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Generic singularities of line fields on 2D manifolds

Ugo Boscain∗, Ludovic Sacchelli†, and Mario Sigalotti‡§

May 19, 2016

Abstract

Generic singularities of line fields have been studied for lines of principal curvature of
embedded surfaces. In this paper we propose an approach to classify generic singularities of
general line fields on 2D manifolds. The idea is to identify line fields as bisectors of pairs of
vector fields on the manifold, with respect to a given conformal structure. The singularities
correspond to the zeros of the vector fields and the genericity is considered with respect to
a natural topology in the space of pairs of vector fields. Line fields at generic singularities
turn out to be topologically equivalent to the Lemon, Star and Monstar singularities that
one finds at umbilical points.

1 Introduction
A line field on a 2-dimensional manifold is a smooth map that associates with every q ∈ M a
line (i.e., a 1-dimensional subspace) in TqM . This is the definition used in [10], where Hopf
extends the classical Poincaré-Hopf Theorem to the case of line fields. Line fields appear often
in nature as for instance in fingerprints [13, 15, 22], liquid crystals [5, 8, 17] and in the pinwheel
structure of the visual cortex V1 of mammals [3, 4, 6, 11, 16]. Contrarily to what happens
for vector fields, where the topology of the manifold forces the vector fields to have zeros, the
topology of the manifold forces line fields to have singularities (i.e., points where a line field is
not defined).

Singularities of line fields are visible in nature as shown in Figure 1. Two types of singular-
ities are usually observed, one of index 1/2 and one of index −1/2, which have different names
depending on the context.

Following Thom [20], one expects that only singularities that do not disappear for small
perturbations of the system are easily observed in nature (see also [1]). For this reason, it
is important to study which singularities are structurally stable. To define what structurally
stable means, one needs two ingredients. First one needs a topology on the space of line fields.
Second one needs a notion of local equivalence between line fields. The difficulty in studying
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this problem comes from the fact that there is no natural topology on the set of line fields,
since the set of singular points depends on the line field itself.

This problem was completely solved in the case of lines of principal curvature on surfaces,
since these line fields are given by the embedding of a surface in R3 and the natural topology is
the one given by the embedding. Three types of singularities, called Lemon, Monstar and Star
(see [2]), were identified by Darboux in [7] (see Figure 2). It was proven in [19] that Lemon,
Monstar and Star are the structurally stable singularities of lines of principal curvature with
respect to the Whitney C3-topology of immersions of a surface in R3.

The purpose of this paper is to study the structurally stable singularities of line fields in
a more general context than the one of lines of principal curvature. The starting point of
the paper is to give a definition of line field (that we call proto-line-field) that has a natural
associated topology. For us a proto-line-field on a Riemannian surface is a pair of vector fields
X and Y onM . The corresponding line field associated with the proto-line-field is the line field
bisecting X and Y . The angle is computed using the Riemannian metric, actually a conformal
would be sufficient. The zeros of X and Y become singularities of the associated line field. In
Proposition 8, we prove that any line field with singularities can be realized in this way.

With this definition we naturally associate a topology on line fields, that is, the Whitney
topology on pairs of vector fields on M . The main result of the paper is that generically a
proto-line-field has only structurally stable singularities, which are Lemon, Monstar or Star
singularities. Hence the structurally stable singularities for lines of principal curvature are the
same as for general proto-line-fields.

Notice that in nature it is not easy to distinguish between the Lemon and the Monstar
singularity since they have the same index (see Section 3.2) and they look quite similar. This is
why the observation of singularities of line fields in nature usually reports only two behaviors,
characterized by the index of the singularity. One important issue for singularities of line fields
(in particular for finger ridges) is their parameterization by a model with few parameters and
capable to capture high curvature patterns ([21]). Our definition of proto-line-fields could be
useful for such applications, since it could be used to detect fine properties, such as the difference
between Lemon and Monstar singularities.

The structure of the paper is the following. In Section 2 we give the definition of proto-line-
field, of local structural stability and we state our main result (Theorem 7). In Section 3, we
establish some basic properties of proto-line-fields and we prove that every line field (possibly
with singularities) can be realized as a proto-line-field. Moreover, following Hopf we introduce
the index of a proto-line-field and we show how to compute it starting from the indices of X
and Y . We also deduce that the index of a singularity of a generic proto-line-field is 1/2 or
−1/2.

The main technical part of the paper consists of Sections 4 and 5. In Section 4 we study the
case of linear proto-line-fields in the Euclidean plane and we classify them into three categories
corresponding to the three exhibited singularities. In Section 5 we study the general problem via
a blow up and make use of the classification obtained in the linear case to prove the Theorem 7.

In Section 6 we study the role of the Riemannian metric on the identification between a
proto-line-field and the corresponding line field. In particular we observe that bifurcations
between Lemon and Monstar singularities can occur by changing the metric. Finally in Section
6.2 we show how to reduce the number of ingredients necessary to define proto-line-fields by
constructing a Riemannian metric starting from two vector fields.

2 Basic definitions and statement of the main result
In this paper, manifolds and vector fields are assumed to be smooth, i.e., C∞.
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(a) Stopping point (b) Triple point

The pinwheel structure of the orientation
columns of the visual cortex V1 can be
modeled as a line field whose singulari-
ties are the pinwheels. Clockwise pin-
wheels, also called stopping points, have
index 1/2 and counter-clockwise pinwheels,
also called triple points, have index −1/2.

(c) Core (d) Delta

In an effort to classify fingerprints, the
topology of the underlying line field in the
ridge patterns can be used. Isolated sin-
gularities of index 1/2 and −1/2 can be
observed, and their total index is actually
fixed by the number of fingers.

(e) (f)

Singularities of index±1/2 can be observed
in nematic liquid crystals. Perpendicularly
to a 1-dimensional dislocation in the mate-
rial, the liquid crystal can be modeled as a
line field with singularities called disclina-
tions. (Images kindly provided by Stephen
J. DeCamp.)

Figure 1: Examples of singularities observed in nature with half-integer indices.

Definition 1. Let (M, g) be a 2-dimensional Riemannian manifold. A proto-line-field is a pair
(X, Y ) of vector fields on M . Denote by zX and zY the sets of zeros of X and Y . The line field
associated with (X, Y ), denoted by B(X, Y ), is the section of PT (M\(zX ∪ zY )) defined at a
point p ∈M\(zX ∪ zY ) as the line B(X(p), Y (p)) of TpM bisecting (X(p), Y (p)) for the metric
g(p).

In the definition above, the metric g is only used to measure angles. One could then replace
g by a conformal structure. We are not assuming that (M, g) is orientable. When angles are
measured, it is implicitly meant that we are choosing a local orientation. In the following we
will denote the angle measured with respect to the metric g between the vectors V and W of
TpM by ∠g[V,W ]. This angle should be understood modulo 2π. We use the same notation to
define the angle between two lines or between a vector and a line, in this case the angle should
be understood modulo π.

Definition 2. A one-dimensional connected immersed submanifold N of M\(zX ∪ zY ) is said
to be an integral manifold of the proto-line-field (X, Y ) if for any point p of N , the tangent line
to N at p is given by B(X, Y ).

By involutivity of one-dimensional distributions, M\(zX ∪ zY ) can be foliated by integral
manifolds of (X, Y ).
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Example 3. We introduce here three proto-line-fields whose singularities correspond to the well-
known Lemon, Monstar and Star singularities observed for lines of principal curvature. Their
respective integral manifolds are represented in Figure 2.

The Lemon proto-line-field is the pair of vector fields on (R2,Eucl) defined by

XL(x, y) =

(
x+ y
y − x

)
, YL(x, y) =

(
1
1

)
.

The Monstar proto-line-field is the pair of vector fields on (R2,Eucl) defined by

XM(x, y) =

(
x
3y

)
, YM(x, y) =

(
1
0

)
.

The Star proto-line-field is the pair of vector fields on (R2,Eucl) defined by

XS(x, y) =

(
x
−y

)
, YS(x, y) =

(
1
0

)
.

(a) Lemon (b) Monstar (c) Star

Figure 2: Integral manifolds of the proto-line-fields of Example 3.

For k ∈ N, denote by Wk(M) the space of pairs of smooth vector fields of M endowed with
the product Whitney Ck-topology.

Definition 4. Let (X, Y ) be a proto-line-field on (M, g), and (X ′, Y ′) be a proto-line-field
on (M ′, g′). Fix p ∈ M and p′ ∈ M ′. Then (X, Y ) and (X ′, Y ′) are said to be topologically
equivalent at p and p′ if there exist two neighborhoods Vp and Wp′ of p and p′ respectively and
a homeomorphism h : Vp → Wp′ , with h(p) = p′, which takes the integral manifolds of (X, Y )
onto those of (X ′, Y ′).

Definition 5. Let (X, Y ) be a proto-line-field on (M, g). We say that (X, Y ) has a Lemon
(respectively, Monstar, Star) singularity at p ∈ M , if it is topologically equivalent to (XL, YL)
(respectively, (XM , YM), (XS, YS)) at 0. We say that a singularity of a proto-line-field is Dar-
bouxian if it is either a Lemon, a Monstar or a Star.

Definition 6. A proto-line-field (X, Y ) on M is said to be locally structurally stable at p ∈M
if for any neighborhood Up ⊂M of p there exists a neighborhood N(X,Y ) of (X, Y ) with respect
toW1(M) such that for any (X ′, Y ′) ∈ N(X,Y ), (X, Y ) and (X ′, Y ′) are topologically equivalent
at p and q, for some q ∈ Up. Moreover, (X, Y ) is said to be locally structurally stable if it is
locally structurally stable at any point p ∈M .
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Recall that a residual set in a topological space is a countable intersection of open and dense
subsets. We say that a property holds generically for a proto-line-field in W1(M) if there exists
a residual set U inW1(M) such that the property is satisfied by every element of U . In the case
where M is compact, we could actually replace residual by open and dense in the definition of
genericity, and all results stated in this paper would still hold true.

Theorem 7 (Genericity theorem). Generically with respect to (X, Y ) ∈ W1(M), the proto-
line-field (X, Y ) is locally structurally stable and has only Darbouxian singularities.

3 Basic properties of proto-line-fields

3.1 Every line field can be realized as a proto-line-field

Proposition 8. Let (M, g) be a 2-dimensional Riemannian manifold, K be a closed subset
of M and L be a section of PT (M\K). There exist two vector fields X and Y such that
L = B(X, Y ).

Proof. Let us first fix the vector field X. If K is empty, by Poincaré-Hopf Theorem for line
fields (see [10]), the Euler characteristic of M is 0. Hence we can take as X a never-vanishing
smooth vector field on M . In the case where K is non-empty, we take instead as X any vector
field on M vanishing at a single point q belonging to K.

In the case in which M is orientable, let α : M\K → R/πZ be the smooth function defined
by ∠[X,L] and ϕ : M → R be a smooth function such that ϕ(p) 6= 0 for all p ∈ M\K
and ϕ is equal to 0 with all its derivatives on K. Define the smooth vector field Y on M by
Y (p) = ϕ(p)R2α(p)(X(p)), where Rθ : TM → TM denotes the fiber-wise rotation by an angle
θ. By construction L = B(X, Y ).

In the non-orientable case, even if α is not globally well defined on M\K, the vector field
p 7→ R2α(p)(X(p)) is. Hence Y can be defined as above and the same conclusion follows.

3.2 Index of line fields and hyperbolic singularities

Let U be an open subset of M and p ∈ U . Following Hopf, we define the index of a section
L : U \ {p} → PTM at p as follows. Up to restricting U , we can assume it to be simply
connected and we can consider a never vanishing vector field Z on U . Let C : [0, 1] → U be
a simple closed curve encircling p counterclockwise. Then there exists a map F : [0, 1]→ TM
such that L(C(t)) is the span of F (t) for every t ∈ [0, 1]. Let ∠ [Z, F ]C(t) be the angle between
F (t) and Z(C(t)) with respect to the Riemannian metric g, and let δC∠ [Z, F ] be the total
signed variation of this angle on the interval [0, 1]. We then define j by

2πj = δC∠ [Z, F ] .

Since ∠ [Z, F ]C(0) = ∠ [Z, F ]C(1) (mod π), 2j is an integer and it can be shown that j does not
depend on Z, C nor on g. We say that j is the index of L at p and we write indp(L) = j. We
use the same symbol indp to denote the index of a vector field at the point p.

The following result holds (see [10]).

Theorem 9 (Poincaré-Hopf). Let (M, g) be a compact, orientable 2-dimensional Riemannian
manifold of Euler characteristic χ(M), and let L be a line field on M with isolated singularities.
Let zL be the set of singularities of L and jp be the index of L at p for any p ∈ zL. Then∑

p∈zL

jp = χ(M).
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Example 10. Let us construct some examples of sections with arbitrary index using complex
numbers. We assume that the indetermination of the logarithm is set on R−. Then we can
define for any half-integer j ∈ 1

2
Z the smooth function

Φj : C\R− −→ C
z 7−→ zj.

The logarithm is not defined everywhere on C, but the section defined by Lj(z) = arg(Φj(z))
(mod π) can be continuously extended on C\{0} for any half-integer j. This section has a
singularity of index j. Furthermore, notice that if j is not an integer, then the section cannot
be induced from a continuous vector field that vanishes only at 0. (See Figure 3.)

(a) j = −3/2 (b) j = 5/2

Figure 3: Examples of integral manifolds of sections of PT (C \ {0}) near half-integer index
singularities.

Proposition 11. Let (X, Y ) be a proto-line-field on (M, g). Given an isolated point p of
zX ∪ zY , we have indp(B(X, Y )) = 1

2
(indp(X) + indp(Y )).

Proof. Fix p ∈ M . Take C, Z and F : [0, 1] → TM as in the definition of the index of a
singularity. Then for any t ∈ [0, 1]

∠ [Z(C(t)), F (t)] = ∠ [Z(C(t)), X(C(t))] + ∠ [X(C(t)), F (t)]

= ∠ [Z(C(t)), X(C(t))] +
1

2
∠ [X(C(t)), Y (C(t))]

= ∠ [Z(C(t)), X(C(t))] +
1

2
(∠ [Z(C(t)), Y (C(t))] + ∠ [X(C(t)), Z(C(t))])

=
1

2
(∠ [Z(C(t)), X(C(t))] + ∠ [Z(C(t)), Y (C(t))]) ,

since ∠ [Z(C(t)), X(C(t))] = −∠ [X(C(t)), Z(C(t))]. Hence

indp(B(X, Y )) =
1

2
(indp(X) + indp(Y ))

by definition of index.

Definition 12. We say that a proto-line-field (X, Y ) has a hyperbolic singularity at a point
p ∈M if one of the two vector fields has a hyperbolic singularity and the other is non-vanishing
at p.
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Proposition 13. A generic proto-line-field has only hyperbolic singularities. In particular its
singularities have indices either 1/2 or −1/2.

Proof. As a straightforward consequence of Thom’s transversality theorem (see, for instance,
[9, p. 82]), for a generic (X, Y ) ∈ W1(M), both X and Y have only hyperbolic singularities,
and they do not vanish at the same point. This proves the first part of the statement, while
the second follows from Proposition 11.

3.3 Example: Lines of principal curvature on a triaxial ellipsoid

The study of lines of principal curvature on the triaxial ellipsoid is one of the most classical
examples of this theory, that dates back to the work of Monge on the subject (see [14, 18]).

Consider the triaxial ellipsoid E of equation

x2
1

a
+
x2

2

b
+
x2

3

c
= 1

where we assume that 0 < a < b < c. In order to introduce the coordinates on E used by Jacobi
in [12], consider the map from R/2πZ× R/2πZ onto E given by

x1 =

√
a

c− a
sinϕ

√
c sin2 ψ + b cos2 ψ − a,

x2 =
√
b cosϕ sinψ,

x3 =

√
c

c− a
cosψ

√
c− b sin2 ϕ− a cos2 ϕ,

where ϕ, ψ ∈ R/2πZ. Although this map is a cover of E by the torus, the pair (ϕ, ψ) is referred
to as ellipsoidal coordinates. Their main interest for us is that level sets of ϕ and ψ (i.e., curves
on which either ϕ or ψ is constant) are the two sets of lines of curvature on the ellipsoid, and the
umbilical points of the surface are situated at the points of coordinates (ϕ, ψ) = (±π/2,±π).

The ellipsoidal coordinates are used by Jacobi to express the first integral of motion along
geodesics on the ellipsoid. Indeed any geodesics on E can be described by an equation of the
type

α =

∫ √
b sin2 ϕ+ a cos2 ϕ√

c− b sin2 ϕ− a cos2 ϕ
√

(b− a) cos2 ϕ− β
dϕ

−
∫ √

c sin2 ψ + b cos2 ψ√
c sin2 ψ + b cos2 ψ − a

√
(c− b) sin2 ψ + β

dψ

where
β = (b− a) cos2 ϕ sin2 θ − (c− b) sin2 ψ cos2 θ

is also constant along geodesics, with θ measuring the angle between the geodesic and the level
set of ψ.

Among the geodesics, those which start at umbilical points of the ellipsoid satisfy very strong
properties that we can use to characterize lines of principal curvature as integral manifolds of an
explicitly identified proto-line-field. First, umbilics are the only points on the ellipsoid for which
the cut locus is reduced to a single point, the antipodal umbilic, and all geodesics between them
have the same length. Therefore, by any non-umbilical point of the ellipsoid pass exactly two
minimizing geodesics originating from the two pair of antipodal umbilics. On these geodesics,
the constants of motion α and β vanish.
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Consider two non-antipodal umbilics Ω1 and Ω2 and two geodesics t 7→ (ϕ1(t), ψ1(t))
and t 7→ (ϕ2(t), ψ2(t)) starting at Ω1 and Ω2 respectively and meeting at (ϕ1(t1), ψ1(t1)) =
(ϕ2(t2), ψ2(t2)). Since

(b− a) cos2 ϕ1(t1) sin2 θ1(t1)− (c− b) sin2 ψ1(t1) cos2 θ1(t1) = 0,

(b− a) cos2 ϕ2(t2) sin2 θ2(t2)− (c− b) sin2 ψ2(t2) cos2 θ2(t2) = 0,

ϕ1(t1) = ϕ2(t2),

ψ1(t1) = ψ2(t2),

we have
sin2 θ1(t1) = sin2 θ2(t2)

and thus
θ1(t1) = ±θ2(t2) (mod π).

Since a geodesic is uniquely defined by its tangent line, θ1 = θ2 (mod π) is excluded, and
we have that θ1(t1) = −θ2(t2) (mod π). By definition of θ1 and θ2, it follows that the level set
of ψ bisects the angle between the tangent lines of the two geodesics. We can write this fact in
terms of proto-line-fields.

Consider the Riemannian exponential exp on E and the length l of the geodesics connecting

two umbilical points. Let Y (x, y) = sin
(
π
l

√
x2 + y2

)(x
y

)
be a vector field on the closed disc

B̄R2(0, l) of radius l, vanishing at 0 and ∂BR2(0, l), and X1 = exp∗Ω1
Y , X2 = exp∗Ω2

Y be two
vector fields on E . By construction, for each i ∈ {1, 2}, Xi is tangent to the geodesics starting
from Ωi and vanishes at Ωi and −Ωi.

Then at the point (ϕ0, ψ0), Xi forms an angle θi (mod π), i ∈ {1, 2}, with the level set
{ψ = ψ0}. Since θ1 = −θ2 (mod π), the line bisecting (X1, X2) for the metric on E induced
from the Euclidean metric in R3 is either parallel or orthogonal to the level set {ψ = ψ0}.
In other words the line field bisecting the proto-line-field (X1, X2) is one of the line fields of
principal curvature, and the other is bisecting (−X1, X2). (See Figure 4.)

Figure 4: Integral lines of X1 and X2 and integral manifolds of (X1, X2), shown respectively in
blue, green and red.

4 Linear Euclidean case
Definition 14. Let (X, Y ) be a proto-line-field on the Euclidean plane. We say that (X, Y )
is a linear proto-line-field if one of the two vector fields is linear and the other one is constant.
We say that (X, Y ) is linear hyperbolic if it is linear and has a hyperbolic singularity at 0.
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Example 15. The three proto-line-fields presented in Example 3 are linear hyperbolic.

From now on, when considering a linear proto-line-field (X, Y ), we assume that X is linear
and Y is constant, that is, we consider (X, Y ) as an element of M2(R) × R2, where M2(R)
denotes the space of square 2-by-2 matrices.

Consider a linear proto-line-field L = (X, Y ). Along the rays {(r cos θ, r sin θ) | r > 0},
θ ∈ R, the direction of X and Y and thus of B(X, Y ) is constant. Hence we can define
φL : R/2πZ→ R/πZ a parametrization of the direction of B(X, Y ) (after fixing an orthonormal
basis basis) with

φL(θ) = ∠Eucl

[(
1
0

)
, B(L(cos θ, sin θ))

]
.

We call fixed point of L any point θ0 ∈ R/2πZ such that φL(θ0) = θ0 (mod π). A fixed point
θ0 is said to be attractive if dφL

dθ
(θ0) > 1, and repulsive if dφL

dθ
(θ0) < 1.

Theorem 16. Let X be a linear hyperbolic vector field on R2. Then there exists a set EX ⊂ R2

made of finitely many lines through the origin such that if Y ∈ R2\EX then the linear proto-
line-field L = (X, Y ) satisfies one of the following properties

1. φL has a unique fixed point, which is repulsive;

2. φL has three fixed points, all in the same half-plane. We can then identify two external
fixed points, which are repulsive, and one internal, which is attractive;

3. φL has three repulsive fixed points, which are not contained in a single half-plane.

Moreover, the set of linear hyperbolic proto-line-fields which do not fall in one of the stated
cases is given by{

L linear hyperbolic | ∃θ0 ∈ R/2πZ such that φL(θ0) = θ0 (mod π),
dφL
dθ

(θ0) = 1

}
and has codimension 1 inM2(R)× R2.

The behavior of φL in the three cases mentioned in the theorem is illustrated in Figure 5.
In order to show that this is the case we split the proof of Theorem 16 in several steps. We
start by proposing a suitable normal form for the vector field X.

Lemma 17. Let X be a linear vector field with a hyperbolic singularity. Then there exist
E,C > 0 and ϕ ∈ [0, 2π) such that, in some orthonormal basis, for every θ ∈ R,

C1 If the singularity is a focus, then X (E cos(θ), sin(θ)) = C

(
E cos(θ + ϕ)

sin(θ + ϕ)

)
, with E > 1.

C2 If the singularity is a node, then X (E cos(θ), sin(θ)) = C

(
E cos(θ − ϕ)

sin(θ + ϕ)

)
, with ϕ ∈

(−π/4, π/4) (mod π).

C3 If the singularity is a saddle, then X (E cos(θ), sin(θ)) = C

(
E cos(θ − ϕ)

sin(θ + ϕ)

)
, with ϕ ∈

(π/4, 3π/4) (mod π).

Proof. In each of the three cases, it is possible to find an orthonormal basis such that the matrix
of the linear vector field is of the form

A =

(
a b
c a

)
,
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−π θ10 π

π

(a) Case 1: θ1 is repulsive.
−π πθ1 θ2 θ3

π

0
(b) Case 2: θ1 and θ3 are repulsive, θ2 is attractive.

−π πθ1 θ2 θ3

π

0
(c) Case 3: θ1, θ2 and θ3 are repulsive.

Figure 5: Examples of φL in each of the three cases of Theorem 16. These specific examples cor-

respond to L =

((
3x
2y

)
,

(
1
1

))
, L =

((
4x
y

)
,

(
0
1

))
, and L =

((
x
−3y

)
,

(
0
1

))
respectively.

with b, c 6= 0. For d =
√
|bc| and E =

√
|b/c|, we get for ε = ±1 and some ϕ ∈ [0, 2π)

A =
√
a2 + d2

(
cosϕ εE sinϕ

1
E

sinϕ cosϕ

)
.

In case C1, we know that the discriminant of A is negative, so that 4ε sin2 ϕ < 0, hence
ε = −1. By further imposing E > 1, if necessary by changing the orientation of the basis and
by replacing ϕ by 2π − ϕ, we get the stated result.

In the two other cases, we know the discriminant of A to be positive, so that 4ε sin2 ϕ > 0,
hence ε = +1. Since detA = (a2 + d2)(cos2 ϕ− sin2 ϕ) = (a2 + d2) cos 2ϕ, we know that if the
singularity is a node then cos 2ϕ > 0, hence ϕ ∈ (−π/4, π/4) (mod π), and if the singularity is
a saddle then cos 2ϕ < 0, hence ϕ ∈ (π/4, 3π/4) (mod π).

In the following we assume an orthonormal basis of R2 as described in Lemma 17 has been
fixed.

Lemma 18. Let (X, Y ) be a linear proto-line-field. Let X be in one of the three normal forms
of Lemma 17 and α = ∠Eucl [( 1

0 ), Y ] ∈ R/2πZ. Consider F,G : R/2πZ → R/2πZ smooth and
such that

F (θ) = ∠Eucl

[(
1
0

)
,

(
E cos θ

sin θ

)]
, G(θ) = ∠Eucl

[(
1
0

)
, X(E cos θ, sin θ)

]
for every θ ∈ R/2πZ.

Then θ0 ∈ R/2πZ is a fixed point of φL if and only if there exists θ1 ∈ R/2πZ such that
θ0 = F (θ1) and 2F (θ1)−G(θ1) = α (mod 2π). Moreover θ0 is attractive if (2F −G)′(θ1) < 0,
and repulsive if (2F −G)′(θ1) > 0.
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Proof. By its definition, F is increasing and F ′ > 0. By definition of F , G and α, we have

φL ◦ F (θ) =
1

2
G(θ) +

1

2
α (mod π).

Fixed points of φL are then the images by F of the solutions θ of

1

2
G(θ) +

1

2
α = F (θ) (mod π)

that is,
2F (θ)−G(θ) = α (mod 2π), (1)

which proves the first part of the statement. Since F ′ > 0, the sign of φ′L − 1 = (φL − id)′ is
the sign of (φL ◦ F − F )′ = 1

2
(G− 2F )′, which proves the second part of the statement.

The idea is now to study the variations of 2F − G to show that, depending on the values
taken by α and the index of the singularity, we fall in one of the cases stated in Theorem 16.

Proposition 19. Under the assumptions of Theorem 16, if the singularity of X has index 1,
then there exist two constants Φ ∈ [−π, π) and κ > 0 such that the sign of (2F −G)′(θ) is the
sign of cos(2θ + Φ) + κ. If the singularity of X has index −1, then (2F −G)′ > 0 everywhere
on [−π, π).

The proof of the proposition can be found in Appendix A.
Before concluding the proof of Theorem 16, let us emphasize the following two properties

of F and G.

P1 ∀θ ∈ (−π, π), F (−θ) = −F (θ) and G(−θ) = −G(θ);

P2 ∀θ ∈ [−π, 0), F (θ + π)− F (θ) = π and G(θ + π)−G(θ) = π.

Proof of Theorem 16 when X has a singularity of index 1. Let κ > 0 and Φ ∈ [−π, π) be as in
Proposition 19.

First consider the case where κ ≥ 1. The derivative (2F−G)′ is then always positive, except
possibly at two points in the case κ = 1. Hence 2F −G is a bijection between [−π, π) and its
image. We claim that 2F−G (mod 2π) is a bijection between [−π, π) and [0, 2π). Equivalently
we have to show that the image of 2F − G is an interval of length 2π, which is immediate by
application of P2.

Thus we get the uniqueness in [−π, π) of the solution θ of 2F (θ) − G(θ) = α (mod 2π).
When (2F −G)′(θ) > 0 we deduce the repulsiveness from Lemma 18. In the case κ = 1 the set
EX is made of a single line through the origin, corresponding to the two values of α for which
(2F −G)′(θ) = 0 and 2F (θ)−G(θ) = α (mod 2π).

The case κ ∈ (0, 1) requires a further study of 2F −G. From Proposition 19, we know that
(2F−G)′(θ) has the same sign as cos(2θ+Φ)+κ. Let θ0 ∈ [0, π) be such that cos(2θ0+Φ)+κ = 0
and −2 sin(2θ0 + Φ) > 0, and let θ1 ∈ [θ0, θ0 + π) be such that cos(2θ1 + Φ) + κ = 0 and
−2 sin(2θ1 + Φ) < 0. Then cos(2θ + Φ) + κ > 0 on (θ0, θ1) and cos(2θ + Φ) + κ < 0 on
(θ1, π + θ0). Since (2F − G)′ is π-periodic, we let x = θ1 − θ0 ∈ (0, π) and up to replacing θ
by θ − θ0 (which corresponds to an orthonormal change of coordinates), we can assume that
(2F −G)′ is positive on (0, x) and negative on (x, π). (See Figure 6.)

We are interested in characterizing the solutions of 2F −G = α (mod 2π) or, equivalently,

(2F −G)− (2F −G)(−π) = α− (2F −G)(−π) (mod 2π).

Thus we can focus on the case 2F−G = β (mod 2π), for some β ∈ [−π, π) and (2F−G)(−π) =
0.

11



θ −π y − π x− π 0 y x π

(2F −G)′ 0 + 0 − 0 + 0 − 0

2F −G
(mod 2π)

0

π
< 2π

π

2π

0

< π

0

Figure 6: Qualitative behavior of 2F −G.

Since (2F −G)(0) = π, and since (2F −G)′ is negative on (x− π, 0), there exists y ∈ (0, x)
such that 2F −G is increasing on (−π, y − π) and (2F −G)(y) = π. Moreover

max
θ∈[0,π]

(2F −G)(θ) ≤ 2 max
θ∈[−π,0]

F (θ)− min
θ∈[−π,0]

G(θ).

Since F and G are increasing, maxθ∈[−π,0] F (θ) = π and minθ∈[−π,0]G(θ) = 0, so that

max
θ∈[0,π]

(2F −G)(θ) ≤ 2π.

Hence we know the behavior of the function 2F −G, that is,

• 2F −G is increasing on (−π, x− π), (2F −G)(−π) = 0, (2F −G)(x− π) ≤ 2π;

• 2F −G is decreasing on (x− π, 0), (2F −G)(0) = π;

• 2F − G is increasing on (0, x), and (2F − G)(y) = 2π, then (2F − G)(θ) ≤ 3π when
θ ∈ [y, x];

• 2F −G is decreasing on [x, 2π], (2F −G)(2π) = 2π.

We can see that if α 6∈ [0, (2F − G)(x)] ∪ [π, (2F − G)(−π + x)] + 2kπ, k ∈ Z, there is a
unique repulsive solution. If, instead, α ∈ (0, (2F − G)(x)) ∪ (π, (2F − G)(−π + x)) + 2kπ,
k ∈ Z, then there are three solutions, two repulsive and one attractive. Moreover, either the
three solutions are all contained in (y−π, y), with (2F−G)′ > 0 on the first and third solutions,
or they all are in [0, 2π)\[y − π, y] with (2F − G)′ > 0 on the first and second solutions (see
Figure 6), which corresponds to the case 2 of Theorem 16. Notice that the values of α which
are not covered by this discussion are 0, (2F −G)(x), π, (2F −G)(−π + x), which correspond
to an exceptional set EX made of two lines.

Proof of Theorem 16 when X has a singularity of index −1. In this case we have that G′ < 0
and F ′ > 0 on [−π, π). So 2F −G, as a function from [−π, π) to R is increasing and has total
variation 6π. Hence there exists y ∈ (−π, 0) such that (2F −G)− (2F −G)(−π) is a bijection
from (−π, y) onto (0, 2π); it exists x ∈ (y, π) such that (2F −G)− (2F −G)(−π) is a bijection
from (y, x) onto (2π, 4π); and again (2F − G) − (2F − G)(−π) is a bijection from (x, π) onto
(4π, 6π). Hence we have found that there are three solutions to (1).

Since (2F − G)(θ + π) = (2F − G)(θ) + π (mod 2π), we know that each half-line where
the line field is orthogonal to the line of the position is in the opposite direction to one of the
solutions of equation (1). By monotonicity of 2F − G, we then conclude that the three fixed
points cannot be in the same half-plane.

12



Theorem 16 motivates the following definition.

Definition 20. A linear hyperbolic proto-line-field L is said to be hyper-hyperbolic if for every
θ0 ∈ R such that φL(θ0) = θ0 (mod π), one has dφL

dθ
(θ0) 6= 1.

5 Linearization, blow-up and proof of Theorem 7
The goal of this section is to prove the topological equivalence of a hyper-hyperbolic proto-line-
field at a hyperbolic singularity and its linearization. As a direct consequence, we get a proof
of Theorem 7.

5.1 Blow-up

Proposition 21 below is the main technical step in the construction of the topological equiva-
lence. It provides a blow up of a hyperbolic singularity of a proto-line-field. The blow up sends
the singularity into a line and allows to describe locally the line field by means of a vector field
on a strip containing such line.

In what follows set Pol to be the Riemannian metric on R+ × R defined by Pol(r, θ) =
dr2 + r2dθ2 and recall that a Riemannian metric can always be diagonalized at a point by a
suitable choice of coordinates.

Proposition 21. Let L = (X, Y ) be a proto-line-field on (M, g) with a hyperbolic singularity
at p ∈M . Fix a system of coordinates (x, y) such that p = (0, 0), g(0, 0) = id and assume that
(x, y) defines a diffeomorphism between a neighborhood of p and the ball of center the origin
and radius δ, for some δ > 0 such that p is the only singularity of L on the ball. Assume that
Y (0, 0) 6= 0 and consider the linear proto-line-field L̄ = (DX(0, 0), Y (0, 0)).

For every (r, θ) ∈ (0, δ)× R let φL(r, θ) and φL̄(θ) in R/πZ be defined by

φL(r, θ) = ∠g

[(
1
0

)
, B(L(r cos θ, r sin θ))

]
and φL̄(θ) = ∠Eucl

[(
1
0

)
, B(L̄(r cos θ, r sin θ))

]
.

Then there exists a C1 function φ̃L : (−δ, δ)× R→ R such that for every (r, θ) ∈ (0, δ)× R

φL(r, θ) = φ̃L(r, θ) (mod π),

φ̃L(−r, θ) = φ̃L(r, θ)

φ̃L(r, θ + 4π) = φ̃L(r, θ) (mod 2π),

and such that the vector field P on (−δ, δ)× (R/4πZ) given by

P (r, θ) =

(
r cos(φ̃L(r, θ)− θ)
sin(φ̃L(r, θ)− θ)

)
(2)

is C1 and satisfies, for all (r, θ) ∈ (0, δ)× (R/4πZ),

∠Pol

[(
1
0

)
, P (r, θ)

]
= ∠g

[(
cos θ
sin θ

)
, B(L(r cos θ, r sin θ))

]
(mod π). (3)

The singularities of P in (−δ, δ)×(R/4πZ) are the points (0, θ0) such that φL̄(θ0) = θ0 (mod π).
Moreover, if θ0 is a repulsive (respectively, attractive) fixed point of φL̄ then the singularity (0, θ0)
of P is a saddle (respectively, a node).
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Proof. Since δ > 0 has been chosen small enough so that the only singularity of L in {x2 +y2 ≤
δ2} is in (0, 0), then φL : (0, δ)×R→ R/πZ can be lifted as a smooth function φ̃L : (0, δ)×R→
R.

Lemma 34, found in appendix B, states that the limits

φL(r, θ) −→
r→0

φL̄(θ),
∂φL
∂θ

(r, θ) −→
r→0

dφL̄
dθ

(θ), and
∂φL
∂r

(r, θ) −→
r→0

0,

hold true, thus proving that φ̃L admits a C1 extension on [0, δ)×R. We can then symmetrically
extend φ̃L onto (−δ, δ)×R by setting φ̃L(r, θ) = φ̃L(−r, θ) for any r ∈ (−δ, 0). By construction,
φ̃L is C1.

From this construction we deduce that P , defined as in (2), is C1 on (−δ, δ) × (R/4πZ)
and that it vanishes exclusively at the points (0, θ0), where φL̄(θ0) = θ0 (mod π). Its definition
further implies relation (3).

The differential of P at a point (r, θ) ∈ (−δ, δ)× (R/4πZ) is given by

DP (r, θ) =

cos
(
φ̃L − θ

)
+ r ∂φ̃L

∂r
sin
(
φ̃L − θ

)
r
(
∂φ̃L
∂θ
− 1
)

sin
(
φ̃L − θ

)
∂φ̃L
∂r

cos
(
φ̃L − θ

) (
∂φ̃L
∂θ
− 1
)

cos
(
φ̃L − θ

)  .

Thus, at a singularity (0, θ0), where φL̄(θ0) = θ0 (mod π), the differential of P is given by

DP (0, θ0) = cos
(
φ̃L(0, θ0)− θ0

)(1 0

0 dφ̃L̄
dθ
− 1

)
.

Since φL̄(θ0) = θ0 (mod π), moreover, we have cos
(
φ̃L(0, θ0)− θ0

)
= ±1. Therefore, if θ0 is

attractive then ∂φL̄
∂θ

> 1 and the singularity is a node, while if θ0 is repulsive then ∂φL̄
∂θ

> 1 and
the singularity is a saddle.

The proto-line-field L̄ in Proposition 21 plays the role of the linearization of L. This moti-
vates the following definition.

Definition 22. Let L = (X, Y ) be a proto-line-field on (M, g) with a singularity at p ∈ M
such that Y (p) 6= 0. Fix a system of coordinates (x, y) such that p = (0, 0), g(0, 0) = id. Then
we call linearization of L at p the linear proto-line-field L̄ = (DX(0, 0), Y (0, 0)).

Notice that the condition g(0, 0) = id defines uniquely L̄ up to an orthogonal transformation
of R2. In particular, the fact that L̄ satisfies one of the properties 1, 2 or 3 of Theorem 16
depends only on L.

5.2 Proof of Theorem 7

The proof of Theorem 7 is based on the following proposition.

Proposition 23. Let L and L′ be two proto-line-fields on (M, g) and (M ′, g′) respectively. Let p
and p′ be two hyperbolic singularities of L and L′ respectively. Let L̄ and L̄′ be the corresponding
linearizations and assume that one of the properties 1, 2 or 3 of Theorem 16 is satisfied both
by L̄ and L̄′. Then L and L′ are topologically equivalent at p and p′.

The proof of Proposition 23 is given in the next section. A first consequence of the propo-
sition is the following corollary.
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Corollary 24. Let L be a proto-line-field on (M, g). Let p be a hyperbolic singularity of L. Let
L̄ be the corresponding linearization. If L̄ is hyper-hyperbolic then L and L̄ are topologically
equivalent at p and 0.

Theorem 7 can now be obtained by combining Theorem 16, Proposition 23 and Thom’s
transversality theorem.

Proof of Theorem 7. As a consequence of Thom’s transversality theorem, generically with re-
spect to (X, Y ) in W1(M), every singularity of the proto-line-field L = (X, Y ) is hyperbolic
and its linearization is hyper-hyperbolic. Notice that the Lemon (respectively, Monstar, Star)
proto-line-field satisfies property 1 (respectively, 2, 3) of Theorem 16. It then follows from
Proposition 23 that all singularities of a generic proto-line-field are Darbouxian.

5.3 Construction of the topological equivalence

In order to prove Proposition 23, let us first focus on the following two lemmas, which yield
conditions for the existence of homeomorphisms preserving integral manifolds of proto-line-fields
around singularities.

Lemma 25. Let L and L′ be two proto-line-fields on (M, g) and (M ′, g′) respectively. Let p and
p′ be two hyperbolic singularities of L and L′ respectively. Let L̄ and L̄′ be the corresponding
linearizations and assume that one of the properties 1, 2 or 3 of Theorem 16 is satisfied both
by L̄ and L̄′. Let δ > 0 (respectively, δ′ > 0) and P (respectively, P ′) be the vector field on
(−δ, δ)× (R/4πZ) (respectively (−δ′, δ′)× (R/4πZ)) introduced in Proposition 21.

Then there exist two neighborhoods V and V ′ of {0} × (R/4πZ), invariant under the trans-
lation T : (r, θ) 7→ (r, θ+2π), and an homeomorphism h : V → V ′ such that h maps the integral
lines of P onto the integral lines of P ′ and h ◦ T = T ◦ h.

Proof. Choose η > 0 small enough so that P has no cycle nor integral curve with both ends
at a saddle in (−η, 0) × (R/4πZ). We are interested in studying the skeleton of P , i.e., the
union S of the set of zeros of P and integral curves in (−η, η) × (R/4πZ) that reach a saddle
singularity of P at one of its ends (or at both of them). The set ((−η, η) × (R/4πZ))\S has
exactly twice as many connected components as P has saddles in (−η, η)× (R/4πZ), and four
times as many as φL̄ has repulsive fixed points in R/2πZ. (See Figure 7.)

Let {Ci | i ∈ I} be the set of connected components of ((−η, η)× (R/4πZ))\S.
The border ∂C of a cell C is the union of a segment of the type {0} × [θ1, θ2], of an arc of

{±η} × (R/4πZ), and of two integral curves γ1, γ2 of P that join (0, θ1) and (0, θ2).
If there is no attractive fixed point of φL̄ in the interval (θ1, θ2) then we can find an integral

line γ of P that is arbitrarily close to γ1∪({0}×[θ1, θ2])∪γ2 (see Figure 8a). Then we can assume
that the vector field P is transverse to {±η}× (R/4πZ) between γ and γ1∪ ({0}× [θ1, θ2])∪γ2,
and that it is topologically equivalent on this subset to the parallel vector field(

1
0

)
on [0, 1]× [0, 1].

If there is an attractive fixed point of φL̄ in the interval (θ1, θ2) then we can find 0 < η1 < η
so that P is transverse to {±η1} × (R/4πZ) (see Figure 8b) and P is topologically equivalent
on the intersection of the cell with (−η1, η1)× (R/4πZ) to(

x
y

)
on [0, 1]× [0, 1].

Since L and L′ satisfy the same property 1, 2 or 3 of Theorem 16, their skeletons are
homeomorphic. Since the directions of P and P ′ are 2π-periodic, the construction above leads
to a topological equivalence between P and P ′ as in the statement of the lemma.
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(a) Case 1 (b) Case 2

(c) Case 3

Figure 7: Examples of P in each case of Theorem 16, where (−δ0, δ0)× (R/4πZ) is represented

as an annulus. The figures 7a, 7b and 7c where respectively computed with Y =

(
1
0

)
and

X =

(
x

10y/11

)
, X =

(
x
5y

)
, X =

(
x
−3y

)
, respectively.

Lemma 26. Let L be a proto-line-field on (M, g). Let p be a hyperbolic singularity of L.
Assume that the linearization L̄ of L at p is hyper-hyperbolic. Let delta > 0, the system of
coordinates (x, y), and the vector field P on (−δ, δ)× (R/4πZ) be defined as in Proposition 21.
Then the application

ψ : (0, δ)× (R/4πZ) −→ {0 < x2 + y2 < δ2}
(r, θ) 7−→ (x, y) = (r cos θ, r sin θ)

is a local diffeomorphism that maps the integral lines of P onto the integral manifolds of L.
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γ1

Ci

γ

0

(0, θ1)

(0, θ2)

η

γ2

(a) First case: there is no attrac-
tive fixed point of φL̄ between θ1

and θ2. The topological equiva-
lence is defined on a subset of Ci

bounded by the curve γ.

c

η0

γ1

Ci

γ2

(0, θ2)

(0, θ1)

(0, θ0)

(b) Second case: there is an attrac-
tive fixed point θ0 of φL̄ between
θ1 and θ2. For η small enough the
topological equivalence is defined
on the entire cell Ci.

Figure 8: Representation of the two types of connected components of ((−η, η)× (R/4πZ))\S.

Proof. The map ψ is a local diffeomorphism since the differential of ψ is given by

Dψ(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
.

Hence,

ψ∗(P (r, θ)) =

(
cos θ −r sin θ
sin θ r cos θ

)(
r cos(φ̃L(r, θ)− θ)
sin(φ̃L(r, θ)− θ)

)
=

(
r cos(φ̃L(r, θ))

r sin(φ̃L(r, θ))

)
.

Thus, the locally defined vector field ψ∗P is parallel to L, concluding the proof of the lemma.

We are now ready to prove Proposition 23.

Proof of Proposition 23. Let δ > 0 (respectively, δ′ > 0) and P (respectively, P ′) be the vector
field on (−δ, δ) × (R/4πZ) (respectively (−δ′, δ′) × (R/4πZ)) introduced in Proposition 21.
Consider V , V ′ and the homeomorphism h : V → V ′ introduced in Lemma 25. Finally,
following Lemma 26, let ψ and ψ′ be the local diffeomorphisms

ψ : (0, δ)× R/4πZ −→ Dp(δ) = {0 < x2 + y2 < δ2}
(r, θ) 7−→ (x, y) = (r cos θ, r sin θ)

and
ψ′ : (0, δ′)× R/4πZ −→ D′p′(δ

′) = {0 < x′2 + y′2 < δ′2}
(r, θ) 7−→ (x′, y′) = (r cos θ, r sin θ).
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The translation T : (r, θ) 7→ (r, θ+2π) induces a natural fiber bundle structure π : V → V/∼
(where (r, θ)∼(r′, θ′) if r = r′ and θ = θ′ (mod 2π)). Notice that V/∼ is a neighborhood of
{0}× (R/2πZ) in (−δ, δ)× (R/2πZ). Likewise we define π′ : V ′ → V ′/∼ ⊂ (−δ′, δ′)× (R/2πZ).

Since h ◦ T = T ◦ h, there exists a homeomorphism h̄ : V/∼ → V ′/∼ such that

V
h−→ V ′

↓π ↓π′

V/∼
h̄−→ V ′/∼

(4)

commutes.
Since P and P ′ do not have singularities on (0, δ)× (R/4πZ) and (0, δ′)× (R/4πZ) respec-

tively, then the line field spanned by each of them has no singularity and is 2π-periodic with
respect to the second variable. Therefore, one can identify π∗P and π′∗P ′ with two line fields
without singularities on (0, δ)×(R/2πZ) and (0, δ′)×(R/2πZ) respectively. The commutativity
of diagram (4) and Lemma 25 then show that h̄ is a homeomorphism between V/∼ and V ′/∼
that maps the integral manifolds of π∗P onto the integral manifolds of π′∗P ′.

Since ψ ◦ T = ψ on (0, δ)× (R/4πZ), there exists a diffeomorphism ψ̂ : V+/∼ → Dp(δ)\{p}
such that ψ̂ ◦ π = ψ, where V+ = V ∩ ((0, δ) × (R/4πZ)). In particular ψ̂(V+/∼) ∪ {p} is a
neighborhood of p. Lemma 26 implies that ψ̂−1 is a homeomorphism from ψ̂(V+/∼) onto V+/∼
that maps the integral manifolds of L onto the integral manifolds of π∗P . One can similarly
define ψ̂′ on V ′+/∼, which satisfies analogous properties.

The topological equivalence of L and L′ at p and p′ can therefore be proven through the
homeomorphism H : ψ̂(V+/∼) ∪ {p} → ψ̂′(V ′+/∼) ∪ {p} defined by H(p) = p′ and

H : ψ̂(V+/∼)
ψ̂−1

−→ V+/∼
h̄−→ V ′+/∼

ψ̂′−→ ψ̂′(V ′+/∼).

By construction, H is indeed a homeomorphism between a neighborhood of p and a neighbor-
hood of p′ which takes the integral manifolds of L onto those of L′.

6 The role of the metric g

6.1 What changes if we change the metric g

In this paper, the metric g is fixed from the beginning and the main results (Theorem 7,
Propositions 8 and 11) are independent of its choice. It is natural to ask which properties are
affected by the choice of g. The following example shows that a proto-line-field having a Lemon
singularity at a point p for a certain metric can have a Monstar singularity for another metric.
Notice however that the Star singularity cannot be transformed into a Lemon or Monstar
singularity by changing g, since they have different indices.

Example 27. For every λ > 0 consider the Riemannian metric gλ = dx2 + λ2dy2 on R2.

Let X(x, y) =

(
x
y

)
and Y (x, y) =

(
1
0

)
. Then the singularity of L = (X, Y ) at (0, 0)

can be a Lemon singularity or a Monstar singularity depending on λ. Indeed, let φX(θ) =

∠gλ

[(
1
0

)
, X(cos θ, sin θ)

]
and φL(θ) = ∠gλ

[(
1
0

)
, Bgλ(X(cos θ, sin θ), Y (cos θ, sin θ))

]
= 1

2
φX(θ).

Notice that θ = 0 is a fixed point of φX and let us compute the derivative of φX at 0.
Since

gλ

((
1
0

)
,

(
1
0

))
= 1, gλ

((
0
1

)
,

(
0
1

))
= λ2,
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one has

‖X(cos θ, sin θ)‖gλ cosφX(θ) = cos θ, λ‖X(cos θ, sin θ)‖gλ sinφX(θ) = sin θ.

Therefore, tanφX(θ) = λ tan θ and thus d
dθ
φX(0) = λ and d

dθ
φL(0) = λ/2.

If 0 < λ < 2, then θ = 0 is the only fixed point of φL and it is repulsive. If λ > 2, then
θ = 0 is an attractive fixed point of φL. (See Figure 9.)

(a) λ = 1 (b) λ = 2 (c) λ = 3

Figure 9: Integral manifolds of the proto-line-fields of Example 27 for three values of λ.

Notice that the bifurcation value λ = 2 corresponds to a case which is not hyper-hyperbolic.
Hence a proto-line-field that has a structurally stable singularity at a point p for a certain
metric, can have non-structurally stable singularities at p for another metric.

The next proposition shows that if we take a smooth curve γ passing through a hyperbolic
singularity of a proto-line-field L, then the angle between the line field associated with L and γ̇,
measured with respect to the metric g, makes a jump of π/2 at the singularity. Hence, changing
the metric and keeping the same proto-line-field, produces a new line field for which the angle
between γ̇ and itself, measured with respect to the new metric, jumps again of π/2.

Proposition 28. Let L be a proto-line-field on (M, g) with a hyperbolic singularity at p ∈M .
Let γ : (−1, 1)→M be a smooth curve on M such that γ(0) = p and γ̇(0) 6= 0. Then

lim
t→0+

∠g [γ̇(t), B(L(γ(t)))] = lim
t→0−

∠g [γ̇(t), B(L(γ(t)))] + π/2 (mod π).

Proof. Up to a change of parametrization, we can assume that γ is parametrized by arc length,
so that we can fix a system of coordinates (x, y) on a neighborhood of p = (0, 0) such that
g(0, 0) = id and γ coincides with the curve t 7→ (t, 0).

Then using the notation of Section 5.1, for t > 0 we have ∠g [γ̇(t), B(L(γ(t)))] = φL(t, 0)
and ∠g [γ̇(−t), B(L(γ(−t)))] = φL(t, π).

Since X has a hyperbolic singularity at p, we have that

lim
t→0+

X(t, 0)

‖X(t, 0)‖
= − lim

t→0+

X(−t, 0)

‖X(−t, 0)‖
.

By definition of L, we then have

lim
t→0+

φL(t, 0) = lim
t→0+

φL(t, π) + π/2 (mod π).
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Remark 29. We know from Proposition 8 that for every closed set K ⊂ M and every section
L of PT (M \K), for every Riemannian metric g on M , there exists a proto-line-field (X, Y )
such that B(X, Y ) = L on M \K.

Proposition 28 says that, even if K is made of isolated points, one cannot expect in addition
that the singularities of X and Y are hyperbolic, unless some compatibility condition between
L and g is satisfied at each point of K.

In particular, a line field associated with a proto-line-field with hyperbolic singularities for a
certain Riemannian metric is not in general associated with any proto-line-field with hyperbolic
singularities for a different Riemannian metric.

6.2 How to construct a Riemannian metric from a pair of vector fields

The procedure of defining a line field by using two vector fields and a Riemannian metric (or
a conformal structure) may look greedy and one may wonder if some alternative definition
involving less functional parameters can lead to similar characterizations of structurally stable
singularities. In this section we propose a way to get rid of the requirement of fixing a Rieman-
nian metric. This is done by constructing a Riemannian metric from two vector fields alone, at
least in the generic case.

Proposition 30. Let X, Y be two vector fields on M and set

Z = [X, Y ] , W 1 = [X, [X, Y ]] , W 2 = [Y, [X, Y ]] .

Generically with respect to (X, Y ) ∈ W 2(M), the vectors X(p), Y (p), Z(p),W 1(p),W 2(p) span
TpM for every p ∈M . In this case

‖V ‖ = min
{
‖u‖2 | u ∈ R5,

(
u1X + u2Y + u3Z + u4W

1 + u5W
2
)

(p) = V
}
, V ∈ TpM, (5)

is a norm on TpM depending smoothly on p and

gX,Y (V, V ′) =
1

2

(
‖V + V ′‖2 − ‖V ‖2 − ‖V ′‖2

)
, V, V ′ ∈ TpM,

defines a Riemannian metric on M .

Proof of Proposition 30. Up to reducing M to a coordinate chart, the set

F =

j2(X, Y )(p)

∣∣∣∣∣∣∣∣
p ∈M, X, Y vector fields on M
X(p) ∧ Y (p) = 0
[X, Y ](p) ∧X(p) = 0
[X, [X, Y ]] (p) ∧X(p) = 0


can be identified with a submanifold of codimension 3 of J2 (M,R4), the set of 2-jets of maps
from M to R4. By Thom’s transversality theorem, for a generic pair (X, Y ) ∈ W 2(M), there
exist no p ∈M such that j2(X, Y )(p) ∈ F . In particular, X(p), Y (p), Z(p),W 1(p),W 2(p) span
TpM for every p ∈M .

Fix now p ∈ M , V ∈ TpM and let us give an explicit expression of the vector u realizing
the minimum in (5), assuming that X(p), Y (p), Z(p),W 1(p),W 2(p) span TpM . Write in local
coordinates V = (V1, V2), X = (X1, X2), Y = (Y1, Y2), etc. Let

si =
(
Xi, Yi, Zi,W

1
i ,W

2
i

)
(p) ∈ R5, i ∈ {1, 2},

and r4 = |s1|2|s2|2 − 〈s1, s2〉2, which is positive because s1 and s2 cannot be colinear. Since
the two affine hyperplanes H1 = {u ∈ R5 | 〈u, s1〉 = V1} and H2 = {u ∈ R5 | 〈u, s2〉 = V2}
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are not parallel, minimizing ‖u‖2 in (5) comes down to finding the orthogonal projection uV of
0R5 onto H1 ∩H2. Since the orthogonal subspace to H1 ∩H2 is the span of s1 and s2, then the
point uV is characterized by the conditions

〈uV , s1〉 = V1, 〈uV , s2〉 = V2, uV = λ1s1 + λ2s2, λ1, λ2 ∈ R.

Hence (λ1, λ2) is the unique solution of the system{
λ1|s1|2 + λ2 〈s1, s2〉 = V1

λ1 〈s1, s2〉+ λ2|s2|2 = V2,
(6)

which leads to the characterization of uV as

uV =

(
V1|s2|2 − V2 〈s1, s2〉

r4

)
s1 +

(
V2|s1|2 − V1 〈s1, s2〉

r4

)
s2.

Since uV depends linearly on V , it is then easy to see that the norm ‖·‖ = ‖u·‖2 depends
smoothly on p. This norm derives from a scalar product since it verifies the parallelogram
law, as we are now going to show. Let V, V ′ ∈ TpM and uV , uV ′ be defined as above. Then
uV = λ1s1 + λ2s2 and uV ′ = λ′1s1 + λ′2s2, where (λ1, λ2) and (λ′1, λ

′
2) are the respective unique

solutions of system (6). Then, by linearity, we have that uV+V ′ = (λ1 +λ′1)s1 + (λ2 +λ′2)s2 and
uV−V ′ = (λ1 − λ′1)s1 + (λ2 − λ′2)s2. Thus

‖V ‖2 + ‖V ′‖2
= ‖uV ‖2

2 + ‖uV ′‖2
2 = ‖uV + uV ′‖2

2 + ‖uV − uV ′‖2
2 = ‖V + V ′‖2

+ ‖V − V ′‖2
.

Remark 31. Notice that for every compact K ⊂M the set of pairs (X, Y ) such that the metric
gX,Y introduced in Proposition 30 is well-defined on K is open in W2(M) and gX,Y depends
continuously on (X, Y ) on it. Hence, because of the continuity of the linearization of a proto-
line-field with respect to (X, Y ) and g (see Definition 22), we deduce the local structural stability
of Lemon, Monstar and Star singularities for proto-line-fields (X, Y ) with respect to the metric
gX,Y , in the sense that if at a singular point p the linearized system is satisfies condition 1, 2,
or 3 of Theorem 16, then the same property is satisfied by every small perturbation of (X, Y )
in the W2(M) topology.

In order to prove that generically with respect to (X, Y ) the singularities of the proto-line-
field (X, Y ) with respect to the metric gX,Y are Darbouxian, one should further prove that
non-Darbouxian singularities can be removed by small perturbations of (X, Y ). Although we
expect this result to be true (in the W2(M) topology and not in the W1(M) one as it was the
case in Theorem 7), this does not follow directly from the results in this paper.

A Proof of Proposition 19
Let us first compute F ′ and G′. By definition of F we have sin θ cosF (θ) = E cos θ sinF (θ)
from which we obtain

E cos2 θ sinF (θ)− F ′(θ) sin2 θ sinF (θ) = E2F ′(θ) cos2 θ sinF (θ)− E sin2 θ sinF (θ).

Then either sinF (θ) = 0, and then sin θ = 0, or
E cos2 θ − F ′(θ) sin2 θ = E2F ′(θ) cos2 θ − E sin2 θ.

By smoothness of F ,

F ′(θ) =
E

E2 cos2 θ + sin2 θ
, ∀θ ∈ [−π, π). (7)
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Concerning G, in the case of focuses, we immediately get that G(θ) = F (θ + ϕ). In the
other two cases, reasoning as for F , we get

G′(θ) =
E cos(2ϕ)

E2 cos2(θ − ϕ) + sin2(θ + ϕ)
, ∀θ ∈ [−π, π). (8)

We prove Proposition 19 by considering separately the three cases corresponding to the type
of singularity of X. The saddle case follows immediately from (7) and (8), since ϕ ∈ (π/4, 3π/4)
(mod π) implies that cos(2ϕ) < 0. The following two lemmas consider the focus and node case,
respectively.
Lemma 32. Let the singularity of X be a focus and set A =

√
5− 2 cos(2ϕ). Then Φ and κ

as in the statement of Proposition 19 exist and are characterized by{
A cos(Φ) = 2 cos(2ϕ)− 1
A sin(Φ) = 2 sin(2ϕ)

(9)

and
κ =

E2 + 1

A(E2 − 1)
.

Proof. Let Φ satisfy (9). By definition of Φ and A, the inequality

cos(2θ + Φ) > − E2 + 1

A(E2 − 1)

is equivalent to

(E2 − 1) cos(2θ)(2 cos(2ϕ)− 1)− 2(E2 − 1) sin(2θ) sin(2ϕ) + E2 + 1 > 0. (10)

By elementary trigonometric identities, condition (10) is equivalent to

2(E2 cos2(θ + ϕ) + sin2(θ + ϕ))− (E2 cos2 θ + sin2 θ) > 0,

which, in turns, is equivalent to

2F ′(θ)−G′(θ) =
2E

E2 cos2 θ + sin2 θ
− E

E2 cos2(θ + ϕ) + sin2(θ + ϕ)
> 0.

Lemma 33. Let the singularity of X be a node and set

A =

√
1

2
(5 + 6E2 + 5E4 − (3 + 10E2 + 3E4) cos 4ϕ).

Then Φ and κ as in the statement of Proposition 19 exist and are characterized by{
A cos(Φ) = (E2 − 1) cos(2ϕ)
A sin(Φ) = −2(E2 + 1) sin(2ϕ)

(11)

and
κ =

(E2 + 1)

A
(2− cos 2ϕ) .

Proof. In this case we have

2F ′(θ)−G′(θ) =
2E

E2 cos2 θ + sin2 θ
− E cos(2ϕ)

sin2(θ + ϕ) + E2 cos2(θ − ϕ)
,

and it follows by elementary trigonometric identities that 2F ′(θ)−G′(θ) > 0 if and only if

(E2 − 1) cos 2ϕ cos 2θ + 2(E2 + 1) sin 2ϕ sin 2θ + (1− E2)(2− cos 2ϕ) > 0.

By definition of A and letting Φ satisfy (11), this inequality is equivalent to

A cos(2θ + Φ) > −
(
2(E2 + 1) + (1− E2) cos 2ϕ

)
.
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B Extension of the direction at blown-up singularities
Lemma 34. Let L = (X, Y ) be a proto-line-field on (M, g) with a hyperbolic singularity at
p ∈ M . Fix a system of coordinates (x, y) such that p = (0, 0), g(0, 0) = id. Assume that
Y (0, 0) 6= 0 and consider the linear proto-line-field L̄ = (DX(0, 0), Y (0, 0)).

For every r > 0 small enough and θ ∈ R, let φL(r, θ) and φL̄(θ) in R/πZ be defined by

φL(r, θ) = ∠g

[(
1
0

)
, B(L)(r cos θ, r sin θ)

]
and φL̄(θ) = ∠Eucl

[(
1
0

)
, B(L̄)(r cos θ, r sin θ)

]
.

Then
φL(r, θ) −→

r→0
φL̄(θ),

∂φL
∂θ

(r, θ) −→
r→0

dφL̄
dθ

(θ), and
∂φL
∂r

(r, θ) −→
r→0

0.

Proof. Let X̄(x, y) = DX(0, 0)

(
x
y

)
and define φX(r, θ), φY (r, θ), φX̄(θ), and α in R/2πZ by

φX(r, θ) = ∠g

[(
1
0

)
, X(r cos θ, r sin θ)

]
, φX̄(θ) = ∠Eucl

[(
1
0

)
, X̄(cos θ, sin θ)

]
,

φY (r, θ) = ∠g

[(
1
0

)
, Y (r cos θ, r sin θ)

]
, α = ∠Eucl

[(
1
0

)
, Y (0, 0)

]
.

Since φL = 1
2
φX + 1

2
φY (mod π) and φL̄ = 1

2
φ̄X + 1

2
φ̄Y (mod π), we are left to prove that

φX(r, θ) −→
r→0

φX̄(θ),
∂φX
∂θ

(r, θ) −→
r→0

dφX̄
dθ

(θ),
∂φX
∂r

(r, θ) −→
r→0

0,

and
φY (r, θ) −→

r→0
α,

∂φY
∂θ

(r, θ) −→
r→0

0,
∂φY
∂r

(r, θ) −→
r→0

0.

We are going to give a proof for φX only, the one for φY being analogous.
Using the local coordinates (x, y), let us identify vector fields with their coordinate rep-

resentation. Denote by (e1, e2) an oriented orthonormal frame for g in a neighborhood of p

such that e1 is a positive multiple of
(

1
0

)
. Since g(0, 0) = id, then e1(0, 0) =

(
1
0

)
= ē1 and

e2(0, 0) =

(
0
1

)
= ē2. For i = 1, 2,

g(ei, X)− 〈ēi, X̄〉 = g(ei, X)− 〈ei, X〉+ 〈ei − ēi, X〉+ 〈ēi, X − X̄〉.

By an abuse of notation, we write in what follows X(r, θ) for X(r cos θ, r sin θ) and similarly
for e1, e2 and X̄. By definition of X̄, we have

∥∥(X − X̄)(r, θ)
∥∥

2
= O(r2), so that 〈ēi, X − X̄〉 =

O(r2). Likewise ‖ei(r, θ)− ēi‖2 = O(r) and ‖X(r, θ)‖2 = O(r), so that 〈ei − ēi, X〉 = O(r2).
Finally |g(W,Z) − 〈W,Z〉| ≤ ε(r)‖W‖2‖Z‖2, with ε(r) = O(r), for any pair of vector fields
W,Z, so that g(ei, X)− 〈ei, X〉 = O(r2).

In conclusion, g(ei, X)− 〈ēi, X̄〉 = O(r2). By definition of φX , we have

cos(φX)g(e2, X) = sin(φX)g(e1, X), (12)

which can be rewritten as

cos(φX)〈ē2, X̄〉+ cos(φX)(g(e2, X)− 〈ē2, X̄〉)
= sin(φX)〈ē1, X̄〉+ sin(φX)(g(e1, X)− 〈ē1, X̄〉). (13)
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Dividing equation (13) by r, we get

φX(r, θ) = φX̄(θ) +O(r). (14)

Regarding the partial derivatives of φX , by differentiating (12) we get

∂θφX (cosφXg(e1, X) + sinφXg(e2, X)) = cosφX∂θ(g(e2, X))− sinφX∂θ(g(e1, X)). (15)

We have
∂θ(g(ei, X)) = (∂θg)(ei, X) + g(∂θei, X) + g(ei, ∂θX).

By singularity of the polar parameterization, we have ∂θg = O(r) and ∂θei = O(r). Moreover,
g(ei, ∂θX)(r, θ) = 〈ēi, ∂θX̄(r, θ)〉+O(r2) = r〈ēi, ∂θX̄(1, θ)〉+O(r2).

By definition of φX , cosφXg(e1, X) + sinφXg(e2, X) = ‖X(r, θ)‖g = r
∥∥rX̄(1, θ)

∥∥
2

+ r.
Hence we deduce from (14) and (15) that

∂φX
∂θ

(r, θ) =
cosφX̄(θ)〈ē2, ∂θX̄(1, θ)〉 − sinφX̄(θ)〈ē2, ∂θX̄(1, θ)〉+O(r)∥∥X̄(1, θ)

∥∥
2

+O(r)
=
dφ̄X
dθ

(θ) +O(r).

Similarly, we have

∂rφX ‖X‖g = cosφX∂r(g(e2, X))− sinφX∂r(g(e1, X)).

Since

∂r(g(ei, X))(r, θ) = r〈ēi, X̄(1, θ)〉+O(r2)

and
cosφX̄〈ē2, X̄(1, θ)〉 − sinφX̄〈ē1, X̄(1, θ)〉 = 0,

we have

∂φX
∂r

=
cosφX∂r(g(e2, X))− sinφX∂r(g(e1, X))

‖X‖g
= O(r).
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