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Performance of current eco-routing methods

Matéj Kubicka, Jan Klusacek, Antonio Sciarretta, Arben Cela, Hugues Mounier
Laurent Thibault and S. I. Niculescu

Abstract— Eco-routing is a vehicle navigation method that
aims to minimize fuel or energy consumption for a given
trip. It is based on a hypothesis that we can trade extra
travel time for lower consumption. While the hypothesis was
experimentally verified the design of a method that would fully
exploit its potential proves challenging. Current solutions hinge
on assumption that energy spent on any given road does not
change in time. We challenge validity of this assumption by
studying performance of such methods in detailed second-by-
second simulation that pronounces the time-dependencies. This
allows us to quantify the real savings attainable with current
eco-routing.

I. INTRODUCTION

Eco-routing' emerged as one of the strategies that aim to
lower vehicle operating costs [12], [6], [4], [2]. The idea is
to minimize energy (or fuel) consumption by route selection:
given some origin and destination, eco-routing plots a route
such that energy (fuel) needed to finish the trip is minimal.

The routing is usually done on a graph where nodes
represent junctions, edges represent roads and costs are
estimated energies needed to travel between two junctions
the road connects. Minimal path routing? can then be used
to find the route that minimizes total energy for the trip.
Authors typically reduce the complex time-variant functions
that describe the costs. They must be time-invariant and
nonnegative in order to use Dijkstra’s routing algorithm,
which is a common choice between authors.

Validation is often done using the same assumptions. Full
experimental validation would require a host of identical
vehicles to depart from spatially and temporally identical
place in order to measure consumptions on different paths
to destination reliably. This is difficult to realize in practice.
Consequently, authors estimate performance of their methods
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INote that the term “eco-routing” is also used in a context of emissions
minimization; we do not consider emissions in this study.

2Commonly also known as shortest path routing; we don’t use this term
to avoid confusion with routing that minimizes travel distance.

by comparing estimated consumption of the eco-routes to
estimated consumption of the shortest routes. In other words,
the same model with the same assumptions is used for
both routing and validation. We validate eco-routing methods
without the time-invariancy assumption and with consump-
tion models experimentally validated on real vehicles. This
allows us to reason about ability of eco-routing to lower the
consumption. Three eco-routing methods are studied in this
way. Their performance is evaluated for both electric and
conventional vehicles. We chose to make distinction between
the two because the electric vehicle can recuperate braking
energy. This has fundamental effect on consumption.

The original study that considered the idea of eco-routing
is by Ericsson et al. [10]. Authors tried to estimate the
potential of eco-routing based on route choices of real
drivers. They used a collection of 15437 recorded commutes
to compute typical consumptions on streets of Lund, Sweden.
Then, they looked at 109 real journeys and estimated how
many of them could be optimized and what is the expected
gain for those that could be. They conclude that fuel-
efficiency could be enhanced for 46% of the trips and that
fuel savings would be 8.2% on the average.

A study similar to ours is by Richter et al. [16]. Authors
study the potential of eco-routing in a simulation of inner city
traffic. They used simulation tool ULTraSim [15] to compute
average consumption on every road in their map for electric,
plugin hybrid and conventional vehicles. Then, they chose
thirteen origin-destination pairs and plotted the shortest route
and the eco-route for each. Reported fuel savings were 8.5%
on the average for eco-route against the shortest route. This
is similar to the findings of Ericsson et al..

A field study of the impact of route choice on the con-
sumption and emissions was conducted by Ahn and Rakha
[2]. Authors recorded thirty-nine trips over two routes during
morning commute. These trips shared the same origin and
destination, but eighteen of them took the arterial route and
twenty-one the highway. These two roads are reported to
have different speed limits and different commute patterns.
Authors observe that fuel consumption is lower by 4 — 8%
when taking the slower arterial route.

Another field study similar to the one by Ahn and Rakha
was conducted by Minett et al. [14]. Authors recorded forty
trips between the cities Delft and Zoetermeer taking either
motorway, local or provincial road. They report consumption
on local road lower by 17% with respect to the motorway.

Our study is most similar to the approach of Richter et al.
[16] and Ericsson et al. [10]. Our contribution with respect
to these works is multifold:



o We compare eco-routes to the shortest and to the fastest
routes. The idea of eco-routing is to trade extra travel
time for lower consumption, hence it makes more sense
to draw conclusions with respect to the fastest routes
rather than the shortest ones.

« We simulate every route (eco-route, shortest route,
fastest route) separately and ensure that the initial
conditions are identical for each (same departure time,
same traffic state) to sustain comparability.

e We ran our simulations on a large set of randomized
trip origins and destinations. This allows us to sample
the probability distribution of energy savings.

The paper is organized as follows: section II below defines
eco-routing, section III reviews tested eco-routing methods
and section IV presents the design of our experiment. Then,
our findings are shown in section V and discussed in section
VI. Conclusions are presented in section VII.

II. PROBLEM STATEMENT

Let G = (V,E) be a road network graph, where V =
{ng : k =1...M} is a set of nodes with cardinality M
and E = {e, : k=1...N} is a set of arcs with cardinality
N. The nodes represent roads between two junctions, arcs
describe the connections between them. We refer to G simply
as map.

Lets assume we know cost function f : V' — R (abbrev.
fr for k-th node in V') that describe how much energy is
needed to travel between the two junctions the road connects.
Let p be a path (also called a route) defined as a contiguous
sequence of nodes p = {n,,...,nq}, where n, and ny are
the origin and destination nodes. We distinguish three types
of paths: the shortest path p,, the fastest path ps, and the
eco-route p.. The energy consumption of a path is a sum of
energies lost at each node, hence

E(p)=> | )

kep

We distinguish the energy of the eco-route, E. = E(p,), the
energy of the shortest route, £ = F(ps), and the energy of
the fastest route, Ey = E(py). The eco-routing is defined as
optimization problem
pe(0,d) = argmin E(p)
pEP
s.t. mp=o 2)
| =d

where P is the set of all simple paths in the map G, n; is
i-th node in the path p and |p| is cardinality of the path p.
The shortest path and the fastest path routing can be defined
analogously such that the shortest path routing minimizes
the distance and the fastest path routing minimizes the travel
time.

IIT. METHODS UNDER TEST

This study was conducted on three well-known eco-routing
methods, all of them conform to the model (2). First method
is by Barth et al., originally proposed in [4] and further

TABLE I:
COEFFICIENTS FOR ECO-ROUTING

F-City Renault Scénic

a 1135 N 110.45 N

b 0.774 N/(m/s) ~ 1.5175 N/(m/s)

Juifk et al. [12] ¢ 0.4212 N/(m/s)®2  0.5119 N/(m/s)?

M 1,190 kg 1,588 kg

a 0.85 0.0

Bo —0.7123 0.9580

81 —2.2703-1072 —6.3418-102

Barth et al. [4] B2 —3.2109 - 103 —1.1529 - 10:2
B3 1.0617 - 10 7.0035 - 10

B4 —5.8308-10"7 —4.1114-1077

Bs 2.3320 1.6148

extended in [6]. This is the first published eco-routing
method we know of. Authors use a model called CMEM to
estimate both fuel consumption and emissions. The CMEM
is microscopic emissions and fuel intake model validated in
[5]. The consumption on each road is approximated using

In(fi) = Bo + Brvk + Bavi + Bavi + Bavy + Bsse (3)

where vy is the average traffic speed and s; is the road
grade. Authors obtained the S-coefficients using multivariate
nonlinear regression on previously collected speed profiles.
Average speed is sourced in real-time from a traffic infor-
mation system.

Second method is by Andersen et al. [3]. Authors posses
large amount of recorded trips in Denmark. Their positioning
data originate from the GPS receivers, consumption is read
from the vehicle using an on-board diagnostics interface.
The routing is done on a road network of Denmark. Their
function fj, assigns each road the average consumption ob-
served there. This method is interesting due to its simplicity.
However, we believe authors are mixing different vehicle
types in the same average which must lead to confounding
since some vehicles show notoriously higher consumption
than the others.

Third method is by Jufik et al. [12]. This method is based
on physical consumption modeling: authors adapt the longi-
tudal vehicle model [11] to estimate the consumption. They
consider losses incurred by altitude changes, frictious losses
and aerodynamic drag. Powertrain efficiency and heating in
friction brakes is neglected. Their model reads

f e {E tla=1E, il E, <0 @
E, if £, >0
where E, represents rolling friction and aerodynamic losses,
E, is a potential energy and « is a constant representing
recuperation capability of the vehicle. The E, and E, is
given as

E, = gAdev,%lk + Mgp.ly, cos(6) (5)
E, = Mgu,lisin(6) (6)

where vy, is the average speed and [ is the road length on
the road k. Constants p, Ay, Cy, M, u, are vehicle-specific
and g is the gravitational constant.



IV. METHODOLOGY

Our experiments were conducted within a traffic simu-
lation of real European city. The simulator allows us to
introduce a vehicle, to set its route and to observe its progress
in time. We ran simulations with the vehicles on different
routes to the same destination, each time under identical
initial conditions (same departure time, same origin, same
traffic state). This allows us to record vehicle speed profiles
which is essential when computing realistic estimates of
consumption.

The departure time was set to midnight. The traffic is
minimal at this time, hence perturbances due to the traffic are
minimal. While it would be interesting to study eco-routing
in congested urban settings this should come only after it
was shown that eco-routing can perform in less perturbed
environment.

We used two vehicle models: a model of FAM F-City
electric vehicle and a model of conventional Renault Scénic.
They are both standard consumption models based on one-
dimensional longitudal dynamics and powertrain efficiency
maps with experimentally identified coefficients. The F-
City model was validated in [9]. Authors observed 1.7%
consumption error during the test drive. We define the vehicle
model as a function p(v,a,s) : R x R* x R® — R
that maps speed, acceleration and slope profiles of length
n to energy consumption. The speed profiles were extracted
from the simulations, accelerations are based on difference
quotients of the speed and the slope profiles come from
digital elevation model of Europe [1]. It covers European
continent with grid cell size of 25 x 25 meters. Bicubic
interpolation was used to interpolate the terrain.

The simulation was conducted in a tool called SUMO [8]
and on a scenario of Luxembourg developed and validated
by Codeca et al. [7]. The scenario is based upon a map
of Luxembourg, with synthetic traffic matched to Luxem-
bourg’s own traffic patterns. It features 286,884 vehicles
over twenty-four hours on 931.12 kilometers of residential,
arterial and highway roads. It has roundabouts, traffic lights,
multi-lane roads and other features characteristic for urban
traffic.

The toolchain used to conduct our experiment is on Figure
1. First we built a set of origin-destination pairs. For that we
reused scenario’s own trip origins and destinations as they are
generated from real traffic demand in the Luxembourg city.
This yielded 108,356 origin-destinations pairs. We plotted
eight routes between each origin and destination: three eco-
routes according to Barth et al., Jufik et al. and Andersen et
al. for both electric and conventional vehicles plus shortest
and fastest routes for reference. The routing was done upon
amap G = (V, E) extracted from the Luxembourg scenario.
The shortest routes were routed using the cost function
fr = li, the fastest routes were routed using the cost function
fr = i—’; Note that the “fastest” route is an approximation
of the real fastest route based on the average travel speeds.
We resolved to this solution as computing the real fastest
routes is a hard problem. The routing produced 866,848

/ for each origin-dest.

i pair
compute

“for each path in each OD pair:

collect speed
profile

compare
consumptions
of eco-routes
with cons. of
shortest
(fastest) routes

generate
origin-

destination

pairs

plot fastest path i

il plot shortest path [ real ]
i 8 collect altitude [JJi§ CONSUMPtion MY
plot eco-routes [ profile i

I S— r—

historical traffic elevation Scénic
data model model

Fig. 1: Experiment toolchain (simplified)

routes in the map of Luxembourg. We simulated each route
in the SUMO simulator, collected their speed profiles and
computed their consumption using the reference models of
Renault Scénic and FAM F-City. This required an equivalent
of 559 hours of single core computing time on 96-core
computing cluster. We have excluded data from 4781 origin-
destination pairs as they failed validity checks. While it is
likely that the samples were in fact correct we prefer to
remove samples for which we cannot be certain of their
validity.

Methods by Jufik et al. and Barth et al. require real-time
information about the average speeds in the network. Fur-
thermore, Barth et al. and Andersen et al. require historically
observed consumptions on the roads. We extracted necessary
data beforehand from scenario’s native traffic. Lets denote
speed profile of i-th vehicle when traveling on road & as v,(:).
The speed profile is a time series made of speeds measured
at different time instants. For every vehicle, the consumption
sz) = p(v,(;), 1'1,(:), s1) and the average speed denoted v, (¥ is
stored for each pass on each road in a quadruple ( f,gl), @,Ef),
Sk, lr) together with the road slope and road length. We
have collected a total of 22,592,081 of these quadruples,
316 were removed due to failed sanity checks.

A. Eco-routing implementation details

Consumption estimates according to Barth et al. [4] are
based on equation (3). We needed to compute the (-
coefficients specific to our vehicles. For that reason we
replaced the original vehicle model with our own and col-
lected the quadruples ( fk(f), T),(j), sk, 1) as discussed above.
This provided necessary data to fit the [-coefficients using
regression. Note that we had convergence problems when
performing nonlinear regression on (3), instead we obtained
the [-coefficients by regression on linearized model. See
Table I for the results.

The method by Andersen et al. can suffer with a lack of
observations in back alleys and other scarcely used roads.
We used f = oo on roads on which we had no historical
data (that is, when m = 0). On the roads where we had the
data we took their average. Hence,

LS @ ifm >0
i=1

00 ifm=0

Je = (7

Original proposal by Andersen et al. does not account
for vehicle type. It follows that their averages are likely



TABLE II:
CONSUMPTION ESTIMATION RESULTS
F-City Scénic
Andersen 0.987 0.989
Correlation Barth 0.956 0.957
Juiik 0.916 0.826
Andersen 96 Wh 339 Wh
Std. error Barth 234 Wh 792 Wh
Juiik 484 Wh 2,493 Wh
TABLE III:
RESULTS SUMMARY
fastest shortest
F-City  Scénic | F-City  Scénic
Average Andersen | 12.5% 8.4% 7.5% 4%
savings Barth 2.6% 2.8% -3.6% -2.1%
Juiik 3.5% -3.9% -1.8% -8.8%
Estimated Andersen | 14.7% 9.9% 9.2% 5.7%
savings Barth 1.4% 1.5% 2.4% 2.5%
Juiik 17.8% 18.5% 4.4% 6.8%
Maximum Andersen | 60.7%  58.6% | 51.4% 40.2%
savings Barth 58.1% 54.6% | 409%  35.6%
Juiik 60.9% 56.5% | 51.4% 39.1%
Probability Andersen 6.9% 8.4% 8.4% 9.6%
of failure Barth 5.1% 4.5% 133% 14.1%
Juiik 31.7% 48.1% | 37.1% 54.7%
Eco-route Andersen 8.7% 13.3% 12% 17.5%
same as Barth 60.6%  63.0% | 30.8% 30.2%
reference Jurik 6.6% 6.2% 16.7% 11.8%
Median of Andersen 4.7% 0.2%
time delay Barth 0% 0%
Juiik 18.0% 16.5%
95 perc. Andersen | 56% 47.6%
ime delay Barth 36.8% 38.2%
Juiik 78% 85.2%

compound from different vehicles with varying consumption
characteristics. This necessarily leads to more uncertainty
in estimated consumptions. We don’t mix vehicle types in
this study since we have only two vehicles. Instead, we use
costs fj, specific either for the electric vehicle or for the
conventional vehicle. This is idealized with respect to the
original.

We also adapted the consumption model of Juifik et al. as
our vehicle description did not match the one used by the
authors. Equation (5) was changed to

E,. = (C’U% + buy, + a)lj )

where a, b and c are coast-down parameters: coefficients
of polynomial fitted to experimentally measured relation
between the force acting against vehicle movement and the
speed. From modeling point of view this has comparable
meaning to the original approach, however, it neglects de-
pendence of rolling losses on road grade. For the values see
Table 1.

V. RESULTS

The results presented in this section are based on a collec-
tion of 828,600 simulated routes between 103,575 unique
origin-destination pairs. Raw experiment data is available on-
line [13], our findings are summarized below.

Correlations of consumption estimates according to Barth
et al., Juiik et al. and Andersen et al. with the reference
consumptions are shown on Figure 2. Results for the electric
vehicle are on Figure 2a and for the conventional vehicle
on Figure 2b. Each sample represents a single trip. Perfect
estimation would be achieved along the black line. Pearson’s
product-moment correlation coefficients and standard errors
are listed in Table II.

Probability distributions of relative consumptions are
shown on figures 3 and 4. Former shows consumption of
the eco-routes relative to the fastest routes (ratio E./Ejy),
latter relative to the shortest routes (ratio E./FE). There
are three curves in each plot, one for each method. We
observed exceptionally high probability of the eco-route
being identical to the shortest (resp. fastest) route. Since the
distributions have discontinuity at this point we removed it
from the plots and report probabilities at this particular point
in Table III where we summarize the results. The Table III
has following sections

1) “Average savings” and “Estimated savings” list the
average of actually saved energy and the average of
a priori estimates of saved energy. Former tells how
much was actually saved while latter tells how much
was expected to be saved.

2) “Probability of failure” gives sample probability that
the eco-route is less economic than the fastest (resp.
shortest) route and that it requires longer travel time
than the fastest (resp. shortest) route.

3) “Eco-route same as reference” gives sample proba-
bility that eco-route is identical to the fastest (resp.
shortest) route.

4) “Median of time-delay” and “95-th percentile time
delay” are statistics of travel time delays. They have
heavy-tailed distributions so we report the median
rather than the mean to give a robust estimate of central
tendency.

Sampled eco-route consumptions do not come from the
same population as the shortest and fastest routes. We
reject the hypothesis that any of the six measured eco-route
consumption sample sets (three eco-routing methods for two
distinct vehicle types) come from the same population as the
samples of the shortest or the fastest route consumption. We
tested the hypothesis using Mann-Whitney U test. In the total
of twelve tests the largest two-sided p-value was smaller than
1077, hence the differences are statistically significant on
99% level. We used the U test rather than the t-test because
the t-test assumes the population distribution is normal.
The d’ Agostino’s normality test on the sampled distributions
returns high 2 statistic for all sample sets. Corresponding
p-values are smaller than 10719 for the hypothesis that the
consumption distributions are normal, hence we adapted the
alternative hypothesis.

VI. DISCUSSION

The method by Andersen et al. shows highest correlation
of consumption estimates with the reference and the standard
estimation error of 96 Wh for the electric vehicle is lowest
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Fig. 2: Correlations of estimated and reference consumptions

between the competing methods. However, the estimation
can’t be expected to work so well in practice. As discussed
in section IV-A we used vehicle-specific consumption av-
erages while the original method mixes consumptions from
different vehicle types into a single average. Quality of the
consumption estimates reflects on eco-routing performance:
Andersen et al. achieves the highest average savings (up to
12.5%) and low probability of failure (ranging from 6% to
10%).

The consumption estimates by Barth et al. show more
spread than estimates by Andersen et al. (see Figure 2) but
still retain high correlation (0.95 for both vehicles). Standard
errors are roughly tripled with respect to Andersen et al..
Routing performance shows average savings close to 2.5%
for both vehicles when compared to the fastest route. When
compared to the shortest route the average savings drop to
negative values. According to this result we are more likely
to save energy if we drive along the shortest route, rather
than along the eco-route.

The method by Jufik et al. underestimates consumption
severely, as can be seen on Figure 2. This is by design as au-
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Fig. 3: Sample distribution of energy savings relative to fastest routes
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Fig. 4: Sample distribution of energy savings relative to shortest routes

thors neglect powertrain efficiency. They observed that scale
error will not affect correlation, nor eco-routing performance.
Indeed, structure of the shortest paths in a graph where all
the costs are scaled by the same positive amount will not
be altered. Consumption correlation is 0.92 for the electric
vehicle and 0.83 for the conventional vehicle. Standard errors
are roughly six times higher than those of Andersen et al.
Routing performance is best for the electric vehicle, showing
3.5% savings with respect to the fastest route. However, eco-
route still performs worse than the shortest route on average.
For the conventional vehicle we see worst performance
among all: —8.8% savings with respect to the shortest route.
This is not surprising as Jufik et al. designed their method
for electric and hybrid vehicles.

The method by Jufik et al. is most practical: it is based on a
standard vehicle consumption model and the physical laws it



entails. Hence, there is no need to utilize historical data, nor
to fit any coefficients. Method by Barth et al. requires a set
of prerecorded trips and Andersen et al. requires specialized
hardware.

Juiik et al. and Andersen et al. overestimate the expected
savings. They must be, by definition, positive. However, we
have seen that the real savings are often negative on the
average. This cannot be accounted for as long as we assume
that the consumption does not change in time. Unfortunately,
this is also the assumption that makes the current eco-routing
feasible.

Results are generally better for the electric vehicle. Even
when correlation score is high for both electric and conven-
tional vehicles the savings are higher for the electric vehicle.
For example in the case of Andersen et al. the correlation is
0.99 for both, but the electric vehicle enjoys average savings
of 12.5% while conventional vehicle only 8.4%.

VII. CONCLUSION

We have recreated three eco-routing methods published
in the literature and tested them in simulated urban traffic to
quantify their ability to lower the energy or fuel consumption
needed to finish a trip. The three methods were chosen
such that they make use of different ideas to achieve their
task: Andersen et al. [3] simply averages observed energy
consumptions, Barth et al. [4] uses regression model to
estimate the consumption and Jufik et al. [12] uses a physical
model of a vehicle to do the same. We cannot guarantee
that our results are representative of reality. However, the
simulations are matched to mobility patterns of a real city
and highly detailed both in terms of temporal resolution and
size. Moreover, our referential vehicle models are based upon
real vehicles and standard modeling methodology.

The results support the eco-routing hypothesis: eco-routes
can have a lower consumption than the fastest routes on the
average as shown by methods of Barth et al. and Andersen
et al. Among the three competing methods Andersen et al.
have shown the best results (12.5% average savings), but
we conjecture that this is not attainable in practice as we
idealized the method. When we compare the eco-routes to
the shortest routes we find that the methods by Jufik et al. and
Barth et al. offered eco-routes that were less economic than
the shortest routes. Eco-routes by Andersen et al. performed
better, however, since the method was idealized it remains
unanswered whether this will hold in practice. However, it
shows that eco-routing has the potential to deliver interesting
savings. In order to attain it we need better consumption
estimates.

We observed that the eco-routes often fail to save energy.
This is particularly problematic if the eco-route also requires
longer time to destination. Then, the eco-routing advises
us to take less economic route for a longer time. We
formulated occurrences of this as “probability of failure” and
observed that it happens between 5% and 55% of the time,
depending on the method and used vehicle. This is to our
best knowledge the first time the likelihood of failure was
observed and further study to its causes is necessary. Indeed,

no sensible user would accept 50% chance that eco-routing
will navigate him on a path that is less economic and incurs
travel time delays.

We provide open access to the dataset with experiment
data [13]. It contains an XML file with all the routes,
simulation results and consumptions. A script written in
Python that generates the plots and tables shown here is
attached to the dataset.
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