant Sci 5:492

Hamelin F, Castel M, Poggi S, Andrivon D, Mailleret L (2011)
Seasonality and the evolutionary divergence of plant parasites.
Ecology 92:2159–2166

Hansen EM (2008) Alien forest pathogens: Phytophthora species are
changing world forests. Boreal Environ Res 13:33–41

Hansen E, Goheen E (2000) Phellinus weirii and other native root path-
ogens as determinants of forest structure and process in western
North America. Annu Rev Phytopathol 38:515–539

Hansen EM, Parke JL, Sutton W (2005) Susceptibility of Oregon forest
trees and shrubs to Phytophthora ramorum: a comparison of artifi-
cial inoculation and natural infection. Plant Dis 89:63–70

Hansen EM, Reeser PW, Sutton W (2011) Phytophthora beyond agricul-
ture. Annu Rev Phytopathol 50:359–378

Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012)
Beyond biogeographic patterns: processes shaping the microbial
landscape. Nat Rev Microbiol 10:497–506

Hantsch L, Braun U, Scherer-Lorenzen M, Bruelheide H (2013) Species
richness and species identity effects on occurrence of foliar fungal
pathogens in a tree diversity experiment. Ecosphere 4:81

Hantsch L, Braun U, Haase J, Purschke O, Scherer-Lorenzen M,
Bruelheide H (2014) No plant functional diversity effects on foliar
fungal pathogens in experimental tree communities. Fungal Divers
66:139–151

62 M.-L. Desprez-Loustau et al.

http://dx.doi.org/10.1371/journal.pcbi.1002928
http://dx.doi.org/10.1371/journal.pcbi.1002928
http://dx.doi.org/10.1111/mec.13028


Harfouche A, Meilan R, Kirst M, Morgante M, Boerjan W, Sabatti M,
ScarasciaMugnozza G (2012) Accelerating the domestication of
forest trees in a changing world. Trends Plant Sci 17:64–72

Harwood CE, Nambiar EKS (2014) Productivity of acacia and eucalypt
plantations in Southeast Asia. 2. Trends and variations. Int For Rev
16:249–260

Hayden K, Nettel A, Dodd RS, Garbelotto M (2011) Will all the trees
fall? Variable resistance to an introduced forest disease in a highly
susceptible host. For Ecol Manag 261:1781–1791

Hayden K, Hardy G, Garbelotto M (2013) Oomycete diseases. In:
Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI,
Boston, pp 519–546

Hendry AP, KinnisonMT, HeinoM, Day T, Smith TB, Fitt G, Bergstrom
CT, Oakeshott J, Jørgensen PS, Zalucki MP, Gilchrist G, Southerton
S, Sih A, Strauss S, Denison RF, Carroll SP (2011) Evolutionary
principles and their practical application. Evol Appl 4:159–183

Hepting GH (1963) Climate and forest diseases. Annu Rev Phytopathol
1:31–50

Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD,
Subramanian S, Vetter MM, Vilhjálmsson BJ, Nordborg M,
Gordon JI, Bergelson J (2014) Genome-wide association study of
Arabidopsis thaliana leaf microbial community. Nat Commun 10:
5320

Hüberli D, HardyGESJ,White D,Williams N, Burgess TI (2013) Fishing
for Phytophthora from Western Australia’s waterways: a distribu-
tion and diversity survey. Australas Plant Pathol 42:251–260

Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one
that is rich in parasites? Trends Ecol Evol 21:381–385

Hufbauer RA, Roderick GK (2005) Microevolution in biological control:
mechanisms, patterns, and processes. Biol Control 35:227–239

Husson C, Scala B, Caël O, Frey P, Feau N, Ioos R, Marçais B (2011)
Chalara fraxinea is an invasive pathogen in France. Eur J Plant
Pathol 130:311–324

Husson C, Aguayo J, Revellin C, Frey P, Ioos R, Marçais B (2015)
Evidence for homoploid speciation in Phytophthora alni supports
taxonomic reclassification in this species complex. Fungal Genet
Biol 77:12–21

Hyde KD (2001) Where are the missing fungi? Does Hong Kong have
any answers? Mycol Res 105:1514–1518

Ioos R, AndrieuxA,Marcais B, Frey P (2006) Genetic characterization of
the natural hybrid species Phytophthora alni as inferred from nucle-
ar and mitochondrial DNA analyses. Fungal Genet Biol 43:511–529

Jarosz AM, Davelos AL (1995) Effects of disease in wild plant-
populations and the evolution of pathogen aggressiveness. New
Phytol 129:371–387

Jeger MJ, Pautasso M (2008) Plant disease and global change—the im-
portance of long-term data sets. New Phytol 177:8–11

Johnson R (1984) A critical analysis of durable resistance. Annu Rev
Phytopathol 22:309–330

Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–
329

Jousimo J, Tack AJM, Ovaskainen O, Mononen T, Susi H, Tollenaere C,
Laine A-L (2014) Ecological and evolutionary effects of fragmen-
tation on infectious disease dynamics. Science 344:1289–1293

Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indi-
cates hyperdiverse fungal communities in temperate Quercus
macrocarpa phyllosphere. New Phytol 184:438–448

Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities
in the Quercus macrocarpa phyllosphere differ between urban and
nonurban environments. New Phytol 186:496–513

Kamgan NG, Jacobs K, de Beer ZW, Wingfield MJ, Roux J (2008)
Ceratocystis and Ophiostoma species, including three new taxa,
associated with wounds on native South African trees. Fungal
Divers 29:37–59

Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on
disease risk. Ecol Lett 9:485–498

Keller SR, Taylor DR (2008) History, chance, and adaptation during
biological invasion: separating stochastic phenotypic evolution from
response to selection. Ecol Lett 11:852–866

Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host
associations in tropical phyllosphere fungal communities. Botany
92:303–311

Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green
JL (2014) Relationships between phyllosphere bacterial communi-
ties and plant functional traits in a neotropical forest. Proc Natl Acad
Sci 111:13715–13720

Kemen E (2014) Microbe-microbe interactions determine oomycete and
fungal host colonization. Curr Opin Plant Biol 20:75–81

Kempel A, Schadler M, Chrobock T, Fischer M, van Kleunen M (2011)
Tradeoffs associated with constitutive and induced plant resistance
against herbivory. Proc Natl Acad Sci U S A 108:5685–5689

Kim MS, Klopfenstein NB, Ota Y, Lee SK, Woo KS, Kaneko S (2010)
White pine blister rust in Korea, Japan and other Asian regions:
comparisons and implications for North America. For Pathol 40:
382–401

King KC, Lively CM (2012) Does genetic diversity limit disease spread
in natural host populations? Heredity 109:199–203

K i n k e l L L , B a k k e r MG , S c h l a t t e r D C ( 2 0 1 1 ) A
coevolutionaryframework for managing disease-suppressive soils.
Annu Rev Phytopathol 49:47–67

Kinloch B, Sniezko R, Dupper G (2004) Virulence gene distribution and
dynamics of the white pine blister rust pathogen in western North
America. Phytopathology 94:751–758

Kinloch B, Davis D, Burton D (2008) Resistance and virulence interac-
tions between two white pine species and blister rust in a 30-year
field trial. Tree Genet Genomes 4:65–74

Kiss L (2003) A review of fungal antagonists of powdery mildews and
their potential as biocontrol agents. Pest Manag Sci 59:475–483

Kliebenstein DJ (2014) Orchestration of plant defense systems: genes to
populations Daniel J. Trends Plant Sci 19:250–255

Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site
and plant species are important determinants of the
Methylobacterium community composition in the plant
phyllosphere. ISME J 4:719–728

Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R,
von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of
microbial communities in the phyllosphere and rhizosphere of rice.
ISME J 6: 1378–1390

Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J,
Ritchie ME, Howe KM, Reich PB, Siemann E, Groth J (1999)
Effects of plant species richness on invasion dynamics, disease out-
breaks, insect abundances and diversity. Ecol Lett 2:286–293

Koch H, Frickel J, Valiadi M, Becks L (2014) Why rapid, adaptive evo-
lution matters for community dynamics. Front Ecol Evol 2:17

Kolbe JJ, Glor RE, Rodríguez Schettino L, Lara AC, Larson A, Losos JB
(2004) Genetic variation increases during biological invasion by a
Cuban lizard. Nature 431:177–181

Koskella B (2013) Phage-mediated selection on microbiota of a long-
lived host. Curr Biol 23:1256–1260

Koskella B (2014) Bacteria-phage interactions across time and space:
merging local adaptation and time-shift experiments to understand
phage evolution. Am Nat 184:S9–S21

Koskella B, Lin DM, Buckling A, Thompson JN (2012) The costs of
evolving resistance in heterogeneous parasite environments. Proc
R Soc B 279:1896–1903

Kroon LPNM, Brouwer H, de Cock AWAM, Govers F (2011) The genus
Phytophthora Anno 2012. Phytopathology 102:348–364

Kupferschmidt K (2012) Attack of the clones. Science 337:636–638
Kutschera U, Hossfeld U (2012) Physiological phytopathology: origin

and evolution of a scientific discipline. J Appl Bot Food Qual 85:
1–5

Evolutionary ecology for forest pathology 63



Kvas M, Marasas WFO, Wingfield BD, Wingfield MJ, Steenkamp ET
(2009) Diversity and evolution of Fusarium species in the
Gibberella fujikuroi complex. Fungal Divers 34:1–21

Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web
links. Proc Natl Acad Sci U S A 103:11211–11216

Lambrechts L, Fellous S, Koella JC (2006) Coevolutionary interactions
between host and parasite genotypes. Trends Parasitol 22:12–16

Lavergne S, Molofsky J (2007) Increased genetic variation and evolu-
tionary potential drive the success of an invasive grass. Proc Natl
Acad Sci U S A 104:3883–3888

Le Gac M, Giraud T (2008) Existence of a pattern of reproductive char-
acter displacement in Homobasidiomycota but not in Ascomycota. J
Evol Biol 21:761–772

Lebeis SL (2014) The potential for give and take in plant–microbiome
relationships Front. Plant Sci 5:287

Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol
Evol 17:386–391

Lefevre F, Boivin T, Bontemps A, Courbet F, Davi H, Durand-Gillmann
M, Fady B, Gauzere J, Gidoin C, Karam MJ, Lalagüe H, Oddou-
Muratorio S, Pichot C (2014) Considering evolutionary processes in
adaptive forestry. Ann For Sci 71:723–739

Lieberei R (2007) South American leaf blight of the rubber tree (Hevea
spp.): New steps in plant domestication using physiological features
and molecular markers. Ann Bot 100:1125–1142

Liebhold AM,Wingfield MJ (2014) Globalization and its implications to
forest health. In: Nikolakis W, Innes J (eds) Forests and globaliza-
tion: challenges and opportunities for sustainable development.
Routledge, pp 36–47

Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012)
Live plant imports: the major pathway for forest insect and pathogen
invasions of the U.S. Front Ecol Environ 10:135–143

Lind EM, Borer E, Seabloom E, Adler P, Bakker JD, Blumenthal DM,
Crawley M, Davies K, Firn J, Gruner DS, Harpole WS, Hautier Y,
Hillebrand H, Knops J, Melbourne B, Mortensen B, Risch AC,
Schuetz M, Stevens C, Wragg PD (2013) Life-history constraints
in grassland plant species: a growth-defence trade-off is the norm.
Ecol Lett 16:513–521

Linzer R, Rizzo D, Cacciola S, Garbelotto M (2009) AFLPs detect low
genetic diversity for Phytophthora nemorosa and P. pseudosyringae
in the US and Europe. Mycol Res 113:298–307

Little TJ, Shuker DM, Colegrave N, Day T, Graham AL (2010) The
coevolution of virulence: tolerance in perspective. PLoS Pathog 6,
e1001006. doi:10.1371/journal.ppat.1001006

Lively CM, de Roode JC, Duffy MA, Graham AL, Koskella B (2014)
Interesting open questions in disease ecology and evolution. AmNat
184:S1–S8

Loehle C, Namkoong G (1987) Constraints on tree breeding: growth
tradeoffs, growth strategies, and defensive investments. For Sci 33:
1089–1097

Loo JA (2009) Ecological impacts of non-indigenous invasive fungi as
forest pathogens. Biol Invasions 11:81–96

Manion PD (1981) Tree disease concepts. Prentice-Hall, Englewood
Cliffs, 399 pp

Manion PD (2003) Evolution of concepts in forest pathology.
Phytopathology 93:1052–1055

Martin TA, Johnsen KH, White TL (2001) Ideotype Development in
Southern Pines: Rationale and Strategies for Overcoming Scale-
Related Obstacles. For Sci 47: 21-28

Martinez-Alvarez P, Vainio EJ, Botella L, Hantula J, Diez JJ (2014) Three
mitovirus strains infecting a single isolate of Fusarium circinatum
are the first putative members of the family Narnaviridae detected in
a fungus of the genus Fusarium. Arch Virol 159:2153–2155

Matos A, Kerkhof L, Garland JL (2005) Effects of microbial community
diversity on the survival of Pseudomonas aeruginosa in the wheat
rhizosphere. Microb Ecol 49:257–264

May RM, Anderson RM (1983) Epidemiology and genetics in the coevo-
lution of parasites and hosts. Proc R Soc B 219:281–313

McCracken AR, Walsh LRE, Moore JP, Lynch M, Cowan P, Dawson
MD, Watson S (2011) Yield of willow (Salix spp.) grown in short
rotation coppice mixtures in long-term trials. Ann Appl Biol 159:
229–243

McDonald BA, Linde C (2002) Pathogen population genetics, evolution-
ary potential, and durable resistance. Annu Rev Phytopathol 40:
349–379

McKown AD, Guy RD, Quamme L, Klápště J, La Mantia J, Constabel
CP, El-Kassaby YA, Hamelin RC, Zifkin M, Azam MS (2014)
Association genetics, geography and ecophysiology link stomatal
patterning in Populus trichocarpa with carbon gain and disease re-
sistance trade-offs. Mol Ecol 23: 5771-90

Merrill W, Shigo AL (1979) An expanded concept of tree decay.
Phytopathology 69:1158–1160

Michelmore RW, Christopoulou M, Caldwell KS (2013) Impacts of re-
sistance gene genetics, function, and evolution on a durable future.
Annu Rev Phytopathol 51:291–319

Milgroom MG, Cortesi P (2004) Biological control of chestnut blight
with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:
311–338

Millennium Ecosystem Assessment (2005) Ecosystems and human well-
being: synthesis. Island Press, Washington, DC

Miller MR, White A, Boots M (2006) The evolution of parasites in re-
sponse to tolerance in their hosts: the good, the bad, and apparent
commensalism. Evol Int J Org Evol 60:945–956

Milus EA, Kristensen K, Hovmoller MS (2009) Evidence for increased
aggressiveness in a recent widespread strain of Puccinia striiformis
f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94

Mitchell CE, Power AG (2003) Release of invasive plants from fungal
and viral pathogens. Nature 421:625–627

Mohan V, Manokaran P (2013) Assessment of disease problems in dif-
ferent clonal plantations of Eucalyptus spp. in South India. J Acad
Ind Res 1:514–524

Morozov A, Robin C, Franc A (2007) A simple model for the dynamics
of a host–pathogen–hyperparasite interaction. J Theor Biol 249:
246–253

Mosquera J, Adler FR (1998) Evolution of virulence: a unified frame-
work for coinfection and superinfection. J Theor Biol 195:293–313

Mougou A, Dutech C, Desprez-Loustau M-L (2008) New insights into
the identity and origin of the causal agent of oak powdery mildew in
Europe. For Pathol 38:275–287

Mougou-Hamdane A, Giresse X, Dutech C, Desprez-LoustauML (2010)
Spatial distribution of lineages of oak powdery mildew fungi in
France, using quick molecular detection methods. Ann For Sci 67:
212

Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley
CM (2013) Trichoderma research in the genome era. Annu Rev
Phytopathol 51:105–129

Neale D, Ingvarsson P (2008) Population, quantitative and comparative
genomics of adaptation in forest trees. Curr Opin Plant Biol 11:149–
155

Newcombe G, Dugan FM (2010) Fungal pathogens of plants in the
Homogocene. In: Gherbawy Y, Voigt K (eds) Molecular identifica-
tion of fungi. Springer-Verlag, Berlin, pp 3–35

Newcombe G, Stirling B, McDonald S, Bradshaw HD Jr (2000)
Melampsora×columbiana, a natural hybrid of M. medusae and M
occidentalis. Mycol Res 104:261–274

Newton AC, Gravouil C, Fountaine JM (2010) Managing the ecology of
foliar pathogens: ecological tolerance in crops. Ann Appl Biol 157:
343–359

Ney B, Bancal MO, Bancal P, Bingham IJ, Foulkes J, Gouache D,
Paveley N, Smith J (2013) Crop architecture and crop tolerance to
fungal diseases and insect herbivory. Mechanisms to limit crop
losses. Eur J Plant Pathol 135:561–580

64 M.-L. Desprez-Loustau et al.

http://dx.doi.org/10.1371/journal.ppat.1001006


Oh E, Gryzenhout M, Wingfield BD, Wingfield MJ, Burgess TI (2013)
Surveys of soil and water reveal a goldmine of Phytophthora diver-
sity in South African natural ecosystems. IMA Fungus 4:123–131

Oliva J, Camarero JJ, Stenlid J (2012) Understanding the role of sapwood
loss and reaction zone formation on radial growth of Norway spruce
(Picea abies) trees decayed by Heterobasidion annosum s.l. For
Ecol Manag 274:201–209

Oliva J, Stenlid J, Martinez-Vilalta J (2014) The effect of fungal patho-
gens on the water and carbon economy of trees: implications for
drought-induced mortality. New Phytol 203:1028–1035

O'Malley M (2008) ‘Everything is everywhere, but the environment se-
lects’: ubiquitous distribution and ecological determinism in micro-
bial biogeography. Stud Hist Phil Biol Biomed Sci 39:314–325

Ostry ME, Laflamme G (2009) Fungi and diseases—natural components
of healthy forests. Botany 87:22–25

Palumbi SR (2001) Humans as the world’s greatest evolutionary force.
Science 293:1786–1790

Papaïx J, Burdon JJ, Zhan J, Thrall PH (2015) Crop pathogen emergence
and evolution in agro-ecological landscapes. Evol Appl. doi:10.
1111/eva.12251

Paquette A, Messier C (2009) The role of plantations in managing the
world’s forests in the Anthropocene. Front Ecol Environ 8:27–34

Parke JL, Grünwald NJ (2012) A systems approach for management of
pests and pathogens of nursery crops. Plant Dis 96:1236–1244

Parke JL, Knaus BJ, Fieland VJ, Lewis C, Grünwald NJ (2014)
Phytophthora community structure analyses in Oregon nurseries
inform sys tems approaches to disease management .
Phytopathology 104:1052–1062

Parker IM, Gilbert GS (2004) The evolutionary ecology of novel plant–
pathogen interactions. Annu Rev Ecol Evol Systematics 35:675–
700

Parker JD, Burkepile DE, Hay ME (2006) Opposing effects of native and
exotic herbivores on plant invasions. Science 311:1459–1461

Partida-Martínez LP, Heil M (2011) The microbe-free plant: fact or arti-
fact? Front Plant Sci 2:100

Pautasso M, Holdenrieder O, Stenlid, J (2005) Susceptibility to fungal
pathogens of forests differing in tree diversity. In: Scherer-Lorenzen
M, Körner C, Schulze E-D (Eds.) Forest diversity and function:
temperate and boreal systems. Springer, pp 263–289

PautassoM, SchlegelM, Holdenrieder O (2014) Forest health in a chang-
ing world. Microb Ecol. doi:10.1007/s00248-014-0545-8

Pearson MN, Beever RE, Boine B, Arthur K (2009) Mycoviruses of
filamentous fungi and their relevance to plant pathology. Mol
Plant Pathol 10:115–128

Peay K, Baraloto C, Fine PVA (2013) Strong coupling of plant and fungal
structure across Amazonian rainforests. ISME J 7:1851–1861

Peiffer J, Spor A , Jin Z, Koren O, Tringe SG, Dangl JL, Buckler ES, Ley
RE (2013) Diversity and heritability of the Maize rhizosphere
microbiome under field conditions. Proc Natl Acad Sci USA 5:
570-573

Peñuelas J, Rico L, OgayaR, JumpAS, Terradas J (2012) Summer season
and long-term drought increase the richness of bacteria and fungi in
the foliar phyllosphere of Quercus ilex in a mixed Mediterranean
forest. Plant Biol (Stuttg) 14:565–575

Pérez G, Slippers B, Wingfield MJ, Wingfield BD, Carnegie AJ, Burgess
TI (2012) Cryptic species, native populations and biological inva-
sions by a eucalypt forest pathogen. Mol Ecol 21:4452–4471

Peterson PD, Griffith CS (1999) Hermann von Schrenk and the beginning
of forest pathology in the US. Forest History Today, 29–34

Pinon J, Frey P (2005) Interactions between poplar clones and
Melampsora populations and their implications for breeding for du-
rable resistance. In: Pei MH, McCracken AR (eds) Rust diseases of
willow and poplar. CAB International, Wallingford, pp 139–154

Power AG, Mitchell CE (2004) Pathogen spillover in disease epidemics.
Am Nat 164:S79–S89

Prospero S, Conedera M, Heiniger U, Rigling D (2006) Saprophytic
activity and sporulation of Cryphonectria parasitica on dead chest-
nut wood in forests with naturally established hypovirulence.
Phytopathology 96:1337–1344

Pyšek P, Jarošíkb V, Hulme PE, Kühn I, Wilda J, Arianoutsou M, Bacher
S, Chiron F, Didžiulisi D, Essl F, Genovesi P, Gherardi F, Hejda M,
Kark S, Lambdon PW, Desprez-Loustau M-L, Nentwig W, Pergl J,
Poboljša K, Rabitsch W, Roques A, Roy DB, Shirley S, Solarz W,
Vilà M, Winter M (2010) Disentangling the role of environmental
and human pressures on biological invasions. Proc Natl Acad Sci U
S A 107:12157–12162

Queloz V, Grünig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O
(2011) Cryptic speciation inHymenoscyphus albidus. For Pathol 41:
133–142

Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The
ecology of the phyllosphere: geographic and phylogenetic variabil-
ity in the distribution of bacteria on tree leaves. Environ Microbiol
12:2885–2893

Refregier G, Le Gac M, Jabbour F, Widmer A, Shykoff JA, Yockteng R,
Giraud T (2008) Co-phylogeny of the anther smut fungi and their
caryophyllaceous hosts: prevalence of host shifts and importance of
delimiting parasite species for inferring co-speciation. BMC Evol
Biol 8:10

Restif O, Koella JC (2004) Concurrent evolution of resistance and toler-
ance to pathogens. Am Nat 164:E90–E102

REX Consortium (2013) Heterogeneity of selection and the evolution of
resistance. Trends Ecol Evol 28:110–118

Rico L, Ogaya R, Terradas J, Peñuelas J (2014) Community structures of
N2 -fixing bacteria associated with the phyllosphere of a Holm oak
forest and their response to drought. Plant Biol 16:586–593

Ridout N, Newcombe G (2015) The frequency of modification of
Dothistroma pine needle blight severity by fungi within the native
range. For Ecol Manag 337:153–160

Rius M, Darling JA (2014) How important is intraspecific genetic admix-
ture to the success of colonising populations? Trends Ecol Evol 29:
233–242

Robin C, Lanz S, Soutrenon A, Rigling D (2010) Dominance of natural
over released biological control agents of the chestnut blight fungus
Cryphonectria parasitica in south-eastern France is associated with
fitness-related traits. Biol Control 53:55–61

Roderick GK, Navajas M (2003) Genes in new environments: genetics
and evolution in biological control. Nat Genet 4:889–899

Roderick GK, Hufbauer R, Navajas M (2012) Evolution and biological
control. Evol Appl 5:419–423

Roossinck MJ, Saha P, Wiley GB, Quan J, White JD, Lai H, Chavarria F,
Shen GA, Roe BA (2010) Ecogenomics: using massively parallel
pyrosequencing to understand virus ecology. Mol Ecol 19:81–88

Roper M, Ellison C, Taylor JW, Glass NL (2011) Nuclear and genome
dynamics in multinucleate ascomycete fungi. Curr Biol 21:R786–
R793

Roy BA (2001) Patterns of association between crucifers and their
flower-mimic pathogens: host-jumps are more common than coevo-
lution or cospeciation. Evolution 55:41–53

Roy BA, Kirchner JW (2000) Evolutionary dynamics of pathogen resis-
tance and tolerance. Evolution 54:51–63

Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ, Sniezko
R, Brasier C (2014) Increasing forest loss worldwide from invasive
pests requires new trade regulations. Front Ecol Environ 12:457–
465

SakalidisML, Slippers B,Wingfield BD, HardyGESJ, Burgess TI (2013)
The challenge of understanding the origin, pathways and extent of
fungal invasions: global populations of the Neofusicoccum parvum–
N ribis species complex. Divers Distrib 19:873–883

Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P,
Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula
J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A,

Evolutionary ecology for forest pathology 65

http://dx.doi.org/10.1111/eva.12251
http://dx.doi.org/10.1111/eva.12251
http://dx.doi.org/10.1007/s00248-014-0545-8


Lygis V, Malecka M, Marcais B, Schmitz S, Schumacher J, Solheim
H, Solla A, Szabò I, Tsopelas P, Vannini A, Vettraino AM,Webber J,
Woodward S, Stenlid J (2013) Biogeographical patterns and deter-
minants of invasion by forest pathogens in Europe. New Phytol 197:
238–250

Schafer JF (1971) Tolerance to plant disease. Ann Rev Phytopathol 9:
235–252

Schardl CL, Craven KD (2003) Interspecific hybridization in plant-
associated fungi and oomycetes: a review. Mol Ecol 12:2861–2873

Schmit J, Mueller G (2007) An estimate of the lower limit of global
fungal diversity. Biodivers Conserv 16:99–111

Schoebel CN, Zoller S, Rigling D (2014) Detection and genetic charac-
terisation of a novel mycovirus in Hymenoscyphus fraxineus, the
causal agent of ash dieback. Infect Genet Evol 28:78–86

Schoettle AW, Sniezko RA (2007) Proactive intervention to sustain high-
elevation pine ecosystems threatened bywhite pine blister rust. J For
Res 12:327–336

Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT (2009) Introduction.
Ecological immunology. Phil Trans R Soc B 364:3–14

Schulze-Lefert P, Panstruga R (2011) A molecular concept connecting
nonhost-resistance and pathogen speciation. Trends Plant Sci 16:
117–125

Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV,
Whitham TG, Hart SC (2008) Plant–soil–microorganism interac-
tions: heritable relationship betwen plant genotype and associated
soil microorganisms. Ecology 89:773–781

Selakovic S, de Ruiter PC, Heesterbeek H (2014) Infectious disease
agents mediate interaction in food webs and ecosystems. Proc R
Soc B 281:20132709. doi:10.1098/rspb.2013.2709

Shaw MW, Osborne TM (2011) Geographic distribution of plant patho-
gens in response to climate change. Plant Pathol 60:31–43

Shaw MW, Bearchell SJ, Fitt BDL, Fraaije BA (2008) Long-term rela-
tionships between environment and abundance in wheat of
Phaeosphaeria nodorum and Mycosphaerella graminicola. New
Phytol 177:229–238

Simms E (2000) Defining tolerance as a norm of reaction. Evol Ecol 14:
563–570

Simms E, Triplett J (1994) Costs and benefits of plant responses to dis-
ease - resistance and tolerance. Evolution 48:1973–1985

Siozios S, Tosi L, Ferrarini A, Ferrari A, Tononi P, Bellin D, Maurhofer
M, Gessler C, Delledonne M, Pertot I (2015) Transcriptional
reprogramming of the mycoparasitic fungus Ampelomyces
quisqualis during the powdery mildew host-induced germination.
Phytopathology 105:199–209

Springer JC, Baines ALD, Fulbright DW, Chansler MT, Jarosz AM
(2013) Hyperparasites influence population structure of the chestnut
blight pathogen, Cryphonectria parasitica. Phytopathology 103:
1280–1286

Stenlid J, Oliva J, Boberg JB, Hopkins AJM (2011) Emerging diseases in
European forest ecosystems and responses in society. Forests 2:486–
504

Stukenbrock EH (2013) Evolution, selection and isolation: a genomic
view of speciation in fungal plant pathogens. New Phytol 199:
895–907

Stukenbrock EH, Bataillon T (2012) A population genomics perspective
on the emergence and adaptation of new plant pathogens in agro-
ecosystems. PLoS Pathog 8, e1002893

Stukenbrock EH,McDonald BA (2008) The origins of plant pathogens in
agro-ecosystems. Annu Rev Phytopathol 46:75–100

Sturrock RN, Frankel SJ, BrownAV, Hennon PE, Kliejunas JT, LewisKJ,
Woods AJ (2011) Climate change and forest diseases. Plant Pathol
60:133–149

Su-See L (1999) Forest health in plantation forests in South-East Asia.
Australas Plant Pathol 28:283–291

Susi H, Barres B, Pedro F, Vale PF, Laine AL (2014) Co-infection alters
population dynamics of infectious disease. Nat Commun. doi:10.
1038/ncomms6975

Swett CL, Gordon TR (2012) First report of grass species (Poaceae) as
naturally occurring hosts of the pine pathogen Gibberella circinata.
Plant Dis 96:908

Swett CL, Gordon TR (2015) Endophytic association of the pine patho-
gen Fusarium circinatum with corn (Zea mays). Fungal Ecol 13:
120–129

Swinton J, Gilligan CA (1999) Selecting hyperparasites for biocontrol of
Dutch elm disease. Proc R Soc B 266:437–445

Szucs M, Eigenbrode SD, Schwarzlander M, Schaffner U (2012) Hybrid
vigor in the biological control agent, Longitarsus jacobaeae. Evol
Applic 5:489–497

Tainter FH, Baker FA (1996) Principles of forest pathology. John Wiley
and Sons, Inc, New York, 803 pp

Takamatsu S, Braun U, Limkaisang S, Kom-un S, Sato Y, Cunnington JH
(2007) Phylogeny and taxonomy of the oak powdery mildew
Erysiphe alphitoides sensu lato. Mycol Res 111:809–826

Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS,
Fisher MC (2000) Phylogenetic species recognition and species
concepts in fungi. Fungal Genet Biol 31:21–32

Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D (2006)
Eukaryotic microbes, species recognition and the geographic limits
of species: examples from the kingdom Fungi. Philos T Roy Soc B
361:1947–1963

Tedersoo L, Bahram M, Põlme S, Yorou NS, Wijesundera R, Villarreal
Ruiz L, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C,
Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K,
Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel
K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN,
Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH,
Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD,
Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C,
Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger
F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014)
Global diversity and geography of soil fungi. Science 346:1256688

Telford A, Cavers S, Ennos RA, Cottrell JE (2015) Can we protect forests
by harnessing variation in resistance to pests and pathogens?
Forestry 88:3–12

Tittonell P (2014) Ecological intensification—sustainable by nature. Curr
Opin Environ Sustain 8:53–61

Tollenaere C, Pernechele B, Mäkinen HS, Parratt SR, Németh MZ,
Kovács GM, Kiss L, Tack AJ, Laine AL (2014) A hyperparasite
affects the population dynamics of a wild plant pathogen. Mol Ecol
23:5877–5887

Tsui CK-M, Farfan L, Roe AD, Rice AV, Cooke JEK, El-Kassaby YA,
Hamelin RC (2014) Population structure of mountain pine beetle
symbiont Leptographium longiclavatum and the implication on the
multipartite beetle–fungi relationships. PLoS One 9, e105455

Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome
Biol 14:209

Vacher C, Daudin J-J, Piou D, Desprez-Loustau M-L (2010) Ecological
integration of alien species into a tree–fungus network. Biol
Invasions 12:3249–3259

Van der Most P, de Jong B, Parmentier HK, Verhulst S (2011) Trade-off
between growth and immune function: a meta-analysis of selection
experiments. Funct Ecol 25:74–80

van Schie CC, Takken FL (2014) Susceptibility genes: how to be a good
host. Annu Rev Phytopathol 52:551–581

Vander Wal E, Garant D, Calmé S, Chapman C, Festa-Bianchet M,
Millien V, Rioux-Paquette S, Pelletier F (2014) Applying evolution-
ary concepts to wildlife disease ecology and management. Evol
Appl 7:856–868

Varki A (2012) Nothing in medicine makes sense, except in the light of
evolution. J Mol Med (Berl) 90:481–494

66 M.-L. Desprez-Loustau et al.

http://dx.doi.org/10.1098/rspb.2013.2709
http://dx.doi.org/10.1038/ncomms6975
http://dx.doi.org/10.1038/ncomms6975


Vayssier-Taussat M, Albina E, Citti C, Cosson J-F, Jacques M-A, Lebrun
M-H, Le Loir Y, Ogliastro M, Petit MA, Roumagnac P, Candresse T
(2014) Shifting the paradigm from pathogens to pathobiome: new
concepts in the light of meta-omics. Front Cell Infect Microbiol 5:4–
29

Verhoeven KJF, Biere A, Harvey JA, Putten WH (2009) Plant invaders
and their novel natural enemies: who is naive? Ecol Lett 12:107–117

Vleeshouwers VG, Rietman H, Krenek P, Champouret N, Young C, Oh
SK, Wang M, Bouwmeester K, Vosman B, Visser RG, Jacobsen E,
Govers F, Kamoun S, Van der Vossen EA (2008) Effector genomics
accelerates discovery and functional profiling of potato disease re-
sistance and Phytophthora infestans avirulence genes. PLoS One 3,
e2875

Vogan PJ, Schoettle AW (2015) Selection for resistance to white pine
blister rust affects the abiotic stress tolerances of limber pine. For
Ecol Manage 344:110–119

Voth PD, Mairura L, Lockhart BE, May G (2006) Phylogeography of
Ustilago maydis virus H1 in the USA and Mexico. J Gen Virol 87:
3433–3441

Vuillaume F, Thebaud G, Urbino C, Forfert N, Granier M, Froissart R,
Blanc S, Peterschmitt M (2011) Distribution of the phenotypic ef-
fects of random homologous recombination between two virus spe-
cies. Plos Pathogens 7, e1002028. doi:10.1371/journal.ppat.
1002028

Wainhouse D (2005) Biological control. In: Wainhouse D (ed) Ecological
methods in forest pest management. Oxford University Press,
Oxford, pp 109–126

Walters DR, Avrova A, Bingham IJ, Burnett FJ, Fountaine J, Havis ND,
Hoad SP, Hughes G, LooselyM, Oxley SJP, Renwick A, Topp CFE,
Newton AC (2012) Control of foliar diseases in barley: towards an
integrated approach. Eur J Plant Pathol 133:33–73

Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK,
LeRoy CJ, Lonsdorf E, Allan GJ, DiFazio SP, Potts BM, Fischer

DG, Gehring CA, Lindroth RL, Marks J, Hart SC, Wimp GM,
Wooley SC (2006) A framework for community and ecosystem
genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

Williamson M, Fitter A (1996) The varying success of invaders. Ecology
77:1661–1665

Witzell J, Martín JA, Blumenstein K (2014) Ecological aspects of
endophyte-based biocontrol of forest diseases. In: Verma VC,
Gange AC (eds) Advances in endophytic research. Springer India,
New Delhi, pp 321–333

Woods A, Coates KD, Hamann A (2005) Is an unprecedented
Dothistroma needle blight epidemic related to climate change?
Bioscience 55:761–769

Xhaard C, Barrès B, Andrieux A, Bousset L, Halkett F, Frey P (2012)
Disentangling the genetic origins of a plant pathogen during disease
spread using an original molecular epidemiology approach. Mol
Ecol 21:2383–2398

Xie J, Jiang D (2014) New Insights into mycoviruses and exploration for
the biological control of crop fungal diseases. Annu Rev
Phytopathol 52:45–68

Yanchuk A, Allard G (2009) Tree improvement programmes for forest
health—can they keep pace with climate changes? Unasylva 231:
50–56

Yang C, Crowley DE, Borneman J, Keen NT (2001) Microbial
phyllosphere populations are more complex than previously real-
ized. Proc Natl Acad Sci U S A 98:3889–3894

Zhang DY, Sun GJ, Jiang XH (1999) Donald’s ideotype and growth
redundancy: a game theoretical analysis. Field Crops Res 61:179–
187

Zhao YJ, Hosoya T, Baral HO, Hosoka K, Kakishima M (2012)
Hymenoscyphus pseudoalbidus, the correct name for Lambertella
albida reported from Japan. Mycotaxon 122:25–41

Evolutionary ecology for forest pathology 67

http://dx.doi.org/10.1371/journal.ppat.1002028
http://dx.doi.org/10.1371/journal.ppat.1002028

	An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction: a brief history of forest pathology and its primary concepts
	Towards a better knowledge of the diversity, biogeography, and ecology of forest pathogenic fungi and Phytophthora spp.
	Pathogen evolution: understanding and predicting the success of invasive forest pathogens and the adaptation of pathogens in intensively managed plantations
	Disease resistance: revisiting the ideotype concept for breeding trees
	Hyperparasitism of fungal pathogens: a poorly understood but promising means of bio-control
	The tree microbiota: a rapidly evolving trait that will allow trees to face anthropogenic environmental change?
	Conclusions and recommendations for the future
	References


