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BSDEs with mean reflection

Philippe Briand∗ Romuald Elie† Ying Hu‡

May 19, 2016

Abstract

In this paper, we study a new type of BSDE, where the distribution of the Y -component of
the solution is required to satisfy an additional constraint, written in terms of the expectation of
a loss function. This constraint is imposed at any deterministic time t and is typically weaker
than the classical pointwise one associated to reflected BSDEs. Focusing on solutions (Y, Z, K)
with deterministic K, we obtain the well-posedness of such equation, in the presence of a natural
Skorokhod type condition. Such condition indeed ensures the minimality of the enhanced solution,
under an additional structural condition on the driver. Our results extend to the more general
framework where the constraint is written in terms of a static risk measure on Y . In particular, we
provide an application to the super hedging of claims under running risk management constraint.

1. Introduction.

Backward Stochastic Differential Equations (BSDEs) have been introduced by Pardoux and Peng [15]
and share a strong connection with stochastic control problems. Solving a BSDE typically consists in the
obtention of an adapted couple process (Y, Z) with the following dynamics:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds −

∫ T

t

Zs · dBs , 0 ≤ t ≤ T .

In their seminal paper, Pardoux and Peng provide the existence of a unique solution (Y, Z) to this
equation for a given square integrable terminal condition ξ and a Lipschitz random driver f . Since then,
many extensions have been derived in several directions. The regularity of the driver can for example be
weakened. The underlying dynamics can be fairly more complex, via for example the addition of jumps.
These extensions allow in particular to provide representation of solutions to a large class of stochastic
control problems, and to tackle several meaningful applications in mathematical finance.

More interestingly, the consideration of additional conditions on the stochastic control problems of
interest naturally led to the consideration of constrained BSDEs. In such a case, the solution of a
constrained BSDE contains an additional adapted increasing process K, such that (Y, Z, K) satisfies

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds −

∫ T

t

Zs · dBs + KT − Kt , 0 ≤ t ≤ T, (1)

together with a chosen constraint on the solution. The process K interprets as the extra cost on the
value process Y , due to the additional constraint. In such a framework, this equation admits an infinite
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number of solutions, as the roles of Y and K are too closely connected. The underlying stochastic control
problem of interest typically indicates that one should look for the minimal solution (in terms of Y )
of such equation. Motivated by optimal stopping or related obstacle problems, El Karoui et al. [10]
introduced the notion of reflected BSDE, where the constraint is of the form

Yt ≥ Lt , 0 ≤ t ≤ T.

The obstacle process L is a lower bound on the solution Y and interprets as the reward payoff, if one
chooses to stop immediately. It is worth noticing that the minimal solution (Y, Z, K) is fully characterized
by the following so-called Skorokhod condition

∫ T

0

(Yt − Lt)
+dKt = 0.

This condition intuitively indicates that the process K is only allowed to push the value process Y when-
ever the constraint is binding.

The class of constrained BSDEs has been significantly enlarged in the recent literature. The resolution
of zero sum Dynkin game problems led Cvitanic and Karatzas [8] to the study of doubly reflected BSDE,
where the process Y lies in between two processes. Considering super-hedging problems where the ad-
missible portfolios are restricted to belong to a convex set C (e.g. C = R+ for no short sell constraints),
Buckdahn and Hu [3, 4] and Cvitanic et al. [9] studied the well posedness of BSDE (1) together with
the constraint: Zt ∈ C, for t ∈ [0, T ]. More generally, Peng and Xu [16] considered pointwise constraints
of the form ϕ(t, Yt, Zt) ≥ 0, where ϕ is non-decreasing in y. The study of optimal switching problems
[12, 13, 14, 6] led to the consideration of multidimensional systems of BSDEs with oblique reflections.
In contrast to the previously mentioned pointwise constraints on the solution, Bouchard et al. [2] intro-
duced the notion of BSDE with weak terminal condition. In their framework, the terminal condition is
replaced by a constraint on the distribution of the random variable YT and would typically rewrite

E[ℓ(YT − ξ)] ≥ 0.

The term ℓ(XT − ξ) identifies to the quantification of a loss depending on the distance between YT and
the target ξ. This type of BSDE relates in particular to quantile hedging or related controlled loss control
problems.

The purpose of this paper is to determine the impact of a dynamic version of such type of constraint,
by studying the BSDE (1) together with a running constraint in expectation of the form

E[ℓ(t, Yt)] ≥ 0 , 0 ≤ t ≤ T, (2)

where (ℓ(t, .))0≤t≤T is a collection of non decreasing possibly random functions. It is worth noticing that
the previous running constraint is only imposed on deterministic times t ∈ [0, T ]. In the spirit of the
above mentioned Skorokhod condition for reflected BSDEs, we look towards so-called flat solutions, i.e.
satisfying the extra condition

∫ T

0

E[ℓ(t, Yt)]dKt = 0. (3)

Whenever K is allowed to be random, we observe that the construction of a minimal continuous (in Y )
solution to the system (1)-(2) is not possible in general. For such reason, we focus on the derivation
of solutions (Y, Z, K) with deterministic K component. Whenever ℓ is deterministic linear, we provide
an explicit construction of the unique flat solution to the system (1)-(2)-(3). For general loss functions,
we are also able to derive the well-posedness of the system (1)-(2)-(3), under mild assumptions satisfied
for example whenever ℓ is bi-Lipschitz. Besides, restricting to drivers with any dependence in z but
deterministic linear dependence in y, we verify that the condition (3) ensures the minimality in Y of the
enhanced solution, among all considered solutions of the BSDE (1) with mean reflexion (2).
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In terms of applications, it is worth noticing that the constraint (2) can easily be replaced by a more
general version of the form

ρ(t, Yt) ≤ qt , 0 ≤ t ≤ T , (4)

where (ρ(t, .))t is a time indexed collection of static risk measures, and (qt)t are associated benchmark
levels. This framework is in fact the main motivation of this paper, but we chose to present our main
argumentation within the constraint (2) for sake of clarity and simplicity. We detail in particular in
the last section of the paper an application to the super-replication of claims, restricting to investment
portfolio Y satisfying risk management constraint of the form (4).

The paper is organized as follows: Section 2 presents the problem of interest, clarifies the assumptions
and discusses the main results of the paper. In Section 3, we build the unique solution to the system
(1)-(2)-(3) whenever ℓ is linear and deterministic. The general case is treated in Section 4, where we
derive the well-posedness of the system (1)-(2)-(3). The minimality of the enhanced solution is discussed
in Section 5, whereas the mathematical finance application is given in Section 6.

Notations.

Throughout this paper, we are given a finite horizon T and a complete probability space (Ω, F ,P)
endowed with a d-dimensional standard Brownian motion B = (Bt)0≥t≤T . We will work with the usual
augmented filtration of B, {Ft}0≤t≤T . Any element x ∈ Rd will be identified to a column vector with i-th
component xi and Euclidian norm |x|. CT denotes the set C([0, T ],R) of continuous functions from [0, T ]
to R. For a given set of parameters α, C(α) will denote a constant only depending on these parameters,
and which may change from line to line. Finally, we classically denote by:

• L2(Ft) the set of real valued Ft-measurable square integrable random variables, for any t ∈ [0, T ].

• S2 the set of real valued F -adapted continuous processes Y on [0, T ] such that

‖Y ‖S2 := E
[

sup0≤r≤T |Yr |2
]

1

2 < ∞;

• H2 the set of predictable Rd-valued processes Z s.t. ‖Z‖H2 :=E

[

∫ T

0
|Zr|2dr

]
1

2

< ∞;

• A2 is the closed subset of S2 consisting of nondecreasing processes K = (Kt)0≤t≤T with K0 = 0;

• A2
D the subset of deterministic elements of A2.

2. Problem set up.

2.1. Presentation of BSDEs with mean reflexion.

The main purpose of this paper is to construct solutions (Y, Z, K) to the following BSDE

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds −

∫ T

t

Zs · dBs + KT − Kt, 0 ≤ t ≤ T, (5)

E[ℓ(t, Yt)] ≥ 0, 0 ≤ t ≤ T, (6)

where the second equation is a running constraint in expectation on the component Y of the solution. In
opposition to classical reflected BSDE where (6) would typically be a pointwise constraint, the constraint
considered here concerns the distribution of the Y -component. We pin this new type of constrained
equations as BSDEs with mean reflexion.

The non-decreasing function ℓ interprets as a loss function and typical examples of interest are

• ℓ(t, x) = x − ut where u is a deterministic continuous benchmark, that the process Y is required to
beat in expectation;
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• ℓ(t, x) = 1x≥ut
− vt (or any smoothed equivalent), so that the process Y is now required to beat

deterministic continuous benchmark u with a probability greater than vt, for any time t;

• ℓ(t, x) = U(x, ξt) − ut where U is a concave utility function, (ξt)t is a running random benchmark
of interest and (ut)t a given deterministic confidence level.

Whenever ℓ is a strictly increasing function, the corresponding classical reflected BSDE is characterized
by the dynamics (5) together with the stronger pointwise constraint

ℓ(t, Yt) ≥ 0, 0 ≤ t ≤ T.

In such a case, the Y -component of the solution to the BSDE is reflected on the boundary process
([ℓ(t, .)]−1(0)). Observe that our constrained BSDE of interest weakens the condition imposed on Y , by
only constraining its distribution.

Remark 1. Observe that the condition (6) is only written on the deterministic dates of [0, T ], and not on
all the possible stopping times smaller than T . In our framework, considering a constraint on all stopping
times would strongly strengthen the constraint of interest. On the contrary, both type of pointwise
conditions are by construction equivalent for classical reflected BSDEs.

2.2. Assumptions on the coefficients.

The parameters of the BSDE with mean reflection are the terminal condition ξ, the driver f as well as the
loss function ℓ. These parameters are supposed to satisfy the following standard running assumptions:

(Hf ) The driver f : Ω × [0, T ] × R × Rd −→ R is a measurable map with respect to P × B(R) × B
(

Rd
)

and B(R), P being the sigma algebra of progressive sets of Ω × [0, T ], and there exists λ ≥ 0 such
that, P-a.s., for all t ∈ [0, T ],

∀y, p, z, q |f(t, y, z) − f(t, p, q)| ≤ λ (|y − p| + |z − q|) ,

and

E

[

∫ T

0

|f(t, 0, 0)|2 dt

]

< +∞.

(Hξ) The terminal condition ξ is a square-integrable FT -measurable random variable such that

E[ℓ(T, ξ)] ≥ 0.

(Hℓ) The loss function ℓ : Ω× [0, T ]×R −→ R is a measurable map with respect to FT ×B([0, T ])×B(R)
and there exists C ≥ 0 such that, P-a.s.,

1. (t, y) 7−→ ℓ(t, y) is continuous,

2. ∀t ∈ [0, T ], y 7−→ ℓ(t, y) is strictly increasing,

3. ∀t ∈ [0, T ], E [ℓ(t, ∞)] > 0,

4. ∀t ∈ [0, T ], ∀y ∈ R, |ℓ(t, y)| ≤ C(1 + |y|).

Remark 2. We chose to work in this paper under that seminal Lipschitz and square integrability assump-
tions on the driver and terminal condition. We restrict here to this simple framework, in order to decrease
the amount of technical details and emphasize the novelty induced of the additional constraint (6).

Remark 3. Observe that Condition (Hξ) ensures that the constraint is automatically satisfied at maturity.
This condition implies that no a priori facelift procedure is required on the terminal payoff ξ.
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2.3. Definition of solution, main results and discussion.

We now turn to the definition of a solution to the BSDE (5) with mean reflexion (6) of interest.

Definition. A square integrable solution to the BSDE (5) with mean reflection (6) is a triple of processes
(Y, Z, K) ∈ S2 × H2 × A2 satisfying (5) together with the constraint (6). A solution is said to be flat if
moreover K increases only when expected, i.e. when we have

∫ T

0

E[ℓ(t, Yt)] dKt = 0. (7)

By a deterministic solution, we mean a solution for which the process K is deterministic., i.e. K ∈ A2
D.

As detailed in Remark 6 below, we observe that allowing K to be random leads to the existence of
multiple flat solutions. We even verify that it may induce the non-existence of minimal solution for the
BSDE (5) with mean reflection (6), see the example provided at the end of Section 5. This is why we
chose here to restrict to the consideration of so-called deterministic solutions, i.e. solutions (Y, Z, K) with
deterministic compensator K.

In particular, focusing on deterministic solutions, we verify that the flatness condition (7) can directly
imply the minimality property of the solution beyond all the deterministic ones. This is in particular the
case for drivers with deterministic linear dependence in y, see Condition (22).

The main result of this paper is the existence and uniqueness of deterministic flat solution to the
BSDE (5) with mean reflection (6). This is first achieved for the particular case of linear loss function ℓ,
see Proposition 4 and Theorem 5 in Section 3. The line of proof follows a constructive approach when
the driver does not depend on Y and Z, together with a contraction property in order to tackle any
Lipschitz driver function. An alternative approach via penalization is also provided in Section 3.4. When
the driver is not linear, the well posedness of the system (5)-(6)-(7) is also established, under an addi-
tional assumption on the loss function, denoted (HL) below, see Proposition 8 and Theorem 9 in Section 4.

In a similar fashion, we explain in Section 6 below how the constraint in expectation (6) can be
replaced by a constraint of the form ρ(·, Y·) ≤ q·, where (ρ(t, ·))t is a collection of static risk measures
computed at time 0, and q is a collection of time-indexed benchmarks. In particular, solving this equation
allows for example to represent the super-hedging price of a claim ξ, whenever any admissible portfo-
lios require to satisfy at any date t a running risk management constraint written in terms of risk measures.

Remark 4. Since the constraint (6) concerns the distribution of the solution to the BSDE, it is tempting to
understand the possible connection between such type of BSDE and corresponding constrained McKean
Vlasov BSDEs. This topic seems promising in particular for the mean field game literature and is left for
further research.

2.4. A priori estimate.

Let us conclude this section by providing a usefull a priori estimate on any solution to the BSDE (5)-(6)
of interest.

Lemma 1. Let (Y, Z, K) be a square integrable solution to the BSDE (5) with mean reflection (6). Then
Y satisfies the following

E

[

sup
0≤t≤T

|Yt|
2

]

≤ C(λ, T )E

[

|Y0|2 + K2
T +

∫ T

0

|f(s, 0, 0)|2ds +

∫ T

0

|Zs|2ds

]

.

Proof. By construction, we have,

Yt = Y0 −

∫ t

0

f(s, Ys, Zs) ds +

∫ t

0

Zs · dBs − Kt, 0 ≤ t ≤ T .
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Because K is non decreasing, Assumption (Hf ) leads to

|Yt| ≤ |Y0| + KT +

∫ T

0

|f(s, 0, 0)|ds + λ

∫ T

0

|Zs|ds + sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

Zs · dBs

∣

∣

∣

∣

+ λ

∫ t

0

|Ys| ds ,

for t ∈ [0, T ]. Since Y has continuous paths, Gronwall’s lemma gives

sup
0≤t≤T

|Yt| ≤ eλT

(

|Y0| + KT +

∫ T

0

|f(s, 0, 0)|ds + λ

∫ T

0

|Zs|ds + sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

Zs · dBs

∣

∣

∣

∣

)

,

and the result follows from the Burkholder-Davis-Gundy inequality.

Remark 5. We deduce from this lemma that, when the generator has linear growth, the process Y belongs
to S2 as soon as Z and K are square integrable.

3. The particular case of linear mean reflection.

In this section, we consider the simpler particular case where the mean reflection is linear. Namely,
ℓ : (t, y) 7→ y − ut so that the condition (6) is replaced by

E[Yt] ≥ ut, 0 ≤ t ≤ T, (8)

where u is a deterministic continuous map from [0, T ] to R. Hereby, we impose a running determinis-
tic lower bound u on the expected value of the Y -component of the solution. Besides, we recall that
Assumption Hξ ensures that this constraint is already satisfied at maturity so that we have

E[ξ] ≥ uT . (9)

In this linear framework, we are able in Proposition 4 to construct an explicit deterministic flat so-
lution (Y, Z, K) to a BSDE with linear mean reflexion (8), when the driver does not depend on Y nor
Z. Building modifications on this deterministic flat solution, we exhibit an infinite number of non deter-
ministic flat solutions to the same BSDE. This feature is our main motivation in order to focus solely on
deterministic flat solutions in order to ensure the well posedness of BSDEs with mean reflection. Indeed,
Proposition 3 indicates that uniqueness holds within the class of deterministic flat solutions to (5)-(8).

Hereafter, we first derive an a priori estimate on the solution, and then tackle respectively the unique-
ness and existence issues. In order to handle general drivers, the enhanced demonstration relies on a
contraction argument, but an alternative approach via penalization is also provided in Section 3.4.

3.1. A priori estimate.

The main mathematical advantage of considering a linear loss function ℓ is that it allows to use some of
the computational tricks associated to classical reflected BSDEs, in particular when the compensator K
is moreover deterministic. As detailed in the proof below, this enables us to derive the following a-priori
estimate on the solution to the BSDE with linear mean reflexion.

Lemma 2. Let (Y, Z, K) be a deterministic square integrable flat solution to the BSDE (5) with linear
mean reflexion (8). Then

E

[

sup
0≤t≤T

|Yt|
2 +

∫ T

0

|Zs|2ds

]

+ K2
T ≤ C(λ, T )

(

E

[

|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

]

+ ‖u‖2
∞

)

.

Proof. Let us recall that the Lipschitz property of f implies

2y · f(t, y, z) ≤ |f(t, 0, 0)|2 +
1

2
|z|2 +

(

1 + 2λ + 2λ2
)

|y|2, ∀(y, z) ∈ R × Rd .
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Setting β := 1 + 2λ + 2λ2, Itô’s formula together with the previous inequality provides

eβt|Yt|
2 +

1

2

∫ T

t

eβs|Zs|2ds ≤ eβT |ξ|2 +

∫ T

0

eβs|f(s, 0, 0)|2ds + 2

∫ T

t

eβsYsdKs − 2

∫ T

t

eβsYsZs · dBs,

for all t ∈ [0, T ]. Since K is deterministic and ℓ is linear, we compute

2E

[

∫ T

t

eβsYsdKs

]

= 2

∫ T

t

eβsE [Ys] dKs = 2

∫ T

t

eβs (E [Ys] − us) dKs + 2

∫ T

t

eβsusdKs .

Besides the solution is flat so that condition (7) directly implies

2E

[

∫ T

t

eβsYsdKs

]

= 2

∫ T

t

eβsusdKs ≤ 2eβT ‖u‖∞KT .

We deduce that

sup
0≤t≤T

E
[

eβt|Yt|
2
]

+E

[

∫ T

0

eβs|Zs|2ds

]

≤ 3

(

E

[

eβT |ξ|2 +

∫ T

0

eβs|f(s, 0, 0)|2ds

]

+ 2eβT ‖u‖∞KT

)

,

from which, we get, for any ε > 0,

sup
0≤t≤T

E
[

|Yt|
2
]

+ E

[

∫ T

0

|Zs|2ds

]

≤ C(λ, T, ε)

(

E

[

|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

]

+ ‖u‖2
∞

)

+ ε K2
T . (10)

On the other hand, since K is deterministic, we have

KT = E [KT ] = Y0 − E [ξ] − E

[

∫ T

0

f(s, Ys, Zs)ds

]

,

from which we deduce the inequality

K2
T ≤ C(λ, T )

(

E

[

∫ T

0

|f(s, 0, 0)|2ds

]

+ sup
0≤t≤T

E
[

|Yt|
2
]

+ E

[

∫ T

0

|Zs|2ds

])

. (11)

Combining this estimate with (10) and ε small enough, we get

sup
0≤t≤T

E
[

|Yt|
2
]

+ E

[

∫ T

0

|Zs|2ds

]

+ |KT |2 ≤ C(λ, T )

(

E

[

|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

]

+ ‖u‖2
∞

)

and the result follows from Lemma 1.

3.2. Uniqueness of the deterministic flat solution.

The uniqueness of flat deterministic solution for a BSDE with linear mean reflection follows mainly
from a similar argumentation as the one used for classical reflected BSDE. This is detailed in the next
Proposition.

Proposition 3. The BSDE (5) with linear mean reflexion (8) has at most one square integrable deter-
ministic flat solution.

Proof. Let us consider two such solutions (Y 1, Z1, K1) and (Y 2, Z2, K2) and denote

δY := Y 1 − Y 2, δZ := Z1 − Z2 and δK := K1 − K2.

Setting a := 2λ + 2λ2 and arguing as in Lemma 2, Itô’s formula gives easily

eat|δYt|
2 +

1

2

∫ T

t

eas|δZs|2 ds ≤ −2

∫ T

t

easδYs δZs · dBs + 2

∫ T

t

easδYs dδKs ,
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for t ∈ [0, T ]. Let us observe that since both solutions are flat and deterministic and ℓ is linear, we nicely
have

E

[

∫ T

t

easδYt dδKs

]

=

∫ T

t

eas
[(

E[Y 1
s ] − us

)

−
(

E
[

Y 2
s

]

− us

)]

dK1
s

−

∫ T

t

eas
[(

E[Y 1
s ] − us

)

−
(

E
[

Y 2
s

]

− us

)]

dK2
s

= −

∫ T

t

eas
(

E
[

Y 2
s

]

− us

)

dK1
s −

∫ T

t

eas
(

E
[

Y 1
s

]

− us

)

dK2
s ≤ 0,

for any t ∈ [0, T ]. Thus the result follows by taking expectations in the previous inequality.

As detailed in Remark 6 below, considering deterministic K processes is a key for the obtention of a
unique solution to the BSDE of interest. We now turn to the existence property.

3.3. Existence of a deterministic flat solution.

We first focus on the particular case where the driver f does not depend on Y nor Z. In this simple case,
we are able to construct explicitly the unique solution to a BSDE with linear mean reflection.

Proposition 4. Let C be a square integrable progressively measurable stochastic process or more generally
in the space L2

(

Ω; L1(0, T )
)

. The BSDE with linear mean reflection

Yt = ξ +

∫ T

t

Cs ds −

∫ T

t

Zs · dBs + KT − Kt, E[Yt] ≥ ut, 0 ≤ t ≤ T, (12)

has a unique square integrable deterministic flat solution.

Proof. Let us set xt = E

[

ξ +

∫ T

t

Cs ds

]

. By Skorokhod’s lemma, there exists a unique pair of deter-

ministic functions (y, K) : [0, T ] → R such that K is non decreasing and K0 = 0 and we have

yt = xt + KT − Kt, yt ≥ ut,

∫ T

0

(yt − ut) dKt = 0. (13)

By construction, observe that K is continuous and Kt = sup0≤s≤T (xs − us)− − supt≤s≤T (xs − us)−.
Now, K being given, we know that the BSDE

Yt = ξ +

∫ T

t

Cs ds −

∫ T

t

Zs · dBs + KT − Kt, 0 ≤ t ≤ T,

has a unique square integrable solution (Y, Z). Moreover, we have by construction yt = E[Yt]. It follows
from (13) that (Y, Z, K) is a deterministic flat solution of the BSDE (12). The uniqueness follows from
Proposition 3.

Remark 6. Let us observe that the BSDE with mean reflexion (12) has infinite many flat solutions with
random K. Let us start with (Y 0, Z0, K0) the deterministic flat solution to (12) constructed above in

the proof of Proposition 4. For any real α, let us set Mα := (eαBt−α2t/2)t and define

Kα
t :=

∫ t

0

Mα
s dK0

s , 0 ≤ t ≤ T .

Being given Kα, let (Y α, Zα) be the solution to the BSDE

Y α
t = ξ +

∫ T

t

Cs ds −

∫ T

t

Zα
s · dBs + Kα

T − Kα
t , 0 ≤ t ≤ T.

8



For all 0 ≤ t ≤ T , since E[Mα
t ] = 1 and K0 is deterministic, we have E [Kα

t ] = K0
t so that E [Y α

t ] =
E
[

Y 0
t

]

≥ ut. Moreover, since E
[

Y 0
t

]

− ut = 0 dK-a.e., we compute
∫ T

0

(E [Y α
t ] − ut) dKα

t =

∫ T

0

(

E
[

Y 0
t

]

− ut

)

Mα
t dK0

t = 0.

Hence, for any real α, (Y α, Zα, Kα) is also a flat solution to (12).

We are now in position to turn to the general driver case and we will derive the well-posedness of the
BSDE of interest via the classical use of a well chosen contraction property.

Theorem 5. The BSDE (5) with linear mean reflexion (8) has a unique deterministic square integrable
flat solution.

Proof. For given processes U ∈ S2 and V ∈ H2, let (Y, Z, K) be the deterministic square integrable flat
solution to the BSDE

Yt = ξ +

∫ T

t

f(s, Us, Vs) ds −

∫ T

t

Zs · dBs + KT − Kt, E [Yt] ≥ ut, 0 ≤ t ≤ T ,

as provided by Proposition 4. Let us show that the mapping Φ : (U, V ) 7−→ (Y, Z), from S2 × H2 into
itself, has a unique fixed point.

For this purpose, let us denote (Y 1, Z1, K1) and (Y 2, Z2, K2) the two deterministic square integrable
flat solutions to the above BSDE with given (U1, V 1) and (U2, V 2) respectively. Set

δY := Y 1 − Y 2, δZ := Z1 − Z2, δK := K1 − K2, δU := U1 − U2, δV := V 1 − V 2.

For a = 4λ2 + 1, Itô’s formula leads to

|δY0|2 +

∫ T

0

eas
(

|δYs|2 + |δZs|2
)

ds

≤
1

2

∫ T

0

eas
(

|δUs|2 + |δVs|2
)

ds − 2

∫ T

0

easδYs δZs · dBs + 2

∫ T

0

easδYs dδKs.

As observed in the proof of Proposition 4, we compute

E

[

∫ T

0

easδYs dδKs

]

= −

∫ T

0

eas
(

E
[

Y 2
s

]

− us

)

dK1
s −

∫ T

0

eas
(

E
[

Y 1
s

]

− us

)

dK2
s ≤ 0.

It follows directly that

E

[

∫ T

0

eas
(

|δYs|2 + |δZs|2
)

ds

]

≤
1

2
E

[

∫ T

0

eas
(

|δUs|2 + |δVs|2
)

ds

]

.

Since we have

δYt = E

[

∫ T

t

(

f(s, U1
s , V 1

s ) − f(s, U2
s , V 2

s )
)

ds
∣

∣

∣
Ft

]

+ (K1
T − K1

t ) − (K2
T − K2

t ),

Ki
T − Ki

t = sup
t≤s≤T

(

E

[

ξ +

∫ T

s

f
(

r, U i
r, V i

r

)

dr

]

− us

)

−

,

we get immediately

E

[

sup
0≤t≤T

|δYt|
2

]

≤ C E

[

∫ T

0

(

|δUs|2 + |δVs|2
)

ds

]

.

As a byproduct, Φ is continuous from S2 × H2 into itself.

Moreover, starting from (Y 0, Z0) = (0, 0) and setting for n ≥ 1, (Y n, Zn) = Φ
(

Y n−1, Zn−1
)

, we
deduce easily from the previous estimates that

E

[

sup
0≤t≤T

∣

∣Y n+1
t − Y n

t

∣

∣

2
+

∫ T

0

∣

∣Zn+1
t − Zn

t

∣

∣

2
dt

]

≤ C 2−n,

and finally that the sequence {(Y n, Zn)}n≥0 converges in S2 × H2 to the unique fixed point of Φ.
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3.4. Alternative approach via penalization.

In order to handle classical reflected BSDE, a very helpful feature is the characterization of the solution
as a limit of corresponding penalized classical BSDEs. The idea simply relies on the addition of a
strong penalization on the driver of a classical BSDE, which is only active whenever the constraint is
not satisfied. As the penalization strength increases, the Y component of the penalized solution also
increases and converges at the limit to the minimal solution of the reflected BSDE. In our framework,
the constraint only integrates the distribution of Y , and not the pointwise value of the process Y . For
this reason, no comparison argument can ensure that a sequence of penalized BSDEs will be increasing
and the classical line of proof falls down. Nevertheless, whenever the benchmark function u is constant,
we are able to identify the unique deterministic flat solution of a BSDE with linear mean reflexion as
the limit of corresponding penalized BSDEs of McKean-Vlasov type. This is the purpose of the next
Proposition.

Proposition 6. Suppose that the benchmark (ut)t is constant and also denoted u. For any positive
integer n, let us consider (Y n, Zn) solution to the BSDE of McKean-Vlasov type

Y n
t = ξ +

∫ T

t

f (s, Y n
s , Zn

s ) ds +

∫ T

t

n (u − E [Y n
s ])+ ds −

∫ T

t

Zn
s · dBs . 0 ≤ t ≤ T ,

and denote Kn :=
∫ .

0 n (u − E [Y n
s ])+ ds. As n goes to infinity, (Y n, Zn, Kn) converges to the unique flat

deterministic solution of the BSDE (5) with linear mean reflexion (8).

Proof. Observe first the the solution (Y n, Zn) is well and uniquely defined, according to the results of [5]
up to slight modifications discussed for example in [7].

Step 1. Uniform a priori estimate on the sequence (Y n, Zn, Kn)n.

Since Kn is deterministic, we have

2E

[

∫ T

t

easY n
s dKn

s

]

= 2

∫ T

t

easE [Y n
s ] dKn

s = 2

∫ T

t

eas (E [Y n
s ] − u) dKn

s + 2

∫ T

t

easudKn
s

= −2n

∫ T

t

eas (u − E [Y n
s ])

2
+ ds + 2

∫ T

t

easudKn
s

≤ 2u

∫ T

t

easdKn
s ,

for any constant a and t ∈ [0, T ]. Thus, arguing as in the proof of Lemma 2, we get the following estimate
on the solution (Y n, Zn)

sup
n≥1

(

E

[

sup
0≤t≤T

|Y n
t |2 +

∫ T

0

|Zn
s |2ds

]

+ |Kn
T |

2

)

≤ C(λ, T )

(

E

[

|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

]

+ u2

)

.

Step 2. Convergence of the sequence (Y n, Zn, Kn)n.

Since the constraint is satisfied at maturity, observe also that ((u − E [Y n
0 ])+)2 rewrites

| (u − E [Y n
0 ])+ |2 + 2n

∫ T

0

| (u − E [Y n
s ])+ |2ds = −2

∫ T

0

E[f(s, Y n
s , Zn

s )] (u − E [Y n
s ])+ ds

≤ n

∫ T

0

| (u − E [Y n
s ])+ |2ds +

C(λ, T )

n
,

10



according to the previous estimate. Hence we deduce for later use that

n2

∫ T

0

| (u − E [Y n
s ])+ |2ds ≤ C(λ, T ). (14)

We now look towards a contracting property of the sequence (Y n, Zn) and denote δX := Xn+1 − Xn

for X = Y, Z or K. Setting a := 1
2 + 2λ + 2λ2, a standard computation based on Itô’s formula provides

eat|δYt|
2 +

1

2

∫ T

t

eas
(

|δYs|2 + |δZs|2
)

ds ≤ 2

∫ T

t

easδYs dδKs − 2

∫ T

t

easδYs δZs · dBs, 0 ≤ t ≤ T,

from which we deduce that

sup
0≤t≤T

E

[

|δYt|
2

+

∫ T

0

(

|δYs|2 + |δZs|2
)

ds

]

≤ 2 sup
0≤t≤T

E

[

∫ T

t

easδYs dδKs

]

. (15)

For any s ∈ [0, T ], denoting vn
s := (u − yn

s )+ where yn
s stands for E [Y n

s ], we have dKn
s = nvn

s ds and

E

[

∫ T

t

easδYs dδKs

]

=

∫ T

t

eas
[

yn+1
s − yn

s

] [

(n + 1)vn+1
s − nvn

s

]

ds, 0 ≤ t ≤ T.

Moreover, we compute
[

yn+1 − yn
] [

(n + 1)vn+1 − nvn
]

=
[

(u − yn) −
(

u − yn+1)
)] [

(n + 1)vn+1 − nvn
]

≤ −n|vn|2 + (2n + 1)vnvn+1 − (n + 1)|vn+1|2 .

But, we have

−nx2 + (2n + 1)xy − (n + 1)y2 = −n

(

x −

(

1 +
1

2n

)

y

)2

+
y2

4n
, x, y ∈ R ,

so that combining the previous estimates with (14), we deduce

E

[

∫ T

0

easδYs dδKs

]

≤
1

4n

∫ T

0

|vn+1
s |2ds ≤

C(λ, T )

n3
.

Plugging this estimate in (15), it follows that

sup
0≤t≤T

E
[

|δYt|
2
]

+ E

[

∫ T

0

(

|δYs|2 + |δZs|2
)

ds

]

≤
C(λ, T )

n3
.

Setting ∆tK
n = Kn

T − Kn
t and reminding that Kn is deterministic, observe that

∆tK
n+1 − ∆tK

n = E[δYt] − E

[

∫ T

t

(f(s, Y n+1
s , Zn+1

s ) − f(s, Y n
s , Zn

s )) ds

]

,

from which we deduce

sup
0≤t≤T

|∆tK
n+1 − ∆tK

n| ≤
C(λ, T )

n3
.

Since we have

δYt = E

(

∫ T

t

(

f
(

s, Y n+1
s , Zn+1

s

)

− f(s, Y n
s , Zn

s )
)

ds
∣

∣

∣
Ft

)

+ ∆tK
n+1 − ∆tK

n,

combining the above and Burkholder-Davis-Gundy inequality, we conclude that (Y n, Zn, Kn)n converges
strongly to a limit (Y, Z, K), namely

E

[

sup
0≤t≤T

|Y n
t − Yt|

2 +

∫ T

0

|Zn − Zs|2ds

]

+ sup
0≤t≤T

|Kn
t − Kt|

2 −→n→∞ 0.

11



Step 3. Properties of the limit (Y, Z, K).

Passing to the limit the dynamics of (Y n, Zn, Kn)n, remark that (Y, Z, K) satisfies (5). Observe also
that, by construction, K is deterministic, nondecreasing with K0 = 0. Besides, the estimate (14) directly
implies that

∫ T

0

|(u − E[Yt])+|2dt = lim
n→∞

∫ T

0

|(u − E[Y n
t ])+|2dt = 0 ,

so that E[Yt] ≥ u, for any t ∈ [0, T ]. Finally from Lemma 7 below, since (E[Y n], Kn) converges to
(E[Y ], K) in C([0, T ]), we have

lim
n→∞

∫ T

0

(E[Y n
t ] − u)+dKn

t =

∫ T

0

(E[Yt] − u)+dKt,

and, on the other hand,

∫ T

0

(E[Y n
t ] − u)+dKn

t = n

∫ T

0

(E[Y n
t ] − u)+(u − E[Y n

t ])+dt = 0.

It follows that (Y, Z, K) is the unique flat deterministic solution to the BSDE (5) with linear mean
reflection (8).

We now complete the argumentation by proving a rather elementary lemma, that we just used in the
previous proof.

Lemma 7. Let (un)n≥1 and (Kn)n≥1 be two convergent sequences of (CT , | · |∞). We assume that, for
each n ≥ 1, Kn is nondecreasing and we denote by u and K the corresponding limits of (un)n and (Kn)n.
We have

lim
n→∞

∫ T

0

un
t dKn

t =

∫ T

0

utdKt.

Proof. For any piecewise constant function h, we have

∫ T

0

un
s dKn

s −

∫ T

0

usdKs =

∫ T

0

[un
s − us]dKn

s +

∫ T

0

[us − hs]dKn
s +

∫ T

0

hsdKn
s

−

∫ T

0

hsdKs +

∫ T

0

[hs − us]dKs,

from which we deduce that
∣

∣

∣

∣

∣

∫ T

0

un
s dKn

s −

∫ T

0

usdKs

∣

∣

∣

∣

∣

≤ |un − u|∞|Kn|∞ + |u − h|∞ (|Kn|∞ + |K|∞)

+

∣

∣

∣

∣

∣

∫ T

0

hsdKn
s −

∫ T

0

hsdKs

∣

∣

∣

∣

∣

.

Since h is piecewise constant, we have

lim
n→∞

∫ T

0

hsdKn
s =

∫ T

0

hsdKs, and lim sup

∣

∣

∣

∣

∣

∫ T

0

un
s dKn

s −

∫ T

0

usdKs

∣

∣

∣

∣

∣

≤ 2 |u − h|∞ |K|∞,

from which we get the result since piecewise constant functions on [0, T ] are dense in (CT , | · |∞).
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4. BSDE with general mean reflection.

We now turn to the general case where x 7−→ ℓ(t, ω, x) is non necessarily linear. We recall that we still
work under Assumptions (Hξ)-(Hf )-(Hℓ) presented in Section 2. In the same spirit as the approach
presented in the previous section, we first construct explicitly a solution whenever the driver does not
depend on Y nor Z, and then tackle the general case via a Picard contraction argument. The construction
of an explicit solution in the non linear case is less natural and relies a lot on the use of the following
operator:

Lt : L2 (FT ) → [0, ∞)

X 7→ inf {x ≥ 0 : E [ℓ(t, x + X)] ≥ 0} ,

defined for any t ∈ [0, T ]. Since ℓ is of linear growth at infinity and E [ℓ(t, ∞)] > 0, Lt is well defined.
Namely, Lt(X) represents the minimal deterministic strength with which the random variable X must be
pushed upward in order to satisfy the constraint of interest at time t. In the previous linear case where
ℓ : (t, x) 7→ x − ut, we simply explicitly have Lt : X 7→ (E [X ] − ut)−.

We first focus on the constant driver case and we then are able to tackle the general case. For this
last framework, a Lipschitz property for the operator L will be required.

4.1. The constant driver case.

In this section, we demonstrate the well posedness of the BSDE of interest in the constant driver case.
As explained above, the operator L plays an important role in order to build a solution to such BSDE.

Proposition 8. Let C be a square integrable progressively measurable stochastic process or more generally
in the space L2

(

Ω; L1(0, T )
)

.

Then, the BSDE with mean reflection

Yt = ξ +

∫ T

t

Cs ds −

∫ T

t

Zs · dBs + KT − Kt, E[ℓ(t, Yt)] ≥ 0, 0 ≤ t ≤ T, (16)

has a unique square integrable deterministic flat solution.

Proof. We derive the existence and uniqueness properties separately.

Step 1. Existence.

In order to solve (16), let us define

Ψt := Lt (Xt) , where Xt = Et

(

ξ +

∫ T

t

Cs ds

)

, 0 ≤ t ≤ T .

Since ℓ is continuous in space, observe that

E [ℓ (t, Xt + Ψt)] ≥ 0, 0 ≤ t ≤ T . (17)

Let us now show that Ψ is moreover continuous. Observe first that the map x 7−→ E [ℓ(t, x + X)] is
continuous and strictly increasing. If E [ℓ(t, Xt)] ≤ 0, since ℓ is continuous and has linear growth, for any
x < Lt(Xt) < y, one has

lim
s→t

E [ℓ(s, x + Xs)] = E [ℓ(t, x + Xt)] < 0 = E [ℓ(t, Lt(Xt) + Xt)] < E [ℓ(t, y + Xt)] = lim
s→t

E [ℓ(s, y + Xs)] .

Then, if |s − t| is small enough, E [ℓ(s, x + Xs)] < 0, E [ℓ(s, y + Xs)] > 0 and x ≤ Ls(Xs) ≤ y.

If E [ℓ(t, Xt)] > 0, Lt(Xt) = 0, and lims→t E [ℓ(s, Xs)] = E [ℓ(t, Xt)] > 0. If |s − t| is small enough,
E [ℓ(s, Xs)] > 0 and Ls(Xs) = 0.

13



We are now in position to define the continuous process K by

Kt := sup
0≤s≤T

Ψs − sup
t≤s≤T

Ψs , so that KT − Kt = sup
t≤s≤T

Ψs , 0 ≤ t ≤ T .

Observe that K is deterministic, non decreasing with K0 = 0. Given this process K, let (Y, Z) be
the unique solution to the classical BSDE with the dynamics of (16). Then, since x 7−→ ℓ(t, x) is non
decreasing, we deduce from (17) that

E [ℓ(t, Yt)] = E [ℓ (t, Xt + KT − Kt)] = E

[

ℓ

(

t, Xt + sup
t≤s≤T

Ψs

)]

≥ E [ℓ (t, Xt + Ψt)] ≥ 0. (18)

Hence, (Y, Z, K) is a deterministic solution to the BSDE with weak reflexion (16).

Let now verify that it is also flat. By definition of K, observe that supt≤s≤T Ψs = Ψt dKt-a.e. and
1Ψt=0 = 0 dKt-a.e. Thus, by (18), we compute

∫ T

0

E [ℓ(t, Yt)] dKt =

∫ T

0

E [ℓ(t, Xt + Ψt)] dKt =

∫ T

0

E [ℓ(t, Xt + Ψt)] 1Ψt>0 dKt.

Besides, since ℓ is continuous in space, we have E [ℓ(t, Xt + Ψt)] = 0 as soon as Ψt > 0, so that

∫ T

0

E [ℓ(t, Xt + Ψt)] 1Ψt>0 dKt = 0,

and (Y, Z, K) is a flat solution.

Step 2. Uniqueness.

Let (Y 1, Z1, K1) and (Y 2, Z2, K2) be two deterministic flat solutions to the BSDE with mean reflexion
(16). We work towards a contradiction and suppose that there exists t1 < T such that

K1
T − K1

t1
> K2

T − K2
t1

.

Setting t2 as the first time t after t1 such that K1
T − K1

t = K2
T − K2

t , we observe that

K1
T − K1

t > K2
T − K2

t , t1 ≤ t < t2 .

Since ℓ is strictly increasing, this implies that

E[ℓ(t, Xt + K1
T − K1

t )] > E[ℓ(t, Xt + K2
T − K2

t )] ≥ 0, t1 ≤ t < t2 .

But (Y 1, Z1, K1) is a flat solution and hereby

∫ t2

t1

E[ℓ(t, Xt + K1
T − K1

t )]dK1
t = 0 ,

so that we must have dK1 = 0 on the interval [t1, t2]. We deduce that

K1
T − K1

t2
= K1

T − K1
t1

> K2
T − K2

t1
≥ K2

T − K2
t2

,

which contradicts the definition of t2. Hence K1 = K2 and the uniqueness of solution to classical BSDEs
directly implies that (Y 1, Z1, K1) coincides with (Y 2, Z2, K2).

4.2. Existence and uniqueness for the general case.

Now that the well posedness for constant driver is established, we can focus on the BSDE (5) with mean
reflexion (6) in full generality. In order for the solution to be well defined, we will require a Lipschitz
property of the operator L, that we present in the following additional Assumption:
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(HL) The operator Lt is Lipschitz continuous for the L1-norm, uniformly in time: namely there exists a
constant C ≥ 0 such that

|Lt(X) − Lt(Y )| ≤ C E [|X − Y |] , 0 ≤ t ≤ T , X, Y ∈ L2 (Ft) .

We are now in position to state the main result of the paper, providing the well-posedness of BSDEs
with mean reflexion.

Theorem 9. In addition to the running assumptions (Hξ)-(Hf)-(Hℓ), let us moreover assume that (HL)
is satisfied. Then, there exists a unique deterministic flat solution (Y, Z, K) ∈ S2 ×H2 ×A2

D to the BSDE
(5) with mean reflexion (6).

Proof. Let us consider σ and τ in the time interval [0, T ] with σ ≤ τ . Given Yτ ∈ L2 (Fτ ), {Ut}σ≤t≤τ ∈ S2

and {Vt}σ≤t≤τ ∈ H2, Proposition 8 ensures the existence of a triple of processes {(Yt, Zt, Rt)}σ≤t≤τ

solution to the BSDE with mean reflexion

Yt = Yτ +

∫ τ

t

f(s, Us, Vs) ds −

∫ τ

t

Zs · dBs + Rt, σ ≤ t ≤ τ,

E [ℓ(t, Yt)] ≥ 0, σ ≤ t ≤ τ,

∫ τ

σ

E [ℓ(t, Yt)] dRt = 0 ,

where we conveniently denoted R. = Kτ − K.. In this setting, R is non increasing with Rτ = 0 and, for
σ ≤ t ≤ τ ,

Rt = sup
t≤s≤τ

Ls(Xs), with Xt = E

[

Yτ +

∫ τ

t

f(s, Us, Vs) ds
∣

∣

∣
Ft

]

. (19)

Let (Y ′, Z ′, R′) be the solution associated to (U ′, V ′) and the same Yτ .

We have, with usual notations,

δYt = E

[
∫ τ

t

[f(s, Us, Vs) − f(s, U ′
s, V ′

s )] ds
∣

∣

∣
Ft

]

+ δRt, σ ≤ t ≤ τ,

from which we deduce immediately, since f is assumed to be Lipschitz, that

E

[

sup
σ≤t≤τ

|δYt|
2

]

≤ C(λ)E

[

(
∫ τ

σ

(|δUs| + |δVs|) ds

)2
]

+ sup
σ≤t≤τ

|δRt|
2

.

Besides, since (HL) holds, we deduce from the representation (19) together with δYτ = 0 and the Lipschitz
property of f that, for σ ≤ t ≤ τ ,

|δRt| ≤

∣

∣

∣

∣

sup
t≤s≤τ

Ls(Xs) − sup
t≤s≤τ

Ls(X ′
s)

∣

∣

∣

∣

≤ sup
t≤s≤τ

|Ls(Xs) − Ls(X ′
s)| ≤ sup

t≤s≤τ
E [|δXs|]

≤ C(λ)E

[
∫ τ

σ

(|δUs| + |δVs|) ds

]

.

Combining the previous estimates together with the Cauchy Schwartz inequality, we deduce

E

[

sup
σ≤t≤τ

|δYt|
2

]

≤ C(λ)E

[

(
∫ τ

σ

(|δUs| + |δVs|) ds

)2
]

,

and writing
∫ τ

σ

δZs · dBs = δYτ − δYσ + δRτ − δRσ +

∫ τ

σ

[f(s, Us, Vs) − f(s, U ′
s, V ′

s )] ds

we finally have

E

[

sup
σ≤t≤τ

|δYt|
2 +

∫ τ

σ

|δZs|2 ds

]

≤ C(λ)E

[

(
∫ τ

σ

(|δUs| + |δVs|) ds

)2
]

,

≤ C(λ) (τ − σ) max (1, τ − σ) E

[

sup
σ≤t≤τ

|δUt|
2 +

∫ τ

σ

|δVs|2 ds

]

. (20)
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Of course, this inequality shows that the BSDE (5) with mean reflexion (6) has a unique solution whenever
T is small enough.

To cover the general case, let us pick n ≥ 1 such that C(λ) min(T, T 2)/n2 < 1. For i = 0, . . . , n, let
us set Ti := iT/n. Starting from the interval [Tn−1, Tn] and YTn

= ξ, let, for i = n, . . . , 1, (Y i, Zi, Ri) the
unique solution to the BSDE with mean reflexion

Y i
t = Y i+1

Ti
+

∫ Ti

t

f
(

s, Y i
s , Zi

s

)

ds −

∫ Ti

t

Zi
s · dBs + Ri

t, E
[

ℓ
(

t, Y i
t

)]

≥ 0 Ti−1 ≤ t ≤ Ti,

∫ Ti

Ti−1

E
[

ℓ
(

t, Y i
t

)]

dRi
t = 0, Ri continuous and non increasing on [Ti−1, Ti] with Ri

Ti
= 0.

Let us define (Y, Z, R) on [0, T ] by setting

Yt = Y 1
0 10(t) +

n
∑

i=1

Y i
t 1]Ti−1,Ti](t), Zt =

n
∑

i=1

Zi
t1]Ti−1,Ti[(t),

and Rt = Rn
t on [Tn−1, Tn] and, for i = n − 1, . . . 1, Rt = Ri

t + RTi
on [Ti−1, Ti]. Since Ri

Ti
= 0, R is

continuous and non increasing. Finally, let us define Kt = R0 − Rt to get a non decreasing continuous
function with K0 = 0. Since RT = 0, KT = R0 and Rt = KT − Kt.

It is plain to check that (Y, Z, K) is a solution to the BSDE (5) with mean reflexion (6). Uniqueness
follows from the uniqueness on each small interval.

It is worth noticing that the previous assumption (HL) is automatically satisfied as soon as ℓ is a
bi-Lipschitz function in x. More precisely, we consider the following alternative assumption on ℓ:

(Hbℓ) The loss function ℓ : Ω× [0, T ]×R −→ R is a measurable map with respect to FT ×B([0, T ])×B(R)
and there exists 0 < cl ≤ Cl such that, P-a.s.,

1. ∀y ∈ R, t 7−→ ℓ(t, y) is continuous,

2. ∀t ∈ [0, T ], y 7−→ ℓ(t, y) is strictly increasing,

3. ∀t ∈ [0, T ], ∀y ∈ R, |ℓ(t, y)| ≤ Cl(1 + |y|).

4. ∀t ∈ [0, T ],
cℓ|x − y| ≤ |ℓ(t, x) − ℓ(t, y)| ≤ Cℓ|x − y| , x, y ∈ R , (21)

Lemma 10. Assume (Hbℓ). Then both Assumptions (Hℓ) and (HL) hold.

Proof. Observe first that (Hbℓ) implies directly that (Hℓ) holds. Fix now t ∈ [0, T ] and let X and Y be
two random variables in L2 (FT ).

Since ℓ is non decreasing, the lower bound of (21) gives

ℓ

(

t, Lt(X) +
Cℓ

cℓ
E [|X − Y |] + Y

)

≥ cℓ
Cℓ

cℓ
E [|X − Y |] + ℓ(t, Lt(X) + Y ),

and using the upper bound we get

ℓ(t, Lt(X) + Y ) ≥ ℓ(t, Lt(X) + X) − Cl|X − Y |,

from which it follows

ℓ

(

t, Lt(X) +
Cℓ

cℓ
E [|X − Y |] + Y

)

≥ ℓ(t, Lt(X) + X) − Cl |X − Y | + Cl E [|X − Y |]

Since E [ℓ(t, X + Lt(X))] ≥ 0, we obtain by taking the expectation of the previous inequality

E

[

ℓ

(

t, Lt(X) +
Cℓ

cℓ
E [|X − Y |] + Y

)]

≥ 0.
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By definition of Lt(Y ), this directly implies that

Lt(Y ) ≤ Lt(X) +
Cℓ

cℓ
E [|X − Y |] .

By symmetry of X and Y , we conclude that

|Lt(X) − Lt(Y )| ≤
Cℓ

cℓ
E [|X − Y |] .

As a byproduct, we have the following result.

Corollary 11. Let (Hξ), (Hf ) and (Hbℓ) hold.

Then, there exists a unique deterministic flat solution (Y, Z, K) ∈ S2 × H2 × A2
D to the BSDE (5)

with mean reflexion (6).

5. Minimality of the deterministic flat solution.

Let us recall that for classical reflected BSDE, the Skorokhod condition ensures the minimality of the
enhanced solution in the class of all supersolutions to the reflected BSDE. By minimality, we refer to
minimality in terms of the Y -component of the solution. The Skorokhod condition indicates that the
compensator K only pushes the solution when the condition is binding, i.e. only when it is really nec-
essary. In this spirit, we chose in this paper to look towards solutions to BSDEs with mean reflection
which satisfy the corresponding flatness condition (7).

Now, that the existence of a unique deterministic flat solution to the BSDE (5) with mean reflexion
(6) has been established, it is natural to wonder if this flatness condition (7) also implies the minimality
among all the deterministic solutions. Since the constraint is given in expectation instead of pointwisely,
it is not obvious that only the condition at time t determines the minimal upward kick to apply on the
solution at time t. Under additional assumption on the structure of the driver function f , we are able to
verify that such minimality property is indeed satisfied.

Theorem 12. Suppose that the driver function f is of the form

f : (t, y, z) 7→ aty + h(t, z) , (22)

where a is a deterministic and bounded measurable function. If ℓ is strictly increasing, a deterministic
flat solution (Y, Z, K) is minimal among all the deterministic solutions.

Proof. Let (Y, Z, K) be a deterministic flat solution, and (Y ′, Z ′, K ′) be any deterministic solution. We
want to prove that Y ≤ Y ′. We first focus on the particular case where the driver does not depend on y
and then tackle the general case where f is given by (22).

Step 1. Driver of the form f(t, z).
Since the driver function f does not depend on y, the processes (Y −(KT −K), Z) and (Y ′−(K ′

T −K ′), Z ′)
are both solutions of the same classical BSDE, and we deduce that

Yt − (KT − Kt) = Y ′
t − (K ′

T − K ′
t), 0 ≤ t ≤ T . (23)

Hereby, proving that Y ≤ Y ′ boils down to showing that KT − K ≤ K ′
T − K ′. We work towards a

contradiction and suppose the existence of t1 < T such that

KT − Kt1
> K ′

T − K ′
t1

.

Let t2 be the first time such that KT − K. ≥ K ′
T − K ′

. . Obviously t2 is a deterministic time smaller than
T and by continuity of K and K ′, we get KT − Kt2

= K ′
T − K ′

t2
and

KT − Kt > K ′
T − K ′

t , t1 ≤ t < t2 . (24)
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We deduce from (23) that Y > Y ′, on [t1, t2), and the strict monotony of ℓ implies

E[ℓ(t, Yt)] > E[ℓ(t, Y ′
t )] ≥ 0 , t1 ≤ t ≤ t2 .

Since Y is a flat solution, we have
∫ T

0 E[ℓ(Ys)]dKs = 0 and we deduce that dKt = 0, for t ∈ [t1, t2).
Therefore,

K ′
T − K ′

t1
< KT − Kt1

= KT − Kt2
= K ′

T − K ′
t2

which is a contradiction since K ′ must be non decreasing.

Step 2. Driver of the form (22).

Let us denote At :=
∫ t

0
asds for 0 ≤ t ≤ T . Making the following transformation

Ỹt = eAtYt, Z̃t = eAtZt, K̃t = eAtKt,

we verify easily that (Ỹ , Z̃, K̃) is a flat deterministic solution to the BSDE with mean reflection associated
to the parameters

ξ̃ = eAT ξ , f̃(t, z) = eAtf(t, e−Atz) and ℓ̃(t, y) = ℓ(t, e−Aty) .

According to the previous step Ỹ is minimal within the class of deterministic solutions, and Y inherits
this property by a straightforward argument.

Remark 7. As a by-product, this proof provides an alternative argument in order to derive the uniqueness
of the flat deterministic solution of BSDEs with mean reflexion and driver of the form (22). It is in fact
a generalization of the proof presented in Proposition 8 for the constant driver case.

We now exhibit an example to show that if we allow K to be random, then there exists no minimal
flat solution to the BSDE with mean reflection. This argument strengthens our choice to focus solely in
this paper on so-called deterministic solutions.

For this purpose, let consider BSDE with mean reflection

Yt = ξ −

∫ T

t

γ ds −

∫ T

t

Zs · dBs + KT − Kt, 0 ≤ t ≤ T,

E[Yt] ≥ u, 0 ≤ t ≤ T,

∫ T

0

(E[Yt] − u) dKt = 0,

with γ > 0, and the terminal condition ξ such that u < E[ξ] < u + γT .

As detailed in Section 3, the deterministic flat solution to the BSDE is given by

Yt = E (ξ | Ft) − γ(T − t) + (E[ξ] − γ(T − t) − u)
−

,

and Kt = γ(t ∧ t∗), where we pick t∗ to verify

E[ξ] − γ(T − t∗) = u.

Starting from the previous solution, for α ∈ R, we set

Mα
t := exp

(

αBt − α2t/2
)

and Kα
t :=

∫ t

0

Mα
s dKs , 0 ≤ t ≤ T .

Given Kα, let (Y α, Zα) be the solution to the classical BSDE

Y α
t = ξ −

∫ T

t

γ ds −

∫ T

t

Zα
s dBs + Kα

T − Kα
t , 0 ≤ t ≤ T.

Then (Y α, Zα, Kα) is still a flat solution to the reflected BSDE, see Remark 6 in Section 3.
Let us suppose the existence of a minimal solution (Ȳ , Z̄, K̄) and look towards a contradiction. We have

Ȳt ≤ Y α
t = Et(ξ) − γ(T − t) + Et

(

∫ T

t

Mα
s dKs

)

= Et(ξ) − γ(T − t) + Mα
t (KT − Kt) ,
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for t > 0. As a byproduct, sending α to +∞, we deduce Ȳt ≤ Et(ξ) − γ(T − t) for t > 0, and in particular

∀t > 0, E
[

Ȳt

]

≤ E [ξ] − γ(T − t).

Since E [ξ] − γT < u, for t > 0 small enough, E
[

Ȳt

]

< u. The constraint is not satisfied and we get a
contradiction.

6. Extension and application.

Interpreting Y as the value of a portfolio, the constraint (6) imposes at any date t a constraint on the
distribution of Yt, seen from time 0. The form of constraint that we considered so far is the expectation
of a loss function. From a financial point of view, an investor may be required to control the risk of
any admissible portfolio. In order to measure the underlying risk of a portfolio, the natural tool in the
mathematical finance literature are the so-called risk measures, see e.g. [1]. We emphasize in this section
how our framework of study allows to encompass such type of running static risk measure constraint.
Then, we present an application for the problem of super hedging a claim under a given running risk
measure constraint.

6.1. BSDE with risk measure reflection.

For a fixed t, a static risk measure is a map ρ(t, .) : L2(Ft) −→ R satisfying ρ(t, 0) = 0 together with

• Monotonicity: X ≤ Y =⇒ ρ(t, X) ≥ ρ(t, Y ), for X, Y ∈ L2(Ft) ;

• Translation invariance: ρ(t, X + m) = ρ(t, X) − m, for X ∈ L2(Ft) and m ∈ R .

Hereby, for a given t ∈ [0, T ], ρ(t, X) is a real number which measures the risk associated to the wealth
random variable X . Risk measures can similarly be characterized by their so-called acceptance set, which
defines as

At
ρ = {X ∈ L2(Ft) : ρ(t, X) ≤ 0}.

Similarly, given a set At, one can define a static risk measure by setting

ρ(t, X) = inf{m ∈ R : m + X ∈ At},

so that the acceptance set At and the risk measure ρ(t, .) share a one to one correspondence. For a
given collection of static risk measures (ρ(t, .))t, a wealth process Y will be considered admissible in our
framework as soon as it satisfies

ρ(t, Yt) ≤ qt , 0 ≤ t ≤ T , (25)

where q is a given time indexed deterministic benchmark. For example, the risk measuring tool of ρ
could simply not depend on time, but be compared to the deterministic benchmark q, which evolves with
time, by either tightening or relaxing the constraint. We now look towards solutions of BSDEs subject
to the additional constraint (25). In the same spirit as above, a flat solution to such type of BSDE will
be required to satisfy

∫ T

0

[qt − ρ(t, Yt)]dKt = 0 . (26)

The next theorem indicates that we are able to consider BSDEs under risk measure constraint of the
form (25), in a similar fashion as the one developed in the previous sections.

Theorem 13. Let ρ(t, .) : [0, T ] × L2 −→ R be a collection of monotonic and translation invariant risk
measures, which are continuous with time and Lipschitz in space, i.e.

|ρ(t, X) − ρ(t, Y )| ≤ CE[|X − Y |] , 0 ≤ t ≤ T , X, Y ∈ L2 (Ft) .
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If we are moreover given a continuous deterministic benchmark q and ξ satisfies ρ(T, ξ) ≤ qT , then the
"BSDE with risk measure reflection"

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds −

∫ T

t

Zs · dBs + KT − Kt, 0 ≤ t ≤ T

ρ(t, Yt) ≤ qt, 0 ≤ t ≤ T,

∫ T

0

[qt − ρ(t, Yt)]dKt = 0.

admits a unique deterministic flat solution.
Besides, if f satisfies (22), the deterministic flat solution is minimal among all deterministic solutions.

Proof. The reasoning simply follows the arguments of Proposition 8, Theorem 9 and Theorem 12. The
main distinction is that the map Lt is replaced by the risk measure ρ(t, .) − qt, for any t ∈ [0, T ]. Besides,
the translation invariance property conveniently replaces the strict monotonicity of ℓ in the proofs.

Typical examples considered in the literature are coherent risk measures of the form

ρ(t, X) = sup{EQ [−X ] : Q ∈ Qt} ,

where Qt is a set of probabilities absolutely continuous w.r.t. P. As soon as the set of probability change
densities is bounded, ρ(t, ) is Lipschitz. This is particular the case for the classical Expected Shortfall
risk measure, defined as

ρES
α (t, X) :=

1

αt

∫ αt

0

V aRs(X)ds ,

where αt ∈ (0, 1) denotes a given precision level and V aRs is the Value at Risk of level s. Indeed, the
Expected Shortfall (or AVaR) rewrites also this way

ρES
α (t, X) = sup

{

EQ [−X ] :
dQ

dP
≤

1

αt

}

.

6.2. Application to super hedging under risk constraint.

We now turn to an application in mathematical finance and consider a stock market endowed with a
Bond with deterministic interest rate r and a vector of d stocks with dynamics

dSt = St (µtdt + σtdBt) , 0 ≤ t ≤ T ,

where the drift µ and the volatility σ are square integrable predictable processes. We assume that
σtσ

′
t − εI � 0 for some ε > 0, in order to ensure the completeness of the market. For a given initial

capital x, we consider portfolios Xx,π,K driven by a consumption-investment strategy (π, K), and whose
dynamics are given by

dXx,π,K
t = Xx,π,K

t

(

rtdt + (µt − rt1)′πt
dSt

St

)

− dKt ,

= rtX
x,π,K
t dt + (µt − rt1)′πtdt + π′

tσtdBt − dKt , 0 ≤ t ≤ T .

Using such portfolios, a financial engineer is willing to hedge a possibly non Markovian claim ξ ∈ L2(FT ).
For regulatory purposes, the risk management department of his financial institution imposes him re-
strictions on the class of admissible investment strategies. Namely, a portfolio wealth process Xx,π,K is
considered admissible if and only if it satisfies the following constraint :

ρES
α (t, Xx,π,K

t ) ≤ qt , 0 ≤ t ≤ T ,

where (α, q) are a time indexed collection of deterministic quantile and level benchmarks. These bench-
marks can for example be chosen in such a way that the constraint becomes either tighter or weaker, as
we approach the maturity T . In such a case, the careful investor is looking for the super hedging price

Y0 = inf{x ∈ R , ∃(π, K) ∈ A , s.t. Xx,π,K
T ≥ ξ and ρES

α (t, Xt) ≤ qt , ∀ t ∈ [0, T ]} ,
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and associated consumption-investment strategy. Applying the results of this paper, we deduce that, if
the investor restricts to deterministic consumption strategies, Y0 is well defined as the starting point of
the unique deterministic flat solution to the following BSDE with risk measure reflection

Yt = ξ +

∫ T

t

rtX
x,π,K
t dt + (µt − rt1)′σ−1

t Z⊤
t ds −

∫ T

t

Zs · dBs + KT − Kt, 0 ≤ t ≤ T,

ρES
α (t, Yt) ≤ qt, 0 ≤ t ≤ T,

∫ T

0

[qt − ρES
α (t, Yt)]dKt = 0.

Indeed, the driver function satisfies (22), so that the flat solution is minimal among all deterministic ones.
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