
HAL Id: hal-01318537
https://hal.science/hal-01318537

Submitted on 23 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An alternative version of HTTPS to provide
non-repudiation security property (A flexible

component-based approach for secured transactions in a
mobile environment)

Stassia Resondry, Karima Boudaoud, Michel Kamel, Yoann Bertrand, Michel
Riveill

To cite this version:
Stassia Resondry, Karima Boudaoud, Michel Kamel, Yoann Bertrand, Michel Riveill. An al-
ternative version of HTTPS to provide non-repudiation security property (A flexible component-
based approach for secured transactions in a mobile environment): A flexible component-based ap-
proach for secured transactions in a mobile environment. 10th International Wireless Communica-
tions and Mobile Computing Conference (IWCMC 2014), Aug 2014, Nicosie, Cyprus. pp.536-541,
�10.1109/IWCMC.2014.6906413�. �hal-01318537�

https://hal.science/hal-01318537
https://hal.archives-ouvertes.fr

An alternative version of HTTPS to provide non-
repudiation security property

A flexible component-based approach for secured transactions in a mobile environment

Stassia Resondry, Karima Boudaoud, Michel Kamel, Yoann Bertrand and Michel Riveill
Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271

06900 Sophia Antipolis, France
Email: {resondri,karima,kamel,bertrand,riveill}@polytech.unice.fr

Abstract— The number of mobile devices connected to the
Internet is rapidly growing, inducing security issues that cannot
be prevented by common mechanisms such as HTTPS. Indeed,
mobile environments require light algorithms that can reduce the
power-consumption and extend battery life. Moreover, HTTPS
does not offer fine-grained control over the security properties
such as integrity, confidentiality or authenticity. This lack of
flexibility can be problematic for both power-consumption and
security robustness. To overcome these issues, we have proposed
in previous works a modular architecture, called LECCSAM,
based on security components to secure any communication
protocol by adding the required security properties. In the
context of HTTP, it provides an alternative version of HTTPS by
adding the integrity, confidentiality, and authenticity properties
to HTTP separately or in block (i.e. only one property or any
combinations of two or more properties), depending on the user
needs and usage context. In this paper, we propose to extend this
alternative version of HTTPS with the non-repudiation property.
Preliminary results of the performance evaluation are
encouraging.

Keywords—Security properties; non-repudiation; security
components; HTTPS; communication protocols.

I. INTRODUCTION
The rapid growth of mobile market has forced IT actors to

migrate well-known protocols to the smartphone environment.
These protocols need to take into account several parameters
such as power-consumption and resource-hungriness in order
to fit smartphone's prerequisites. In a traditional computer
environment, the most common protocols used to access the
Web is HTTP and its secured version HTTPS. HTTPS offers
great robustness, but its high power-consumption [1] and lack
of flexibility [2] do not make it suitable for mobile usage.
Indeed, HTTPS provides, in block, only integrity, authenticity
and confidentiality and does not offer the possibility to choose
which properties to use depending on the available resources
(i.e. the computational power of the device), the remaining
battery or the data's sensitivity. As a result, HTTPS cannot be
proposed as a suitable solution for secured mobile
communications.

In [2], we have proposed a solution called LECCSAM
(Low Energy Consuming and Component based Security
Architecture for Mobiles) that allows end-users to specify the
security properties that they would like to see applied on their

data when using HTTPS. Actually, thanks to LECCSAM a
security property-based HTTPS has been proposed to provide a
flexible HTTPS that adapts to users’ needs. The main goal of
LECCSAM is to secure users’ data, exchanged between a
smartphone and a server or another smartphone, by applying
five security properties: integrity, confidentiality, authenticity,
non-repudiation and access control thanks to eponymous
security components.

A detailed description of LECCSAM architecture and the
main components (including the following security properties:
integrity, confidentiality and authenticity) has been presented
in [2]. In this paper, we focus on the fourth security component
i.e. non-repudiation component and more specifically on its
design, implementation and use.

This paper is structured as follows. In section II and section
III, we briefly define the non-repudiation property and present
the existing non-repudiation protocols. In section IV, we give
an overview on LECCSAM. In sections V and VI, we focus on
the description of the design and implementation of the non-
repudiation component. In section VII, we show some results
of the performance evaluation. Finally, in section VIII, we
conclude this paper and propose future works.

II. NON-REPUDIATION PROPERTY
Non-repudiation guarantees that a party cannot deny having

received/sent the message. Even, if it is not the most used
security property, it can come in handy for scenarios involving
trust during sensitive exchanges. Different types of non-
repudiation have been proposed, depending on who (sender or
recipient) is applying the non-repudiation mechanism. From
the sender point of view, one would be willing to be sure that
her/his message was received by the recipient (non-repudiation
of receipt (NRR)) or her/his message was well sent to the
recipient (non-repudiation of submission (NRS)) or her/his
message has been delivered to the recipient (non-repudiation of
delivery (NRD)). From the recipient point of view, one would
be willing to be sure that the message she/he received has been
sent by a genuine sender (non-repudiation of origin (NRO)).

NRR is quite simple to implement because it only needs a
nuncio (i.e. a particular document that attests the validity of the
transaction). The nuncio is generated by the sender and
transmitted to the recipient. In order to terminate the
transaction, the recipient needs to send the nuncio back.

The NRO is easy to implement too. This mechanism
requires most of the time a digital signature in order to prove to
the recipient that the sender is genuine. The digital signature
can be done with traditional algorithms such as SHA [3] or
MD5 [4].

Things tend to be a little bit more complex for NRS as this kind
of non-repudiation requires a Trusted Third Party (TTP) to
allow a secure and trusted interaction between a recipient and a
sender. A TTP must be trusted by both parties and act as a
man-in-the-middle to share and store proofs like digital
signatures or nuncios. We stated previously that a non-
repudiation of receipt (NRR) needs only a nuncio, but a TTP
can also be used to ensure that the nuncio is not altered during
the transmission.

III. RELATED WORKS
In this section, we present existing protocols implementing

non-repudiation property.

Even if non-repudiation is not the most commonly used
security property, various works [5] have been conducted to
provide efficient and reliable protocols that implement such a
property. These non-repudiation (NR) protocols can be divided
in five categories:

• NR without TTP ([6] [7]).
• NR with inline TTP, in which the TTP is involved in each

message ([8], [9]).
• NR with online TTP, in which the TTP is involved in each

session (i.e. for several messages) ([10], [11]).
• NR with offline TTP, in which the TTP is involved only if

an incorrect behaviour is detected ([12], [13]).
• NR with transparent TTP, in which the offline TTP

produces evidence indistinguishable from the evidences of
both sender and recipient ([14] [15]).

As stated previously, non-repudiation without TTP can be
easily performed between the sender and the recipient. This
solution can have a lack of robustness if the sender or the
recipient is not trustworthy. On the contrary, protocols with
inline TTP offer robustness, but they come with a time-
consuming drawback due to three-way transmissions (sender
→ TTP → recipient). Nevertheless, solutions with online TTP
try to prevent this lack of performances by involving the third
party only for session management, which is useful if more
than one message is sent during a session. Finally, offline and
transparent TTPs offer an optimistic approach that involves the
third party only when a problem occurs. These mechanisms are
efficient if most of the transactions are genuine and
trustworthy. Despite the number of proposed solutions, none
of them is using HTTP as a communication protocol.
Therefore, the aim of our work is to add the non-repudiation
property to an alternative version of HTTPs provided thanks to
the LECCSAM architecture, that is described below.

IV. OVERVIEW OF LECCSAM
LECCSAM is an architecture that allows securing any

communication protocol by adding the required security
properties. A proof of concept has been provided to secure
HTPP and XMPP by designing an alternative version of
HTTPS and XMPPS. LECCSAM allows an end-user through
her/his mobile device to choose the security properties that

she/he wants to see applied on her/his data when sent to
another user or server. This architecture is composed of several
modules that have been described in details in [2]. However,
here is a summary of the main components (see “Fig. 1”):

• The security components, where each component is an
assembly of existing cryptographic tools that fulfils the
eponymous security property. In LECCSAM, five security
components have been defined for each security property
(integrity, confidentiality, authenticity, non-repudiation and
access control).

• The policy engine specifies the security properties required
to ensure the security level requested by the end-user for
her/his data exchange.

• The manager is the main component of LECCSAM. Its
role is to orchestrate the security components to secure the
data exchange. According to the security properties
specified by the policy engine, the manager loads the right
security components and apply the eponymous security
properties to the data.

• The interceptor is a module based on port listeners that
intercepts all HTTP requests, extracts data and sends it to
the manager in order to be secured. These listeners are
located on both mobile device and LECCSAM side.

Fig. 1. LECCSAM architecture and workflow

In the next two sections, we focus on the description of the
design and implentation of the non-repudiation component.

V. NON-REPUDIATION COMPONENT
In this section, we present the non-repudiation component

that will be used in order to add the non-repudiation property to
the alternative version of HTTPS.

A. Design choices
In order to design the non-repudiation component, we had

to choose the suitable type of non-repudiation. As stated in
section II, existing solutions offer both advantages and
drawbacks. In our case, we have chosen the non-repudiation of
delivery (NRD) as, from our point of view, it is the most
appropriate version of non-repudiation. This type of non-
repudiation allows a sender to be sure that her/his message was
sent. Because NRD needs a third party, we have chosen
LECCSAM as a TTP. Concerning the type of TTP, we have
decided to use LECCSAM as an inline TTP. Consequently, it
will be involved in every message transmission.

To be considered as trusted, LECCSAM needs to embed
several things: symmetric/asymmetric key mechanisms, a
logging mechanism and of course a non-repudiation
component. The keys are used to ensure that the nuncio and the
data are not altered while transmitted between the different
entities. The logging mechanism is used to keep a track of all
transmissions with non-repudiation policy. Finally, the non-
repudiation component embeds the necessary mechanisms to
ensure the non-repudiation property.

B. Non-repudiation workflow
The non-repudiation mechanism is a succession of several

steps described in “Fig. 2”. These steps are summarized below:

• First, the sender (i.e. mobile device) generates a request
R that contains the data and the security level (i.e. data
sensitivity) that the user wants to apply to her/his data.

• Then, the sender generates a nuncio and uses the
symmetric key k1 that it shares with LECCSAM to
encrypt the concatenation of the request and the nuncio
{R || N}k1. The concatenated message is then sent to
LECCSAM.

• LECCSAM receives the message and the manager
analyses the security sensitivity and ask the policy
engine to determine which security properties (SP) to
apply. The manager applies then the identified security
properties to the data to be sent.

• After that, LECCSAM sends back the modified data
{R}ps to the sender.

• The sender analyses the received data. If it contains the
non-repudiation property, it will wait for the nuncio's
return for a certain time. In the meantime, it sends the
modified data to the recipient (mobile device or server).

• When the recipient receives the data, it asks LECCSAM
to verify the security properties. To do so, the recipient
sends the modified data {R}ps.

• LECCSAM receives the data, analyses the security
properties and check the security properties applied
previously (exp. check the integrity if this property has
been applied) or decrypt the data if the confidentiality
property has been applied.

• Then, LECCSAM encrypts the data with the symmetric
key k2 that it shares with the recipient. After this
operation, it sends the data {R}k2 back to the recipient.

Fig. 2. Non-repudiation mechanism

Finally, LECCSAM encrypts the sender's nuncio {N}k1 and
sends it back to the sender. The sender decrypts then the
nuncio with k1 in order to be sure that the data was properly
delivered.

C. Non-repudiation component
This component embeds different types of cryptographic

mechanisms. As shown in “Fig. 3”, the data D to send is
encrypted with a symmetric key K. This key is created by a
random secret key generator. Then, the data {D}K is produced.

The second embedded cryptographic mechanism is an
asymmetric mechanism. LECCSAM public key PK is used to
encrypt the concatenation of the symmetric key K and the
nuncio (K || N). Once this is over, the data {K || N}PK is
produced. Finally, both generated data {D}k and{K || N}PK are
concatenated and sent.

Fig. 3. Non-repudiation component

D. Keys Exchange workflow
Data exchanged between LECCSAM and mobile device (or

server) are encrypted with AES standard [16]. In the first
version of LECCSAM, we supposed that each entity (i.e.
mobile/server and LECCSAM) had already secret keys. In the
new version of LECCSAM, we decided to use Diffie-Hellman
keys exchange [17] to generate secret keys for each entity. The
key exchange between the mobile/server and LECCSAM is
initiated before each communication session as a hacker can
steal the secret key used for a previous communication. The
following steps and “Fig. 4” describe this key exchange

mechanism:

Figure 4. Key exchange mechanism

• The mobile device initiates a new session with
LECCSAM by giving its UID, which is an SHA-1
value.

• LECCSAM generates 3 random parameters 'g', 'p' and
'a'. It sends to LECCSAM 'g', 'p' and 'A' such as A = ga
modp

• The mobile device chooses a random number 'b' after
reception of 'g', 'p' and 'A'.

• The mobile device sends to LECCSAM 'B' such as B =
gb modp

• LECCSAM receives 'B' and generates 'K' such as K =
Ab modp

• LECCSAM saves K and the UID and send K to the
mobile device.

E. Key exchange component
We have created a component implemented locally (i.e. on

both client and LECCSAM side) in order to perform the
previous workflow. This mechanism is in charge of the
transmission of 'g' and 'p' to each entity. As stated previously,
these values are used by the mobile/server to generate the same
secret key between LECCSAM and the mobile device/server.
This key is used in order to encrypt communications between
these two entities. “Fig. 5” describes the key exchange
component.

Fig. 5. Key exchange component

F. Logging module
This module is also implemented in both LECCSAM and

mobile device/server side. It is used to reinforce non-
repudiation component by keeping a track of every sent or
received requests while using the non-repudiation security
property. This information is stored in a specific format that
includes time and date, UID and nuncios. In case of conflict,
one can uses this module to prove or revoke a transaction.

VI. IMPLEMENTATION
In this section, we focus on the implementation of the non-

repudiation security component.

A. Non-repudiation component
To implement the non-repudiation component, we have

defined four classes:

• SunJCEAssymetricCiphering, which is used to ensure
asymmetric ciphering. The keys are created within
LECCSAM side.

• SCNonRepudiation, which ensures the non-repudiation
property.

• Base64, which is used to match the differences between
Java J2SE and Android.

• LECCSAM, which represents LECCSAM as a TTP.
In order to schedule the non-repudiation operations of “Fig.

3”, we have defined a new component called non-repudiation
manager. This manager is embedded in LECCSAM side and
its role is to:

• Call the traditional manager to apply the non-
repudiation property on the data.

• Retrieve and transmit the nuncio sent by the mobile
device.

• Log the requests and the corresponding nuncios in order
to keep a trace of the transactions.

B. Key exchange component
We have implemented a key exchange component
(KeyManagementEntity) for the mobile device and
LECCSAM. Thanks to this component, LECCSAM is able to
distribute 'g' and 'p' to each mobile device. These values are
used to generate the same secret key between a mobile device
and LECCSAM in order to encrypt the communications
between the two entities. To implement this component, we
have defined five classes:

• IkeyManager, which is the entry interface used to call
the key Manager.

• KeyManager, which ensures the key management
mechanism (exchange and storage of the keys).

• KeyOp, which realises operations such as saving,
creating or deleting a key.

• DHLECCSAM, which generates 'g', 'p' and 'd'
parameters necessary for Diffie-Hellman keys exchange
and generates 'B' parameters.

• DHCLIENT, which generates the secret key depending
on the values sent by LECCSAM.

C. Security components orchestration
Usually, the non-repudiation property is applied in addition

to other security properties. To apply non-repudiation, the
policy engine selects one of the following security properties
combinations (see TABLE I).

TABLE I. SECURITY PROPERTIES COMBINATIONS

Security
Properties

Integrity
Non-repudiation

Integrity
Confidentiality

Non-repudiation

Integrity
Confidentiality

Authenticity
Non-repudiation

Component
order when

Sending data

SCNonRepudiation
SCIntegrity

SCConfidentiality
SCNonRepudiation

SCIntegrity

SCCConfidentiality
SCNonRepudiation

SCAuthenticity

Component
order when

Receiving data

SCIntegrity
SCNonRepudiation

SCIntegrity
SCNonRepudiation
SCConfidentiality

SCAuthenticity
SCNonRepudiation
SCConfidentiality

D. HTTP transmission workflow
In this section, we explain the workflow between a mobile

device and LECCSAM when the non-repudiation property is
requested in addition to integrity and confidentiality properties.

Before sending a message, the user A's interceptor adds the
types “datatype” and “sensitivity” to the HTTP request. The
datatype depends on the context (student tests, medical records,
etc.). The sensitivity is specified by the user thanks to a
graphical interface. Once the request if forged, the interceptor
sends it to LECCSAM:

GET /exam.txt/?profID=
c678832bf6f37e1c4e8c265b77e920bbe80cec97c94c64796ed6400504b08aeb9d3c
42b65c7296370ab2 HTTP /1.1
datasensitivity:3
connection:Keep-Alive
accept-encoding:gzip, deflate
datatype:exam
.....
c379d505c51280c623e738f2ff657b041cb8ea8671d46db2620731fl1qn151b8b7pf
Cf03a90f89e116m

After reception by LECCSAM's interceptor, the manager
extracts the data. It verifies its integrity and change the

parameter “scintegrity:add” to “scintegrity:successfull” if the
integrity is preserved. Then, it decrypts the data with the secret
key exchanged at the beginning of the session.
After this operation, the manager has the decrypted information
and the nuncio.

GET /exam.txt/?profID= LILI HTTP/1.1
datasensitivity:3
datatype:exam
scintegrity:: successful
….
My Message

In order to determine the right security properties to use,
the manager sends “datasensitivity” and “datatype” to the
policy engine. In this example, the policy engine sends to the
manager the rule “int_conf_NR” to indicate that it has to apply
the integrity, confidentiality and non-repudiation. However, as
the integrity has already been applied by the mobile device, the
manager will only apply the confidentiality and non-
repudiation properties. After applying both properties, the
manager sends the data to the interceptor of the mobile device,
which in its turn sends the data to the mobile device of the user
B.

GET / exam.txt /?profID= DN2hhOSjtSS4D.... HTTP/1.1
scintegrity:successful
scproperty : int_conf_NR
…
Te206VMDJ6kCFT6brRX8SYXu5okRr6eI4lOOrhoQ9honbL6w...

After receiving the data, the interceptor of the mobile
device of the user B retrieves the security properties applied
thanks to the field scproperty. If the security property used is
the integrity, the interceptor checks the integrity of the message
thanks to the embedded integrity component. If other security
properties are specified in the field scproperty, the interceptor
sends the data to LECCSAM in order to check the other
security properties and/or decrypt the data.

According to “int_conf_NR”, LECCSAM checks the
security properties and retrieves the plaintext message. Once
this is done, it encrypts the plaintext with the secret key shared
with the mobile device of the user B and sends the data to this
latter.

GET /exam.txt/?profID= fb613078e8430eabe53e8... HTTP/1.1
 scintegrity:add
scproperty : int_conf_NR
.....
7014e4dfce0e0d31f19d28086c6cbe65cdb2V644ff/st89s5126lw...

The mobile device of the user B receives the data and uses
its private key to decrypt the message in order to retrieve the
original message.

GET /exam.txt/?profID= LILI HTTP/1.1
...
My Message

 In the meantime, LECCSAM sends the nuncio to the
mobile device of the user A in order to prove that the original
message was delivered to the mobile device of the user B.

VII. TESTS AND RESULTS
In this section, we present the performance evaluations of

LECCSAM and of the implementation of the alternative

version of HTTPS, in terms of processing time and power-
consumption,. We first give an overview about the test
environment and the scenarios we used to conduct the tests.
The second and third sub-sections present the results we
obtained while performing our tests.

A. Test environment and scenarios
We used Battery Snap and Traceview [18] to determine

both resources and energy-consumption while
sending/receiving data. Concerning the device, we used a 2011
smartphone on Android 2.1 to perform the tests. Our solution
was tested with the following scenarios:

• HTTP with integrity and non-repudiation (1)
• HTTP with integrity, confidentiality, authenticity (2)
• HTTP with integrity, confidentiality, authenticity and

non-repudiation (3)
• Traditional HTTPS (integrity, authenticity and

confidentiality) (4)

B. Time-consumption comparisons
In (1), we measured the time-consumption of a secure

transaction between the mobile device and LECCSAM, where
integrity and non-repudiation properties have been applied. .
The overall time of the transaction was 7,58 s. It is quite long,
but it is important to state that AES encryption/decryption
processing takes at least 3 seconds. In (2), we did the same
with all security properties except non-repudiation. The time-
consumption for this scenario (already used for the previous
version of LECCSAM [2]) is 4,5 s per transaction. In (3), we
used our new non-repudiation component with the previous
configuration. In this case, the time-consumption was 8 s.

Finally, we have evaluated the time-consumption of the
traditional HTTPS that ensures integrity, confidentiality and
authenticity (4). We obtained an overall time of 13 s. These
results are explainable by the fact that 90% of the time was
used to perform additional tasks such as Webview (a view that
displays Web pages within an Android activity). The tasks
were not related to HTTPS, but it was not possible to
deactivate these tasks in order to enhance HTTPS
performances. Fig. 6 presents the results we have obtained with
the previous scenarios.

Fig.
6. Time-consumption results in seconds

As we can see, adding non-repudiation property increases
the time of computation. This drawback is mostly due to the
fact that non-repudiation needs additional operations (i.e.
generation, encryption/decryption and transmission of the
nuncio).

C. Energy-consumption comparisons
As stated previously, we used Battery Snap to perform our
tests. Sadly, this tool shows only 10% of battery variation. In
other words, it was not possible to determine exactly the cost of
a single transaction. Thus, we have decided to calculate the
necessary time to consume 10% of battery while using one of
the previous scenarios. To do so, we have modified the
program to send continuous transactions. For these tests, we
have compared:

• HTTP with integrity, confidentiality, authenticity with
key exchange mechanism (A)

• HTTP with integrity, confidentiality, authenticity
without key exchange mechanism (B)

• HTTP with integrity, confidentiality, authenticity and
non-repudiation (C)

• Traditional HTTPS (D)

While using settings (A), it took 5,55 mins for the battery

to drop from 100% to 90%. Moreover, it took 4 mns to the
traditional HTTPS (D) to use the same amount of energy.
Concerning our new implementation, we can say that the
scenario (C) is quite energy-consuming. Indeed, it took only 3
mns for the mobile to loose 10% of battery. This energy-
consumption is due to the fact that the communication session
was continuously open while waiting for the nuncio's return.
Thus, a comparison between tests (A) and (B) showed that the
key exchange mechanism alone is not very energy-consuming.
Fig. 7 presents our results.

Fig. 7. Energy-consumption results in minutes

VIII. CONCLUSION
In this paper, we have presented the design and

implementation of a non-repudiation security component that
provides the eponymous security property. Thanks to this
component, our architecture LECCSAM can provide an
alternative version of HTTPS with a non-repudiation property,
in addition to the integrity, confidentiality and authenticity
properties.

Regarding the performance evaluations, our tests have
shown that non-repudiation is quite consuming in terms of
processing time and energy consumption. This is due mainly to
the nuncio exchange and the cyphering mechanisms.
Nevertheless, our implementation has shown that it is possible
to add a non-repudiation property to HTTP in order to ensure
that a message is delivered, which is not the case with the
traditional HTTPS.

IX. FUTURE WORKS
 In future works, we will focus on the optimisation of our
non-repudiation component by testing other kinds of non-

repudiation mechanisms (non-repudiation of receipt, non-
repudiation of submission, etc.) and Trusted Third Party
(online, offline, etc.).

As the test results have shown that the waiting time for the
nuncio's return was responsible of the high energy-
consumption; it will be interesting to resolve this problem by
adding a shorter session timer or a mechanism that will allow
the session to pause while waiting for the nuncio.

REFERENCES
[1] V. Gupa, M. Wurm. The Energy Cost of SSL in Depply Embedded
Systems. Technical report Sun Microsystems, TR-2008-173, June 2008.
[2] M. Kamel, K. Boudaoud, S. Resondry, M. Riveill. A Low-Energy
Consuming and User-centric Security Management Architecture Adapted to
Mobile Environments. In Proceedings of the 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM'2011), Dublin, Ireland,
May, 23 - 27, 2011
[3] D Eastlake, P Jones - 2001 - RFC 3174, September
[4] R. Rivest, "RFC 1321: The MD5 message-digest algorithm," Technical
Report, Internet Activities Board, April 1992.
[5] S. Kremer, O. Markowitch, and J. Zhou. An intensive survey of non-
repudiation protocols. Computer Communications, 25(17):1606–1621, Nov.
2002.
[6] O. Markowitch, Y. Roggeman, Probabilistic non-repudiation without
trusted third party, in: Second Conference on Security in Communication
Networks'99, Amal¯, Italy, 1999.
[7] J. Mitsianis, A new approach to enforcing non-repudiation of receipt,
manuscript (2001).
[8] T. Coffey, P. Saidha, Non-repudiation with mandatory proof of receipt,
ACMCCR: Computer Communication Review 26
[9] B. Cox, J. D. Tygar, M. Sirbu, NetBill security and transaction protocol,
in: USENIX Association (Ed.), Proceedings of the first USENIX Workshop of
Electronic Commerce, USENIX, 1995, pp. 77-88.
[10] M. O. Rabin, Transaction protection by beacons, Journal of Computer
and System Sciences 27 (2) (1983) 256-267.
[11] N. Zhang, Q. Shi, Achieving non-repudiation of receipt, The Computer
Journal 39 (10) (1996) 844-853
[12] N. Asokan, M. Schunter, M. Waidner, Optimistic protocols for fair
exchange, in: T. Matsumoto (Ed.), 4th ACM Conference on Computer and
Communications Security, ACM Press, Zurich, Switzerland, 1997, pp. 6, 8-17
[13] S. Micali, Certified E-mail with invisible post offices, Available from
author; an invited presentation at the RSA '97 conference (1997).
[14] O. Markowitch, S. Kremer, An optimistic non-repudiation protocol with
transparent trusted third party, in: Information Security Conference 2001,
Lecture Notes in Computer Science, Springer-Verlag, 2001.
[15] F. Bao, R. H. Deng, W. Mao, Efficient and practical fair exchange
protocols with off-line TTP, in: IEEE Symposium on Security and Privacy,
1998.
[16] Daemen, J., & Rijmen, V. (2002). The design of Rijndael: AES-the
advanced encryption standard. Springer.
[17] W. Diffie, M. E. Hellman, "New Directions in Cryptography," in IEEE
Transactions on Information Theory, pp. 644-654, 1976.
[18] Google play application, Battery Snap
https://play.google.com/store/apps/details?id=com.xelacorp.android.batsnaps
&hl=fr

