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Abstract

This paper will focus on evaluating the performance
of uni-modal face and speaker verification techniques
in the context of a mobile environment. This mobile en-
vironment (data captured on a mobile phone) presents
several challenging recording conditions including ad-
verse illumination, noisy background and variable mi-
crophone quality.

This data has been captured in the context of the

“Mobile Biometry” (MOBIO) European Project focus-
ing on biometric person recognition from portable de-
vices such as mobile phones. This project is focus-
ing on multiple aspects of biometric person recogni-
tion, ranging from research to development, and more
particularly on robust-to-illumination face localization
and verification, speaker verification in noisy environ-
ments, bi-modal fusion, unsupervised model adaptation
through time and scalability.

The MOBIO project collected a large audio-visual



database of synchronized face and speech samples
recorded from mobile phones across multiple sites in
Europe. The distribution of a first part of this database
is achieved through the organization of this evaluation:
the “Mobile Biometry (MOBIO) Face and Speaker Ver-
ification Evaluation”.

In total there were nine participants to the evaluation
who submitted a face recognition system and five par-
ticipants who submitted speaker recognition systems.

1. Introduction

Face and speaker recognition are both mature fields
of research. Face recognition has been explored since
the mid 1960’s [7]. Speaker recognition by humans has
been done since the invention by the first recording de-
vices, but automatic speaker recognition is a topic ex-
tensively investigated only since 1970 [12]. However,
these two fields have often been considered in isolation
to one another as very few joint databases exist.

For speaker recognition there is a regular evaluation
organised by National Institute of Standards and Tech-
nology (NIST) 1 called the NIST Speaker Recognition
Evaluation. NIST has been coordinating SRE since
1996 and since then over 50 research sites have partic-
ipated in the evaluations. The goal of this evaluation
series is to contribute to the direction of research efforts
and the calibration of technical capabilities of text inde-
pendent speaker recognition. The overarching objective
of the evaluations has always been to drive the technol-
ogy forward, to measure the state-of-the-art, and to find
the most promising algorithmic approaches.

Although there is no regular face recognition com-
petition, there have been several competitions and eval-
uations for face recognition. These include those led by
academic institutions, such as the 2004 ICPR Face Ver-
ification Competition [40], in addition to other major
evaluations such as the Face Recognition Grand Chal-
lenge [47] organised by NIST for face recognition.

The MOBIO Face and Speaker Verification Evalua-
tion provides the unique opportunity to analyse two ma-
ture biometrics side by side in a mobile environment.
The mobile environment offers challenging recording
conditions including adverse illumination, noisy back-
ground and noisy audio data. This evaluation is the first
planned of a series of evaluations and so only examines
uni-modal face and speaker verification techniques.

1http://www.nist.gov

2. Face and Speaker Verification

2.1. Face Verification

TO FINALIZE: Timo ?
The face is a biometric that humans use everyday

in passports, drivers licences and other identity cards.
However, performing automatic face recognition re-
mains a very challenging task.

Many techniques have been proposed to perform
face verification ranging from Principal Component
Analysis (PCA) [3] and Linear Discriminant Analy-
sis (LDA) [4] through to feature distribution modelling
techniques such as Hidden Markov Models (HMMs)
[5] and Gaussian Mixture Models (GMMs) [6]. Nor-
mally face recognition evaluations have been limited to
databases with highly controlled illumination and pose
variations.

Normally the face is controlled to be only frontal. At
other times the face can be considered in a set range
of pose such as 45 degress or 90 degress. However,
the natural range of poses and illumination effects are
rarely considered in these experiments. So far this has
been to the benefit of the face recognition community
because without such databases the individual effects
of these variations could not have been explored. How-
ever, given the current state of face recognition it is of
interest what occurs when there are these naturally oc-
curing pose and illumination problems, and so the MO-
BIO database aims to address some of these questions
by capturing a relatively clean database with few con-
straints.

2.2. Speaker Verification

The standard scheme of speaker verification is based
on feature extraction, followed by universal background
model (UBM - based on Gaussian Mixture Models -
GMM) from which the target speaker model is adapted
on speaker enrollment data. UBM and target speaker
model produce likelihoods for the test data. These
are subtracted in the logarithmic domain, the result-
ing score is normalized and compared to a threshold
to produce ”client/impostor” decision [52]. However
there have been proposed many other techniques rang-
ing from Support Vector Machines [15], Joint Fac-
tor Analysis [31], or other group based on Large Vo-
cabulary Continuous Speech Recognition systems [60],
prosodic and other high level based features for speaker
verification [59]. The main problem nowadays is cop-
ing with inter-session variability which includes com-
munication channel, acoustic environment, state of the
speaker (mood/health/stress), as well as language.



3. MOBIO Database and Evaluation Proto-
col

3.1. The MOBIO Database

The MOBIO database was captured to address sev-
eral issues in the field of face and speaker recognition.
These issues include:

• having consistent data over a period of time to
study the problem of model adaptation,

• having video captured in realistic settings with
people answering questions or talking and with
variable illumination and poses,

• having audio captured on a mobile platform with
varying degrees of noise.

The MOBIO database consists of two phases, only
one of which was used for this competition. The first
phase (PhaseI) of the MOBIO database was captured at
six separate sites in five different countries. These sites
are at the: University of Manchester (UMAN), Univer-
sity of Surrey (UNIS), Idiap Research Institute (IDIAP),
Brno University of Technology (BUT), University of
Avignon (LIA) and University of Oulu (UOULU). It
includes both native and non-native English speakers
(speaking only English).

The database is being acquired primarily on a mo-
bile phone. There were 160 participants in total who
were completed six sessions. In each session the par-
ticipants were asked to answer a set of questions which
were classified as : i) set responses, ii) read speech from
a paper, and ii) free speech. Each session consisted of
21 questions: 5 set response questions, 1 read speech
question and 15 free speech questions. More details can
be found below:

1. Set responses were given to the user. In total there
were five such questions and fake responses were
supplied to each user. The five questions asked
were:

(a) What is your name?

(b) What is your address?

(c) What is your birth date?

(d) What is your credit card number?

(e) What is your driver’s licence number?

and each question took approximately five seconds
to answer (although this varies between users).

2. Read speech was obtained from each user by
supplying the user with three sentences to read.
The sentences were the same for each session and
is reproduced below.

“I have signed the MOBIO consent form and
I understand that my biometric data is being
captured for a database that might be made
publicly available for research purposes.

I understand that I am solely responsible for the
content of my states and my behaviour.

I will ensure that when answering a question I do
not provide any personal information in response
to any question.”

3. Free speech was obtained from each user by
prompting the user with a random question. For
five of these questions the user was asked to speak
for five seconds and for ten questions the user was
asked to speak for ten seconds, this gives a total of
fifteen such questions. The user was again asked
to not provide personal information and it was
even suggested to not answer the question used to
prompt them provided they could speak for the re-
quired time.

The collected files are all named according to a par-
ticular filename structure. The filename structure is as
follows:

PersonID Recording ShotNum Conditions-
Channel.mp4

where,
PersonID = Gender + Institute + ID
Recording = Session
ShotNum = Speech Type + Shot
Conditions = Environment + Device
Channel = ChannelID

and
Institute: 0=Idiap, 1=Manchester, 2=Surrey, 3=Oulu,
4=Brno, 5=Avignon
Gender: m=Male, f=Female
ID: from 01 to 99 for each site
Session: ID from 01 to 99
Speech Type: p= set response, l= read speech, r= short
free speech or f= long free speech
Shot: ID from 01 to 99
Environment: i=Inside, o=Outside
Device: 0=Mobile, 1=Laptop
ChannelID: ID 0 to 9 (0 - first video/audio channel, 1 -



second video/audio channel)

3.2. The MOBIO Evaluation Protocol

The database is split into three distinct sets: one for
training, one for development and one for testing. The
splitting is that two sites are used in totality for one split,
this means that splits are completely separate with no
information regarding individuals or the conditions be-
ing shared between any of the three sets.

The training data set could be used in any way
deemed appropriate and all of the data was available
for use, see Table 1. Normally the training set would be
used to derive background models, for instance training
a world background model or an LDA sub-space.

Training Splits
Session number Usage Data to use
Session 1 Background training All data
Session 2 Background training All data
Session 3 Background training All data
Session 4 Background training All data
Session 5 Background training All data
Session 6 Background training All data

Table 1. Table describing the usage of
data for the Training split of the database.

The development data set had to be used to derive a
threshold that is then applied to the test data. However,
for this competition it was also available to derive fu-
sion parameters if the participants chose to do so. To
facilitate the use of the development set, the same pro-
tocol for enrolling and testing clients was used in the
development and test splits.

The test split was used to derive the final set of
scores. No parameters could be derived from this set,
with only the enrollment data for each client available
for use. To help ensure that this was the case the data
was encoded so that the filename gave no clue as to the
identity of the user.

The protocol for enrolling and testing were the same
for the the development split and the test split. The first
session is used to enrol the user but only the five set
response questions can be used for enrollment, see Ta-
ble 2. Testing is then conducted on each individual file
for sessions two to six (there are five sessions used for
development/testing) and only the free speech questions
are used for testing. This leads to five enrollment videos
for each user and 75 test client (positive sample) videos
for each user (15 from each session). When produc-
ing impostor scores all the other clients are used, for

instance if in total there were 50 clients then the other
49 clients would perform an impostor attack. For clar-
ity the enrollment procedure and testing procedure are
described again below.

• Enrollment data consists of the five set response
recordings from the first session of the particular
user.

• Testing data comes from the free speech record-
ings from every other session (the other five ses-
sions) of the users, each video is treated as a sepa-
rate test observation.

Development and Testing Splits
Session number Usage Data to use
Session 1 Enrollment Set questions only
Session 2 Test Scores Free speech only
Session 3 Test Scores Free speech only
Session 4 Test Scores Free speech only
Session 5 Test Scores Free speech only
Session 6 Test Scores Free speech only

Table 2. Table describing the usage of
data for the Testing and Development
splits of the database.

4. Face Verification Systems

4.1. Idiap research institute (IDIAP)

The Idiap Research Institute submitted two face
(video) recognition systems. The two used exactly the
same authentication method (using a mixture of Gaus-
sians to model a parts-based topology) and so differed
only in the way in which the faces were found in the
video sequence (the face detection method). The sys-
tems submitted by the Idiap Research Institute served
as baseline systems for the face (video) portion of the
competition.

4.1.1 Face Detection, Cropping and Normalisation

Two face detection systems were used:

System 1 is referred to as a frontal face detector as it
uses only a frontal face detector. This face detector is
based on an MCT-based classifier implemented in [54].
The outputs from this classifier were then modelled us-
ing a discriminative method.



System 2 is referred to as a multi-view face detector
as it uses a set of face detectors for different poses. Each
face detector is implemented as an MCT-based classi-
fiers, the outputs from this were then merged using a
normal set of heuristics. More details on this can be
found in [54].

From a set of detected faces in the video sequence
at most five (5) images were used. The images were
selected by retaining the detected frames with the high-
est score from the face detector; essentially treating the
score output from the detector as a confidence score.
The chosen images were assumed to be frontal and so
the eye positions were estimated from the detected face-
box, using these eye positions the images were resized
so that the eyes were aligned and resized to have 33
pixels between the two eyes. The face images were then
cropped to be a 64×80 image and then illumination nor-
malised by applying a histogram equalisation followed
by a Gaussian smoothing.

4.1.2 Feature Extraction

The feature extraction process is performed using the
discrete Cosine transform (DCT) and a parts based
topology. The parts based topology divides the face into
a set of blocks which are then considered to be separate
observations, from each observation (block) a feature
vector is then extracted. In our particular implementa-
tion the face was divided into 8× 8 blocks which over-
lapped in the horizontal and vertical directions by four
pixels. From each block DCT features were obtained by
keeping the 15 lowest frequency coefficients of the DCT
[]. Delta coefficients were then obtained to replace the
first three lowest frequency coefficients [] and then the x
and y position of the blocks were added as another fea-
ture. This resulted in feature vectors of 20 dimensions
from each block, and so from each image there were a
total of 221 blocks or observations obtained.

4.1.3 Enrolment

Before enrolling a user we derive a world or background
model Ωworld to describe what a face looks like in gen-
eral. This world model is formed using the data from
the training set (the features and faces are extracted
and chosen using the same procedure described above).
This background model was trained to have 500 mix-
ture components and is subsequently used to initialise
the enrollment of a new user and for scoring.

A new user is enrolled by performing background
model adaptation of GMMs [16]. The new user is en-
rolled by using mean only adaptation [50] as imple-
mented in [16] (with a factor of 0.5) from the world
model Ωworld. Thus for client i we obtain a new GMM

Ωi
client by adapting the world model Ωworld to match

the observations of the client; the client data comes
from the enrollment set and uses the same face detec-
tion and feature extraction procedures described above.

4.1.4 Authentication

Authentication an observation, x, is performed by scor-
ing against the claimed client model (Ωi

client) and the
world (Ωmodel) model. The two models, Ωi

client and
Ωworld, both produce a log-likelihood score which are
then combined using the log-likelihood ratio (LLR),

h(x) = ln(p(x | Ωi
client))− ln(p(x | Ωworld)), (1)

to produce a single score. Using a threshold tau this
score is then assigned to be a true access when h(x) ≥
τ and false otherwise.

4.1.5 Discussion of Results

The results obtained for the two face recognition sys-
tems (Frontal and Multi-view) are consistent across
both the development and test sets. A summary of the
HTERs can be found in Table 3 and it can be seen that
the system 2 (using the Idiap Multi-view face detection
system) performs slightly better than the system 1 (us-
ing the Idiap Frontal face detection system). This is
probably due to the fact that more faces are detected us-
ing the Multi-view face detector and so there are fewer
videos with no faces detected, and so they actually have
a chance to correctly verify the user.

Male Female Average
System 1 26.22% 26.64% 26.43%
System 2 25.45% 24.39% 24.92%

Table 3. Table presenting the final results
on the Test set for the MOBIO PhaseI
database.

4.2. Instituto Tecnológico de Informática (ITI)

The approach used for the present contest was based
on the work in [63, 65] and is similar to the approach
adopted for the ICB 2009 face video competition [49].
From the videos, both for enrolment and authentication,
a few key frames are selected based on a quality mea-
sure, in this case was based on the confidence of a face
not-face classifier. During authentication, for each se-
lected frame a score is obtained and the final score is a
combination of the scores for each of the frames.



4.2.1 Face Detection, Cropping and Normalisation

In order to avoid the high correlation between consec-
utive frames of a video, faces were detected every 0.1
seconds. Each detection was performed on the whole
image, in other words, there was no tracking involved.
For each video, only the first 2.4 seconds or the first 20
frames with a detected face were used, whichever was
shorter. The detected faces were cropped using the es-
timated eye coordinates and resized to 64×64 pixels.
Finally, the images were converted to gray-scale.

System 1 used the haarcascade frontalface alt2 de-
tection model that is included with the OpenCV library.
After the detection, a nearest neighbor classifier learnt
using [64] was employed to refine the scale and tilt of
the detected faces. This classifier consisted of 16 proto-
types of size 24×24 pixels, half for face and the other
half for not-face, projected onto a 16-dimensional dis-
criminative subspace. The confidence of this classifier
was also the one used for the selection of frames for
recognition.

System 2 used the face detector from the commercial
OmniPerception’s SDK. For this system, the scale and
tilt of the detected faces was not refined. The measure
used for selection of frames was the average of the Om-
niPerception’s SDK detection reliability and the confi-
dence of the same nearest neighbor face not-face classi-
fier from the previous system.

4.2.2 Feature Extraction

From each 64×64 face image, in total 784 local fea-
tures were extracted. Each local feature corresponds to
a 9×9 pixel patch extracted at overlapping positions ev-
ery 2 pixels. Each local feature is histogram equalized
and reduced to 32 dimensions using a PCA basis learnt
from all of the local features of 159 world set face im-
ages selected by detection confidence. For further de-
tail, refer to [63, 65].

4.2.3 Enrolment

For each enrolment video, the four detected faces with
highest confidence were selected. Features are ex-
tracted from all of the face images of a user and a kd-
tree structure is built in order to make the testing phase
faster.

For authentication a background model is also re-
quired. For this purpose 159 world set face images were
used, 3 per subject, selected based on detection confi-
dence. Again, a kd-tree structure is built to speedup the
test phase.

4.2.4 Authentication

For authentication, the score for a given input video x
against a client c is given by

p(c|x) =
I∑

i=1

wi
NNc,i

F
(2)

where the subindex i corresponds to one of the I frames
with highest detection confidence, F is the number of
local features extracted per face image, and NNc,i is
the number local features with a nearest neighbor from
the user model c when compared to the background
model. There is no score normalization involved in this
approach.

The only training performed was adjusting the num-
ber of frames used to compute the score I , and the
choice of the weightswi. Both of these parameters were
chosen to minimize the error in the development set.

System 1 used the 10 frames with highest detection
confidence, i.e. I = 10, and for the weights wi =
qi/

∑I
j=1 qj , where qi is the face detection confidence

of frame i.

System 2 used the 5 frames with highest detection
confidence, i.e. I = 5, and constant weights wi = 1/I .

4.2.5 Discussion of Results

The results obtained are basically what was being ex-
pected. From previous and the current research it has
been observed that this approach gives competitive re-
sults while also being quite computationally efficient.
There is a difference between the results of the devel-
opment and test sets, although it is not very significant,
which is normal since the parameters were not exhaus-
tively tuned to minimize error rate of the development
set.

Male Female Average
System 1 23.97% 19.95% 21.96%
System 2 16.92% 17.85% 17.38%

Table 4. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

4.3. NICTA (NICTA)

We used an off-the-shelf face detection algorithm in
conjunction with a modified form of the recently pro-



posed Multi-Region Histogram (MRH) face compari-
son method [56], which has shown relative robustness
to variabilities such as illumination and pose, while re-
taining scalability. MRH can be thought of as a hy-
brid between Hidden Markov Model and Gaussian Mix-
ture Model (GMM) based systems. A rudimentary at-
tempt was made to extend MRH from still-to-still to
video-to-video comparison. Given the size of the MO-
BIO dataset, this extension had to maintain scalability
while taking some advantage of information from mul-
tiple frames. Due to time restrictions, this initial attempt
does not exploit all the pertinent information provided
by image sequences.

System 1 used ...

System 2 used ...

4.3.1 Face Localisation and Size Normalisation

For face localisation, OpenCV’s Haar Feature-based
Cascade Classifier [67] is used to detect and localise
faces in each frame. The faces are then tracked over
multiple frames using Continuously Adaptive Mean
SHIFT Tracker [10] with colour histograms. Eyes are
located within the face using a Haar-based classifier. If
no eyes are located, their locations are approximated
based on the size of the localised face. The faces
are then resized and cropped such that the eyes are at
predefined locations with a 32-pixel inter-eye distance.
Two faces sizes are used: 96×96 pixels where possible,
falling back to 64×64 otherwise.

4.3.2 Signature Generation and Comparison

The MRH approach is motivated by the concept of ‘vi-
sual words’ (originally used in image categorisation)
and can briefly described as follows. A given face is di-
vided into several fixed and adjacent regions (e.g. 3×3)
that are further divided into small overlapping blocks
(with a size of 8×8 pixels). Each block is normalised to
have unit variance and is then represented by a DCT-
based low-dimensional feature vector. Each feature
vector is then represented as a high-dimensional proba-
bilistic histogram. Each entry in the histogram reflects
how well a particular feature vector represents each ‘vi-
sual word’, where the dictionary of visual words is in ef-
fect a set of prototype feature vectors. For each region,
the histograms of the underlying blocks are then aver-
aged. The ‘visual dictionary’ is a GMM with 1024 com-
ponents, built from low-dimensional features extracted
from training faces.

For faces with a size of 64×64 pixels, there are 9
regions arranged in a 3×3 layout. For faces with a size
of 96×96, 4 additional regions are used (for a total of
13), with the extra regions placed on top, bottom, left
and right of the original 3×3 layout.

In a still-to-still scenario, two faces are compared
through an L1-norm based distance between corre-
sponding histograms. For video-to-video comparison,
the histograms for a given region are first averaged
across the available frames, before using the still-to-still
approach. The number of frames used in each video se-
quence is heuristically capped at 32 frames in order to
reduce the computational effort. If a person has several
video sequences for enrolment, multiple signatures are
associated with their gallery profile.

For each probe video, its signature is compared to the
signatures in the gallery to give a raw similarity mea-
surement. Each raw measurement is normalised using
a set of cohort images from the training set, using the
approach described in [56]. If a person has more than
one video available in the gallery, the distance of the
probe video to each gallery video is calculated, and the
minimum distance is taken.

4.3.3 Discussion of Results

Two submissions were provided for the MOBIO chal-
lenge. The initial submission used only closely cropped
‘inner’ faces (i.e. the inner 3×3 regions), which ex-
cluded image areas susceptible to disguises, such as the
hair and chin. However, since such periphery informa-
tion can still give some discriminatory information, the
updated submission used 4 additional ‘outer’ face re-
gions.

The use of the outer regions considerably improved
the recognition performance of the female set (HTER
fell from 24.46 to 20.83 for the normalised results), but
not for the male set (HTER remained around 25). In-
tuitively, this makes sense as females more often have
hair surrounding their heads and uniquely identifiable
hair styles as compared to men. This finding has im-
plications for the use of gender specific weightings for
inner and outer regions, and also suggests that use of
specific gender information may improve performance.

The results further show that lower error rates were
achieved on the test sets when compared to the devel-
opment sets. The reason for this result is mainly due to
the OpenCV face detection system locating more faces
in the test set (with only 2% of videos with no detected
faces) compared to the development set (7% of videos
without faces). The training set was in between with
5% of videos without any detected faces.

Participation in this challenge has also highlighted



the importance of a fast and robust face localisation
method. Our group’s research has so far focused on face
recognition, rather than localisation. Since the MOBIO
challenge is a system evaluation, we used an off-the-
shelf open source face detector (from OpenCV) rather
than reinventing the wheel. This turned out to be a ma-
jor weakness on this particular dataset as the face detec-
tor seemed challenged by the pose, glasses, and spec-
ular reflection prevalent in the hand-held video record-
ings.

This initial attempt to extend the MRH face recog-
nition method from still-to-still to video-to-video com-
parison yielded some promising results with minimal
modifications. We aimed for scalability while trying to
take advantage of video data by averaging the informa-
tion over several frames to arrive at a single signature
per video. While this approach is very scalable, there
was a trade-off in discrimination accuracy.

Male Female Average
System 1 25.84% 25.10% 25.47%
System 1 (norm) 25.39% 24.46% 24.92%
System 2 26.17% 21.99% 24.08%
System 2 (norm) 25.43% 20.83% 23.13%

Table 5. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

4.4. Tecnologico de Monterrey, Mexico and Ari-
zona State University, USA (TEC-ASU)

The CUbiC-FVS (CUbiC-Face Verification System)
is based on a nearest neighbor approach to addressing
this problem. Despite the simplicity, nearest neighbor
approaches have shown strong consistency results in the
past. The possibility of extending this approach using
the kernel trick is another reason why we found this ap-
proach promising.

All of the components were coded in Matlab for clar-
ity and ease of inspection.

4.4.1 Face Detection, Cropping and Normalisation

From the training videos in the development set, it
was found that the videos were captured under vari-
able illumination conditions. We therefore used his-
togram equalization to scale the intensity values uni-
formly prior to feature extraction. A face detection al-
gorithm based on the mean-shift algorithm (similar to
[21]) was then used to localize a face in a given frame.
This algorithm is based on online selection of features

which are locally discriminative, and thus distinguish
between the object and the immediate background. The
bounding box detecting the face was then resized to
128 × 128 pixels in all the images so as to make the
dimensionality of the data points consistent.

4.4.2 Feature Extraction

We used the block based discrete cosine transform
(DCT) to derive facial features (similar to Ekenel et al.
[24]), since this feature is known to be robust to illumi-
nation changes. Each image was subdivided into 8 × 8
non-overlapping blocks and DCT was applied to each
block. The coefficients were ordered according to the
zig zag scan pattern. The first coefficient was rejected
for illumination normalization and the top 10 from the
remaining AC coefficients for each block were selected
to form local feature vectors. To further achieve robust-
ness against illumination, each local feature vector was
normalized to unit norm. Concatenating the features
from each block yielded the global feature vector for
the entire image. The original image had a resolution of
128 × 128 and thus the dimensionality of the extracted
feature vector was 2560. Other features such as Lo-
cal Binary Patterns (LBP) and Scale Invariant Feature
Transform (SIFT) were also tried, but were not found to
perform as well as the block-based DCT feature.

4.4.3 Enrolment

Each video stream was sliced into images and the auto-
mated face detection algorithm (described above) was
applied to detect a face in each image. The detected
face was captured and returned in a bounding box sur-
rounding the face. If multiple faces were detected, the
areas of each of the bounding boxes were computed and
only the face corresponding to the largest box area was
considered in this work. We will work on removing this
limitation in future work. Images from all the training
videos of each subject (as described in the protocols of
the challenge) were used for enrolment. For each user
Ui, all the feature vectors extracted from the respective
video stream were assembled into a training matrix Mi,
which was used to train the classifier (described in the
next subsection).

4.4.4 Authentication

Given a test vector T , the claim k, and the total number
of users enrolled, N , we have to decide whether to ac-
cept or reject the claim. Our authentication scheme is
based on distance computations using a nearest neigh-
bor classifier (similar to Das [22]). We compute two
distance measures, Dtrue and Dimp, as follows. Dtrue



is computed as the minimum distance of T from the fea-
ture vectors of matrix Mk of the claimed identity k, and
Dimp is computed as the minimum distance of T from
the feature vectors of all matrices other than Mk.

Dtrue = min(Distki
) (3)

where Distki
= (T − Vki

)2, for i = 1, 2, ..., x, Vki

being the feature vectors in matrix Mk. Similarly,

Dimp = min(Distji) (4)

where Distji
= (T − Vji

)2, for j = 1, 2, ..., N and
j not equal to k, i = 1, 2....x, Vji being the feature
vectors of matrix Mj .

From these two measures, a score is computed as fol-
lows:

R =
Dtrue

Dimp
(5)

If all the test users are enrolled in the system, then R
can be shown to be less than 1 for a client and greater
than 1 for an imposter. Thus, the value ofR can be used
to decide whether the claim has to be accepted or not.
The scores were scaled so that clients have a positive
score and imposters have a negative score.

4.4.5 Discussion of Results

In the development phase, there were 27 male subjects
and 20 female subjects. This resulted in a total of 2025
test videos for males and 1500 test videos for females.
Each test video was verified against all possible claims.
Our algorithm yielded an EER of 38.62 for males and
41.53 for females on the development data. In the test
phase, there were 39 male users and and 22 female
users, resulting in 2925 test videos for males and 1650
test videos for females. Our algorithm yielded an EER
of 31.36 for males and 29.07 for females, on this test
set.

In future work, we plan to extend this approach using
kernel functions, and study the performance of different
kernel-based feature spaces for video-based face verifi-
cation.

Male Female Average
System 1 31.36% 29.08% 30.22%

Table 6. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

4.5. InstitutionName (UNIS)

Two algorithms have been tested using the compe-
tition protocol. The first system, (UNIS Video 1 and
UNIS Video 1(Update) ), based on the linear discrim-
inant analysis of Multiscale Local Binary Pattern His-
togram (MLBPH) []. The second system, (UNIS Video
2 and UNIS Video 2(Update) ), is a heterogeneous,
feature level fusion-based system combining MLBPH
and Multiscale Local Phase Quantisation Histogram
(MLPQH) []. In order to eliminates the score varia-
tion caused by condition changes, test-normalisation (T-
norm) is applied to both systems.

System 1 used ...

System 2 used ...

System 3 used ...

System 4 used ...

4.5.1 Face Detection, Cropping and Normalisation

In each video, face images are detected by the Om-
niPerception face detector. The detected face is then
aligned geometrically and normalised photometrically
by the Preprocessing sequence approach (PS) [62].

4.5.2 Feature Extraction

In our systems, MLBP and MLPQ images are ex-
tracted from each of the face image. For MLBP
framework[18], Local Binary Pattern operators with 10
different radii from 1 to 10 are applied to the nor-
malised image for multiresolution representation. For
MLPQ framework[17], Local Phase Quantisation op-
erators with 8 different sizes are convolved with the
normalised image. The resulting pattern images are
cropped to the same size and divided into 25 non-
overlapping sub-regions. The regional pattern his-
togram for each scale is then computed. By concatenat-
ing these histograms at different scales and then project-
ing to the Linear Discriminant Analysis(LDA) space,
the multiresolution regional discriminative face descrip-
tor is generated for the face matching.

In the updated systems, the XM2VTS frontal face
images with Configuration I protocol[41] are used to
train the LDA transformation matrix, while the training
set of the MOBIO dataset is used to learn the transfor-
mation matrix in our basic system.



4.5.3 Enrolment

In the enrolment stage, the updated systems choose the
best fifteen frontal face images in each video, based on
the confidence of the face detector, and the discrimina-
tive face descriptors are extracted as the enrolled feature
set. In contrast to the updated system, our basic systems
(UNIS Video 1 and 2) only extracts one face image for
each video.

4.5.4 Authentication

In each probe video, fifteen face images are chosen
in our updated systems while only one face image is
chosen in our basic systems. Then the discriminative
face descriptors, MLBPH and MLPQH, are extracted
for each face image. The similarity measurement of
each face image in probe video and each face image
of the enrolled subject is obtained by summing the val-
ues of a similarity measure, i.e. normalised correla-
tion, of the regional discriminative descriptors together.
In order to be robust in the environmental changes, 30
face images of each subject in the provided training set
are used as a cohort. Then the maximum similarity
score between the enrolled subject and probe face im-
ages, and the maximum similarity scores between co-
hort subjects and probe face images are computed for
Test-normalisation(T-norm). The normalised score is
used as the final video matching score for UNIS Video
1. In UNIS Video 2, the average of the normalised
scores of MLPQH and MLBPH is regarded as the final
video matching score. In contrast to the updated sys-
tems, only one face image in the video achieving 100%
face detector confidence is chosen for video matching.
The matching score is regarded as imposter score if the
selection requirement is not met.

In order to evaluate the merit of the post-processing,
the systems without score normalisation are also re-
ported.

4.5.5 Discussion of Results

The performance of our Updated Systems without score
normalisation, (UNIS Video 1 and 2 Update), is signif-
icantly better than that of our basic systems. In other
words, systems fusing more face image samples can
improve the system accuracy, however the computa-
tion cost will increase. Therefore, there is a trade-off
between the computation cost and accuracy. With the
score normalisation, the performance of our systems is
improved. One of the reasons for that improvement is
that the score normalisation eliminates the score varia-
tion caused by condition changes.

Male Female Average
System 1 24.78% 28.03% 26.40%
System 1 (norm) 25.79% 28.67% 27.23%
System 2 25.92% 28.68% 27.30%
System 2 (norm) 27.32% 28.96% 28.14%
System 3 12.04% 14.66% 13.35%
System 3 (norm) 10.35% 13.13% 11.74%
System 4 11.78% 14.04% 12.91%
System 4 (norm) 9.75% 12.07% 10.91%

Table 7. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

4.6. Visidon Ltd (VISIDON)

Visidon face identification and verification system
is originally designed for embedded usage, in order to
quickly recognize persons in still images using a mobile
phone, for example [1]. Thanks to a real-time frame
performance, additional information provided by video
can be easily utilized to improve the accuracy.

Both object detector (used for face and facial feature
detection) and person recognition modules are based on
our patented technology. The operation will be covered
in the following subsections.

4.6.1 Face Detection, Cropping and Normalisation

Decompressed raw frames were converted into gray
scales images, and all operations were performed on
these. Subsequent frames do not provide much addi-
tional information, and thus we sampled frames in few
seconds’ intervals only.

A next step after pre-processing was to locate a face
in the input frame. For this, we used our own multiview
face detector, capable of detecting faces in all orienta-
tions starting from 20x20 pixels. If the detector found
more than one face per frame, only the most reliable de-
tection was considered. In the case of missed face, the
frame was simply skipped.

After locating a face, a geometric correction (simi-
larity transform) was performed to fix the eye locations.
To support this, our object detector was run to locate
eyes. The face size used for recognition was 80 x 100
pixels. Both face and eye detection were performed
on default parameters, without utilizing any temporal
tracking. Interesting note for this use case is that most
of the faces were acquired from downwards. It is likely
that retraining the detectors for this kind of conditions
would further improve the detection performance.

Effects of varying illumination were then reduced



from geometrically normalized face images. Inspired
by [61], a simple bandpass filtering tuned for typical
face and fast processing was used for the purpose.

4.6.2 Feature Extraction

The features are formed utilizing local filters, where
each pixel location in a normalized image is associated
to a coefficient mask. Using the mask, neighboring pix-
els affect to the obtained value with predefined weights.
This extracts both fine and mid scale structures (depend-
ing on the weights and size of the neighborhood) to the
feature values extracted. Ignoring largest scales enables
recognition of also partially occluded faces. Finally, by
extracting statistics of these values, a feature vector of
4608 bytes in length is obtained for one face.

4.6.3 Enrolment

We obtain several candidate faces for one video (one
face per each frame considered). As we already skipped
most of the frames, these faces now contain more prob-
ably complementing information. Here we simply add
each successfully processed frame to current individ-
ual’s codebook, given that maximum amount of images
is not exceeded.

4.6.4 Authentication

Input videos are again sampled on few seconds’ inter-
val. Each frame under consideration from current video
is searched against candidate person data. Measure-
ments from all the processed frames are combined to
produce a final probability related value whether the
person is who he or she claims to be.

All training of the world model and tuning of the sys-
tem parameters are done before with data that is inde-
pendent from the whole MOBIO database. Each com-
parison is performed independently, as if there were no
other persons in a test set or in a query set. No score
normalization is performed.

4.6.5 Discussion of Results

Using videos for verification improve the performance
compared to still images, although the methods were
used in very straightforward manner. The temporal in-
formation is limited in using number of frames from one
video.

A whole system is designed and implemented as a
real-time application running on a mobile phone. All
the algorithms are fully optimized and implemented
with C language (for portability) using fixed point com-
putation. Running the recognition on a PC is thus very

fast, for example, one core of Intel Core2 Duo 2.66GHz
processor is capable of handling 100 frames per second
when each is compared against 1000 candidates. The
fast operation enables also better performance, since
more query and prototype faces can be processed in a
reasonable time.

Although there were a huge number of frames in
MOBIO, the number of individuals in different tests
was rather small. For this reason, the results vary be-
tween different sets and genders. A failure in enrolling
just one individual drops the performance of positive
verifications clearly, which can be seen from the fig-
ures if the error rate is otherwise low. For example, a
development set for females contain 36300 video com-
parisons, whereas the number of individuals is only 22,
and a total failure in enrolling just one of them shifts
ROC curve almost 5 percentage units. Difficult indi-
viduals have a similar effect on results. Although faces
of different persons are not in general much more dif-
ficult to recognize - expect against look-alikes - differ-
ent persons tend to hold their device differently during
the verification process. Our recognition method is de-
signed for rather frontal faces, and we are not perform-
ing any 3D geometric normalization. Face pointing sig-
nificantly upwards from the camera causes problems for
recognition.

Since the experiments reported here, we have imple-
mented a version that tracks the faces instead of han-
dling these independently.

Male Female Average
System 1 10.30% 14.95% 12.62%

Table 8. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

4.7. University of Nottingham (UON)

Our method bases on 4 different facial descriptors,
2 different subspace learning methods and Radial Basis
Function SVM for verification. Four facial descriptors
are Raw Image Intensity, Local Binary Patterns, Gabor
Filters and Local Gabor Binary Patterns. Two subspace
learning methods are Whitened Principal Component
Analysis and One Shot Linear Discriminant Analysis.
Verification is performed using RBF SVM.

System 1 used ...

System 2 used ...



4.7.1 Face Detection, Cropping and Normalisation

We used OpenCV’s Haar Feature-based Cascade Clas-
sifier [66] with the following parameters: cvHaarDe-
tectObjects(gray, cascade, storage, scale factor=1.1,
min neighbor=3, flags=0, min size=cvSize(150, 150)).
Then, PCA is used to learn the face subspace and all
regions which are far from that subspace have been re-
moved. Finally, the region containing the largest per-
cent of skin color has been selected as a single face re-
gion candidate. Within that region, we detect the eyes
and normalize the face so that two eyes are at two spe-
cific locations and resize the face to 64×64. The eye
locator works as follows. Eye region is defined as the
upper half of the face image and eye detection works
on the left and right half of the eye region respectively
for the left and right eyes. Firstly it detects rotationally
symmetric (circular) objects using generalized symme-
try transform. Edges are detected using Canny edge de-
tection and all edge points are paired to vote the mid-
point of their connection for potential symmetry cen-
ters with symmetry scores. The symmetry scores are
contributed by the symmetry and magnitude of image
gradients at the pair of edge points. An expected size
of eyes or irises is also compared with the actual dis-
tance between the pair of edge points to scale the score.
The original image is therefore transformed to a sym-
metry map and the point in the map with the maximal
symmetry score is selected as the position of eye can-
didates. Next a circular shape template for iris is used
to locate the iris in the neighborhood of eye candidates
by an exhaustive search or random search. With prop-
erly defined energies based on the edge map, the sym-
metry map and grayscale values of the original image,
the search explores the iris state space to find the state
where the energy is minimized. The detector finally out-
puts the coordinates and size (radius) of the iris.

4.7.2 Feature Extraction

We used 4 different features: Raw Image Intensity (IN),
Local Binary Patterns (LBP), Gabor Filters (Gabor),
and Local Gabor Binary Patterns (LGBP).

Raw Image Intensity is simply the grey intensity of
each pixel. The length of the feature vector is the num-
ber of pixels, 4096 (64×64).

LBP was first applied for Face Recognition in [2]
with very promising results. In our implementation, the
face is divided into non-overlapping 8×8 blocks and
LBP histograms are extracted in all blocks to form the
feature vector whose length is 3,776 (59× 8× 8).

Gabor Filter with 5 scales and 8 orientations are con-
voluted at different pixels selected uniformly with the
downsampling rate of 4×4. The length of the feature

vector is 10,240 (5× 8× 16× 16).
The last type of feature is LGBP [70, 58, 29]. There

are total of 151,040 (5×8×59×16×16) LGBP features.
All features are sorted in descending order of their vari-
ances. The first 15,000 features are selected to form the
feature vector.

4.7.3 Enrolment

Locally Linear Embedding (LLE) [55] is used to select
best frames from videos. We apply LLE for all frames
to reduce dimension then use K-clustering to select best
5 frames from each video.

4.7.4 Authentication

Whitened PCA (WPCA) and One-shot LDA (OS-LDA)
[69] are used to compute the similarity between two in-
put faces. Four features and two subspace methods form
a total of 8 similarity scores which can be considered as
a 8-D vector. This 8-D vector is passed to RBF SVM
for verification.

RBF-SVM parameters (c and γ) are trained using
cross validation using LIBSVM library. Training and
testing sets are splited so that they don’t share any com-
mon subject. In other words, any subject appears in
either training or testing set, exclusively. If training
set and testing sets share common subjects, over-fitting
happens as shown in the results. The final score is a
number between 0 and 1 which is the probability of two
input faces matching.

We don’t perform any score normalization method.

4.7.5 Discussion of Results

Male Female Average
System 1 49.21% 48.49% 48.85%
System 2 29.80% 23.89% 26.85%

Table 9. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

4.8. National Taiwan University (NTU)

4.8.1 Face Detection, Cropping and Normalization

The first step of our system detected faces, and an ad-
ditional step was applied to reject false face detections.
The following gives the detailed steps:



1. For every frame, we detected faces using the
OPENCV face detection function with a relatively
high threshold for the first run. Specifically, a loca-
tion in a video frame was regarded as a face only
if more than 40 face rectangles were returned by
the face detection algorithm. If the first run failed
to detect any face, then the second run of face de-
tection with a lower threshold was performed. Our
system performed at most 3 face detection runs.
The thresholds for the 3 runs were 40,20,5 face
rectangles, respectively. This step tends to obtain
faces of good quality, if possible.

2. We detected at most one face in each video frame.
For each face detected by the OPENCV face detec-
tion function, we applied the Active Shape Model
(ASM) to locate fiducial points on this face. If
ASM failed to locate facial points on this face, this
face was ignored.

3. Then we performed the geometric normalization
of the face image. We first calculated the eye cen-
ters, and rotated the face to make the line passing
through eye centers horizontal. This step corrects
the in-plane rotation.

4. Then we calculated the mouth center, and the (hor-
izontal) distance between eye centers. Assume it
equals to x.

5. We also calculated the vertical distance between
the center of eyes and mouth center. Assume it
equals to y.

6. We defined the face borders:

dL = 0.5x
dR = 0.5x
dU = 0.6y
dB = 0.7y,

where dL is the horizontal distance from the left
border to right eye, dR is the horizontal distance
from the right border to left eye, dT is the verti-
cal distance from the upper border to the center of
eyes, and dB is the vertical distance from the lower
border to the mouth center.

7. We cropped the face from the image based on the
face borders, and resized the cropped face into
80x100 pixels. The ratio between the width and
the height typically changes after this resizing. In
our experience, this step corrects the out-of-plane
rotation to some extend, and it works well when

face are under large out-of-plane rotation. Facial
images were converted to 8-bit grayscale images.
To alleviate the impacts made by illumination vari-
ations, all samples were processed to have mean
128 and variance 25.

8. To reduce the false face detection, we employed a
Support Vector Machine (SVM) to classify faces
and non-faces. We run our system on photos from
the World-Wide Web, and collected false face de-
tection examples as the negative examples of the
face-nonface SVM.

9. To guarantee that the detected faces were well
aligned, an additional PCA-based classifier that
classifies a face into a well aligned face and a
poorly align face was also employed.

4.8.2 Feature Extraction

We applied the Probabilistic Facial Trait Code (PFTC),
which is an extension of our previous work, the Facial
Trait Code (FTC) [33] . FTC is a component based ap-
proach. It defines the N most discriminative local fa-
cial features on human faces. For each local feature,
some prominent patterns are defined and symbolized
for facial coding. The original version of FTC encodes
a facial image into a codeword composed of N inte-
gers. Each integer represents a pattern for a local fea-
ture. Unlike FTC, The PFTC encodes a facial image
into a codeword composed of N probability distribu-
tions. These distributions gives more information on
similarity and dissimilarity between a local facial im-
age patch and prominent patch patterns, and the PFTC
is argued to outperform the original FTC. The associat-
ing study is currently under review. In this competition,
we used 100 local facial features, each had exactly 100
patterns, and it made up a feature vector of 10000 real
numbers for each face.

4.8.3 Enrolment

We collected at most 10 faces (in 10 frames) from an
enrollment video. Each collected face was encoded into
a gallery codeword using PFTC.

4.8.4 Authentication

We collected at most 5 faces from a testing video. Each
collected face was encoded into a probe codeword using
PFTC. Then, this probe codeword was matched against
known gallery codewords. Assume an enrolled identity
has M faces, and a test video contains N faces detected
by our system. The distances between all the enrolled



face and test face pairs were calculated, resulting a M -
by-N distance matrix. The verification score was the
maximum score among these M · N scores. We did
not perform the gallery normalization on scores of each
testing data.

4.8.5 Discussion of Results

It took us three man-months to develop and modify our
system for this evaluation. The training data for our
algorithm consisted faces collected from the world-set
provided by the MOBIO contest, a subset of FERET,
a subset of FRGC 2.0, and faces collected in our labo-
ratory using ordinary web cameras. The training data
included about 5000 facial images from 500 different
identities. The training of our algorithm (PFTC) using
these data took about 3 full days on one PC, and it re-
quired roughly 1.8GB memory at most.

For enrollment, we collected 10 faces from 10
frames in a video. The two frames in which faces
were collected are parted by 10 frames at least. It took
roughly a second to enroll a face, so it took roughly 15
seconds for the enrollment of one user. The approxi-
mate processing time for the verification of one video
file against one user was roughly 0.3 second. This pro-
cess required 50KB for each face. Assume we collect 5
faces in a testing video, and a user has 50 faces enrolled
in the database, then the memory requirement for the
verification of one video file against one user is roughly
2.68MB.

It seems that we achieved average performance in
this evaluation. Our performance can be improved if
we collect more faces from a single video sequence.
A video sequence typically includes more than 300
frames, and we only use 10 frames and 5 frames for
enrollment and testing respectively. The reason we use
only a very small subsets of all available frames is to
reduce the complexity, given that we had very limited
time before the deadline for the submission of our re-
sults.

Male Female Average
System 1 27.98% 36.56% 32.27%
System 1 (norm) 20.50% 27.26% 23.88%

Table 10. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

4.9. iTEAM, Universidad Politecnica Valencia
(UPV)

The system proposed by UPV is based on the HOG-
EBGM [3] algorithm. This algorithm is used to extract
biometric information from the face pixels. The HOG
descriptor is a local statistic of the orientations of the
image gradients around a facial landmark. Compared
to other local features, the HOG descriptors are more
robust against changes in illumination, small displace-
ments and small rotations [42]. The HOG descriptors
are also used to detect the eyes which is an important
step for the face normalization.

To deal with the multiple faces detected in each
video our system selects a small set that contains the
best faces.

4.9.1 Face Detection, Cropping and Normalisation

We used two different off-the-shelf algorithms for face
detection in the development and test stages respec-
tively. Initially, we used the OpenCV AdaBoost face
detection system [34], however since we found that this
algorithm was not able to detect any face in some en-
roll development videos we changed to a commercial
closed solution [44] for the updated release. Although
the face detection results provided by the Verilook algo-
rithm are slightly better, we found that the improvement
in the recognition results is minimal.

Detected faces are normalized using eye coordinates.
To detect the eyes we have developed a two stage algo-
rithm that first detects eye candidates using Haar fea-
tures and Adaboost, and second a SVM classifier is used
to select the best eye-pair using HOG descriptors [43].

Once eyes are detected, the normalization of the face
is performed by cropping the face region to a 125×145
image and placing the eyes at fixed locations (coordi-
nates [25, 35] and [100, 35] respectively).

It should be mentioned that in our updated release
we introduced also a kalman filter as explained below to
track the eyes and reduce the detection noise. The con-
tribution of this step to improve the recognition results
was more important than the change of face detection
algorithm.

4.9.2 Feature Extraction

Once faces are extracted and normalized in scale and
translation, we extract features using our HOG-EBGM
algorithm [3]. Our algorithm is similar to the well
known Elastic Bunch Graph Matching (EBGM) ap-
proach proposed by [68] in which biometric informa-
tion is extracted at 25 facial landmarks using Gabor
features. The key improvement of our approach is



that we replace Gabor features by HOG descriptors.
These descriptors are more robust to small displace-
ments and illumination changes. The interested reader
can check [42] for a comparison between HOG-EBGM
and Gabor-EBGM.

Our HOG descriptors are much like SIFT fea-
tures [36], except that SIFT features are extracted at the
local extrema of a scale-space representation of the im-
age and normalized in scale and rotation. We deliber-
ately skip these two normalization stages because our
input faces are already normalized in scale and rotation.
However as is the algorithm proposed by Lowe, each
HOG descriptor is also a histogram in which the bins
form a three dimensional lattice with Np = 4 bins for
each spatial direction and No = 8 bins for the orien-
tation for a total of N2

pNo = 128 components. In our
work, each spatial bin is a 5×5 pixels square. This size
was chosen accordingly to the distance between eyes of
the normalized faces.

Finally, the feature vector extracted for each face is
the concatenation of all the HOG descriptors obtained
at each facial landmark. This results in a the feature
vector of 25× 128 = 3200 components.

Since the dimensionality of this feature vector is too
high we use Kernel Fisher Analysis (KFA) [35] to per-
form dimensionality reduction and non-linear feature
extraction. The KFA was trained using face images
from the FERET database (600 images corresponding
to 200 individuals) [48] and ten face images of each per-
son of the MOBIO training set. We made experiments
using only the FERET and only the MOBIO training
set, but the best results were achieved when these two
sets were combined together. This can be explained be-
cause the FERET images include a higher number of
different people, on the other hand the MOBIO training
set can better model the intra-person variability because
more images per person are available. The final num-
ber of features per face after dimensionality reduction
is 140.

4.9.3 Enrollment

To enroll a new person we just select the N faces with
highest confidence from the corresponding videos and
store the set of feature vectors from each of those faces
as a model for the person. We used two different confi-
dence values in the initial and final releases to select the
best images from the many detected faces in the videos.

As it is known, almost every face detection system
produces a number of hits around each real face which
are usually clustered into one detection. In our initial
system, we used this number of hits provided by the
OpenCV Adaboost face detection system as the face

confidence. However, we found that with this confi-
dence measurement we were missing the important in-
formation about the goodness of the eyes localization,
which in turn is very important to obtain a good nor-
malized face. For this reason in our final release we in-
troduced a simple Kalman filter to track the location of
the eyes in the video. Then, we use the Euclidean dis-
tance between the detected eyes position and the cor-
responding Kalman predictions as a measurement of
the face confidence. This measurement allows to se-
lect faces with low head motion (which are sharper) and
with small noise in the eye detection stage.

In the development stage we made experiments with
different number of faces in each person model. We
found that a number of N = 10, was a good trade off
between complexity and accuracy. In fact, we did not
get significant recognition improvements using higher
values of N which indicates that a good representation
of the person was already obtained with just ten faces.

4.9.4 Authentication

Similar to the enrollment stage, to authenticate a video
we first extract its best faces from the query video. We
also used the two different face confidence measure-
ments explained above in the initial and final releases
to select the best faces among the multiple detections.

Once the dimensionality-reduced feature vectors are
extracted for the best test faces using HOG-EGBM and
KFA, authentication is performed comparing each of
these vectors with those stored for the enrolled person.
All pair-wise comparisons are performed using cosine
distance and the minimum value is used as the final
similarity score between the query video and the per-
son model.

4.9.5 Discussion of Results

The face recognition system provided by UPV achieved
good performance on the MOBIO data with a minimal
tuning of the recognition algorithm. The only part of the
algorithm that was particularly tuned was the KFA fea-
ture extraction, in which faces from FERET and MO-
BIO training dataset were used. This particular tuning
gave an improvement of about 2% in the equal error rate
using the development data.

The difference in recognition performance between
males and females is also statistically insignificant,
which is consistent with the fact that we never designed
our algorithm to be gender dependent (using hair style
features for instance).

We did not observe any significant difference on the
recognition results on the development and test sets,



which shows that the difficulty of both datasets was sim-
ilar and it is also proves that our system is not tuned to
any particular dataset.

Finally, we also observe a small improvement in the
updated release of our algorithm that is produced by a
better selection of good faces using the Kalman filter
described above.

Male Female Average
System 1 23.74% 23.70% 23.72%
System 2 21.86% 23.84% 22.85%

Table 11. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

5. Speaker Verification Systems

5.1. Brno University of Technology (BUT)

The Brno University of Technology submitted two
audio speaker verification systems and one fusion of
these two systems. First system is Joint Factor Analy-
sis and second one iXtractor system. Both systems used
for training the MOBIO data but also other data mainly
from NIST SRE evaluations.

5.1.1 Voice Activity Detection and Speech Segmen-
tation

Speech/silence segmentation is performed by our Hun-
garian phone recognizer [57, 39], where all phoneme
classes are linked to ’speech’ class. We used only
speech class for further modeling.

5.1.2 Feature Extraction

We used 24 mel-banks, 25ms window with 10ms shift
for computation of 19 MFCC on the audio files sampled
at 8000Hz. The features are augmented with energy and
with their delta and double delta coefficients, making
60 dimensional feature vector. Features are short-time
gaussianized with window of 300 frames (3 sec) [11].

5.1.3 Enrollment

Universal Background model One gender indepen-
dent and two gender dependent universal background
models (UBMs) with 2048 Gaussians were trained on
Switchboard II Phases 2 and 3, Switchboard Cellular
Parts 1 and 2, and NIST SRE 2004 and 2005 tele-
phone data. In total, there were 16307 recordings

(574 hours) from 1307 female speakers and 13229
recordings (442 hours) from 1011 male speakers.

System 1 - Joint Factor Analysis The Joint factor
analysis (JFA) system closely follows the description of
“Large Factor Analysis model” in Patrick Kenny’s pa-
per [31], with the speaker model represented by mean
super-vector: M = m + Vy + Dz + Ux, where m
is speaker-independent mean super-vector, U is a sub-
space with high inter-session/channel variability (eigen-
channels) V is a subspace with high speaker variability
(eigenvoices) and D is a diagonal matrix describing re-
maining speaker variability not covered by V.

The two gender-dependent UBMs are used to col-
lect zero and first order statistic for training two gender-
dependent JFA systems. First 300 eigenvoices are
trained on the same data as UBM, although only
speakers with more than 8 recordings were considered
here. For the estimated eigenvoices, MAP estimates of
speaker factors are obtained and fixed for the follow-
ing training of eigenchannels. A set of 100 eigenchan-
nels is trained on SRE 2005 auxiliary microphone data
(1619 and 1322 recordings of 52 females and 45 males
speaker respectively).

System 2 - iXtractor I-vector system was published
in [23] and is closely related to the JFA framework.
While JFA effectively splits model parameter space into
wanted and unwanted variability subspaces, i-vector
system aims at describing the subspace with the high-
est overall variability. If Eq. 5.1.3 characterizes JFA,
then Eq. 6 characterizes the i-vector system:

M = m + Ti, (6)

where T is the subspace matrix, referred to as i-vector
extractor or ixtractor

The ixtractor is trained using the same EM procedure
as the subspace matrices in JFA with every segment be-
ing treated as a unique speaker. This way, i-vector sys-
tem serves as a front-end or “feature extractor” for fur-
ther processing, in which channel effects can be treated.
In our case, we used LDA and Within-Class Covariance
Normalization to transform the i-vectors to get rid of the
unwanted variability.

When scoring a trial, such i-vector was estimated
both for the enrollment part and the test segments. Scor-
ing is therefore understood as comparing two i-vectors
and the problem is symmetrical.

In our case, cosine distance of the i-vectors was taken
as a score, i.e. the i-vectors were normalized to unit
length and their dot product was taken as the score
(see [23] for details).



5.1.4 Authentication

System 1 - Joint Factor Analysis - SVM We derived
300 speaker factors using JFA for each utterance and
use them as a supervector to train SVM (Support Vector
Machines). The background cohort for SVM are data
from MOBIO database denoted as world-set. We used
libsvm for all experiments with SVM [19].

System 2 - iXtractor We used gender independent
UBM for this system. The iXtractor is trained on the
same data as UBM. LDA and WCCN matrix is trained
on the same data as UBM and MOBIO word-set data.

5.1.5 Normalization/Calibration

The score normalization was applied only to iXtractor
system. We used s-norm normalization [23] with cohort
derived from MOBIO word-set.

The experiments with SVM shows that the score
normalization do not bring big improvement with this
topology of the system.

Both systems are calibrated with Linear Logistic Re-
gression (LLR) to produce true Log Likelihood Ratio
score. Only a shift and scale is estimated to calibrate the
scores. For convenience, FoCal toolkit by Niko Brum-
mer2 was used.

System 3 - Fusion We used Linear Logistic Regres-
sion (LLR) for training a linear fusion on development
data of MOBIO database. At first the separate score
were calibrated to produce Likelihood Ratio and then
two shifts and one scale were trained. The fusion is
linear and gender independent. We used this simple fu-
sion, because we were afraid of over-training to the de-
velopment data.

5.1.6 Discussion of Results

The results obtained for the two audio recognition sys-
tems are consistent across both the development and test
sets. A summary of the HTERs can be found in Ta-
ble 12. We see that there is an improvement with fu-
sion about 10% relative against the better system. We
decided to participate with the fusion of the two audio
systems, because we saw consistent complementarity of
the two systems. One was better for female and one for
male so the fusion was ideal to preserve performances
of both systems.

5.2. University of Avignon (LIA)

2http://niko.brummer.googlepages.com/
focalbilinear

Male Female Average
System 1 11.30% 12.37% 11.84%
System 2 12.55% 12.63% 12.59%
System 3 10.47% 10.85% 10.66%

Table 12. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

The LIA submitted two systems, systems 1 and 2,
(respectively denoted LIA A1 & LIA A2) to the MO-
BIO contest. Both are based on the UBM/GMM (Uni-
versal Background Model / Gaussian Mixture Model)
paradigm. During this evaluation, development, cali-
bration and training (even for UBM training) were pro-
cessed by only using the MOBIO corpus.

5.2.1 Feature Extraction

The two LIA systems use different LFCC parameteriza-
tions, both based on filter-bank analysis:

• LFCC48: the LIA A1 system is based on 50 filter
bank LFCC computed over 20ms Hamming win-
dowed frames on the original 48kHz signal at a
10ms frame rate. Features are composed of 29
LFCC coefficients augmented with their 29 delta,
11 first double delta coefficients and the delta en-
ergy. Each acoustic vector is so composed of 70
coefficients.

• LFCC16: the LIA A2 system is based on 24 filter
bank LFCC computed over 20ms Hamming win-
dowed frames on the 16kHz down-sampled signal
at a 10ms frame rate. Features are composed of 19
LFCC coefficients augmented with the 19 delta, 11
first double delta coefficients and the delta energy.
Each acoustic vector is so composed of 50 coeffi-
cients. Moreover, the bandwidth is limited to the
300-3400Hz range.

Finally, the acoustic vectors are normalised to fit a 0-
mean and 1-variance distribution. The mean and vari-
ance estimators used for the normalisation are com-
puted file by file on a set of frames selected using the
process described in the next paragraph.

5.2.2 Voice Activity Detection and Speech Segmen-
tation

The energy coefficients are first normalised using a
mean removal and variance normalisation in order to fit
a 0-mean and 1-variance distribution and then used to



train a three components GMM, which aims at select-
ing informative frames [6]. This approach aims to clas-
sify acoustic frames depending on the acoustic energy.
Only frames corresponding tho the high-energy Gaus-
sian components are labeled speech, others features are
considered as not relevant.

After this first feature labelling, final morphological
rules are applied on speech segments to avoid too short
ones, adding or removing some speech frames applied
in order to refine the speech segmentation.

5.2.3 Enrolment

For the two, previously described, parameterizations,
UBM are trained using only the MOBIO UBM-set. Re-
sulting world models are gender-dependent GMM with
diagonal covariance matrices.

• the UBM of LIA A1 system is a 512 GMM;

• the UBM of LIA A2 system is a 256 GMM.

For a better separation of initial classes, frames are ran-
domly selected among the entire learning signal via a
probability followed by an iteration of the EM algo-
rithm, to estimate the GMM parameters. During all the
process, a variance flooring is applied so that no vari-
ance value is less than 0.5.

5.2.4 Authentication

The speaker models are adapted from the UBM via
a MAP [53] adaptation. The relevant factor is fixed
to 14. The score computation follows a classical log-
likelihood computation using a topN Gaussian comput-
ing.

5.2.5 Normalisation/Calibration

For both LIA GMM-UBM based systems, 211 male
segments and 84 female segments from the MOBIO
UBM-set are used as background data for a T-norm [4]
score normalisation. Even if, the literature presents the
ZT-norm as the reference normalisation, in the specific
case of MOBIO better results were obtained by using
only the T-normalisation, we assume that is probably
due to the impostor cohort selected for score normalisa-
tion.

5.2.6 Discussion of Results

Results obtained with LIA A1 and LIA A2 systems
on the test set are relatively better than the one ob-
tained during the development phase. This can prob-
ably be explained by the similarity between the UBM-
set and respectively the development and test sets. The

GMM/UBM performance is strongly linked to the rep-
resentativity of the UBM-set used for both UBM train-
ing and score normalisation. In this case, test-set seems
closer from the UBM-set than the development set.

Finally, the state-of-the-art LIA speaker recognition
system [37] is based on the Latent Factor Analysis
(LFA) approach [38] which is known to be less perfor-
mant than Joint Factor Analysis [30] approaches in case
of short duration test segments. During the development
phase, it seems that session’s duration from the UBM-
set and development set were too short to strongly esti-
mate the LFA statistics.

Male Female Average
System 1 14.74% 15.83% 15.29%
System 1 (norm) 14.49% 15.70% 15.10%
System 2 25.04% 18.59% 21.82%
System 2 (norm) 26.17% 19.77% 22.97%

Table 13. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

5.3. Tecnologico de Monterrey, Mexico and Ari-
zona State University, USA (TEC-ASU)

The system we developed, named TECHila, evolved
from our earlier systems that had used alternative data
sets (YOHO, SV-TIMIT, and NIST2008) and it is based
on the Gaussian Mixture Model (GMM) framework.
TEChila aims to perform on par with state of the art
methods for SRE such as [46], as well as to identify op-
portunities for improvements that may have been over-
looked.

Most of the components were coded in Matlab for
clarity and ease of inspection.

System 1 used ...

System 2 used ...

5.3.1 Voice Activity Detection and Speech Segmen-
tation

The speech signal was downsampled to 8 Khz. Subse-
quently, a 25 ms analysis overlapping Hamming win-
dow, 10 ms frame rate, and pre-emphasis coefficient of
.97 was applied. For a given conversation side, every
frame log-energy was tagged as high, medium and low.
Instead of a traditional voice activity detector, we used
a frame removal technique. The low and 80% of the
medium log-energy frames were then discarded. It is



important to note that the delta and double delta coef-
ficients were obtained after the silent frames were re-
moved. This 80% threshold is a heuristic that was de-
rived empirically.

5.3.2 Feature Extraction

A short-time 256-pt Fourier analysis is performed on
each overlapping window. The magnitude spectrum
was transformed to a truncated vector of Mel-Frequency
Cepstral Coefficients (MFCC), and a 23 channel filter-
bank. Following this step, we used two feature extrac-
tion approaches. In the first approach, the feature vec-
tor consisted of 33 attributes: 16 static Cepstral, 1log
Energy, and 16 delta Ceptral coefficients. The second
approach consisted of 49 attributes: 16 static Cepstral,
1log Energy, 16 delta Ceptral coefficients, and 16 dou-
ble delta Ceptral coefficients.

Further, we implemented a feature warping algo-
rithm on the obtained features. Feature warping belongs
to the family of Gaussianization methods [45, 20] of
normalization. The underlying idea in this normaliza-
tion scheme is that every spectral attribute (Cepstral co-
efficient in our case) is normally distributed across time,
and that the transmission channel distorts such a distri-
bution. The task of feature warping is to undo the distor-
tion caused by the channel by warping each attribute’s
scale so that the resulting attribute has a normal dis-
tribution. Traditionally, this warping is accomplished
by first assembling an empirical CDF (cumulative dis-
tribution function) from the ranked features within 1.5
seconds before and after the current frame (3 seconds
total), and then perform the CDF-inverse at the current
frame.

5.3.3 Enrolment

A GMM (Gaussian mixture model) approach was
adopted in this work. The evaluation was done in-
dependently for each gender, since it is reasonable to
assume that each identity claim comes with a gender
attribute. A gender-dependent and target-independent
512-mixture GMM anti-model model was trained from
a pool of the MOBIO speech database. The EM (ex-
pectation maximization) algorithm was used to obtain
the maximum likelihood estimates of the GMM param-
eters. TECHila’s implementation of the EM algorithm
for GMM uses the MPI (Message Passing Interface) en-
vironment to take full advantage of parallel computing
infrastructure.

The GMM is first initialized using the K-means al-
gorithm to obtain a set of 512 centroids. By using the k-
means algorithm, the convergence of the EM is known
to be faster. However, it is always important to check

that the local bounds are not very restrictive, so that EM
can make a satisfactory estimation. The EM is then re-
peated after the model had converged (about 3-5 itera-
tions).

5.3.4 Authentication

A gender-dependent and target-independent 512-
mixture GMM anti-model [32] model was trained from
a pool of the MOBIO speech database (4893 audio files
for male, 1764 for female). Target-dependent models
were then obtained with a traditional MAP (maximum
a posteriori) speaker adaptation [28]. Subsequently, two
approaches were studied. In the first one, we used only
one file from each speaker to train each target model
(the average time of these utterances is 7 seconds). On
the other one, we used the pool of all target files to com-
pute each model.

The target-models are obtained with a traditional
MAP (maximum a posteriori) speaker adaptation. The
score obtained for every trial follows the hypothesis
test framework, where the null hypothesis accepts the
speaker as legitimate and the alternative hypothesis re-
jects him/her. Under this framework, the score is given
the log likelihood ratio of two models: target-model and
anti-model. As mentioned earlier, in the current imple-
mentation, the anti-model is target-independent.

5.3.5 Normalization/Calibration

No normalization of the scores was performed in this
work.

5.3.6 Discussion of Results

The results obtained using our approach are summa-
rized as follows:

• Development database: (33 attributes: 16 static
Cepstral, 1log Energy, and 16 delta Ceptral coef-
ficient, single file adaptation). Our best results (the
first approach among the two mentioned in the au-
thentication section) showed the following EER:
20.552% for male, 25.227% for female and a total
average of 22.88%.

• Test database: (49 attributes: 16 static Cepstral,
1log Energy, 16 delta Ceptral coefficient, 16 dou-
ble delta coefficient, all file adaptation). We ob-
tained a EER of 15.453% for female, 17.414% for
male and a total average of 16.45%.

We believe that our development results are higher
because of the lack of the double delta coefficients, and
the MAP training using a single file. We will consider



further normalization techniques in order to obtain bet-
ter results as part of our future work.

Male Female Average
System 1 20.55% 25.23% 22.89%
System 2 15.45% 17.41% 16.43%

Table 14. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

5.4. University of West Bohemia (UWB)

Our effort was to examine functionality of a system
composed of several subsystems based on generative
and discriminative models. We have utilized only the
data provided by MOBIO.

System 1 used ...

System 2 used ...

System 3 used ...

System 4 used fusion ...

5.4.1 Voice Activity Detection and Speech Segmen-
tation

In the pre-processing stage the speech signal was down-
sampled to 16 kHz and processed with a Voice Activity
Detector (VAD) in order to discard non-speech frames.
VAD was based on a set of filter-bank energy detectors
situated in the frequency domain. Firstly, local Speech
to Noise Ratios (SNRs) were computed for each frame
as a mean of SNR estimated for each of the filter-banks.
Second, global SNR was estimated (across whole utter-
ance) as the mean value of local SNRs. At the end,
frames with local SNRs higher than the global SNR
were kept, all the other frames were discarded (marked
as non-speech).

5.4.2 Feature Extraction

Our system exploited Mel Frequency Cepstral Coeffi-
cients (MFCCs) with 50 filter-banks. MFCCs were ex-
tracted each 10 ms utilizing a 25 ms hamming window,
the C0 coefficient and energy were discarded, delta’s
were added, simple mean and variance normalization
was applied and final set of features was downsampled
with a factor 2. The final dimension of feature vectors
reached 40.

5.4.3 Enrolment

Four systems were proposed, namely UWB A1 : sys-
tem based on Gaussian Mixture Models (GMMs) [52],
system based on Support Vector Machines (SVMs) uti-
lizing two types of kernels - UWB A2 : GMM Super-
vector (GSV) kernel [14] and UWB A3 : Generalized
Linear Discriminant Sequence (GLDS) kernel [13], and
finally, UWB F : system based on fusion of mentioned
approaches. GMMs were adapted from a Universal
Background Model (UBM) with 510 mixtures trained
on all the gender specific data provided by MOBIO and
denoted as world-set, hence genders were handled sep-
arately. Maximum A-Posteriory (MAP) adaptation was
performed with a relevance factor 14, and only means
were adapted. UBM was trained using Maximum Like-
lihood (ML) estimation, which was preceded by Dis-
tance Based (DB) algorithm in order to initialize the
ML training. The GSV kernel made use of concatenated
GMM means, hence a 20400 dimensional supervector
(SV) was formed. Polynomial order 3 was assumed by
construction of GLDS supervectors resulting in SV di-
mension of 12341. Impostors for SVM modeling were
also drawn from the world-set in a gender specific man-
ner.

5.4.4 Authentication

In the case of GMM system the Log-Likelihood Ra-
tio (LLR) approach was used to score the trials, and
in the case of SVM models a simple scalar multiplica-
tion was utilized. In order to fuse the results of individ-
ual systems a linear weighing of particular scores was
performed. Weights were trained on the development
set according to a simple gradient method with auxil-
iary function given as overall Equal Error Rate (EER)
of fused results.

5.4.5 Normalization/Calibration

UWB systems did not use score normalization as no
data were found to be suitable for such a task. Some
efforts were made to enroll the world-set, but the re-
sults obtained on the development set were unconvinc-
ing. However, it turns out that SVM systems perform
well regardless the TNorm [15], which is in the case of
SVM of minor importance.

5.4.6 Discussion of Results

Results obtained on the development and test set are
similar. Decrease of the performance was observed for
theUWB A2 system, mainly for female tests. It is well
known that SVM training demands a lot of background



data to be trained, especially in cases of one-versus-all
training utilizing high dimensional SVs. Our system
used as impostors speakers from the world-set provided
by MOBIO, where only 14 female speakers and 39 male
speakers were present. Each of the speakers was repre-
sented with multiple session recordings processed sep-
arately and used as an impostor regardless of the per-
tinence to the same speaker (in common, 1764 female
impostors and 4893 male impostors were used). Still,
one can not assume that a discriminative system trained
just on a few speakers could generalize well to unseen
data, anyhow it can bring some additional information
utilized in advance in score fusion. Best performance
was achieved with the GMM system UWB A1, hence
a conclusion can be made that a UBM-GMM system is
the best answer in situations where only few data for
training are available.

Male Female Average
System 1 9.76% 10.73% 10.24%
System 2 19.08% 14.46% 16.77%
System 3 12.03% 11.33% 11.68%
System 4 11.18% 10.00% 10.59%

Table 15. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

5.5. Swansea University and Validsoft (SUV)

The speaker verification systems submitted by
Swansea University and Validsoft are based on standard
Gaussian Mixture Models (GMMs) [51], whose origi-
nality lies in the use of wide band feature extractors, an
idea already explored by Swansea University during the
Biosecure evaluation campaign [26]. They were devel-
oped using SPro 3 and ALIZE [9] open source toolk-
its. The GMM systems are as described in [8] and the
front-end is an adaptation from the mean-based feature
extraction described in [27].

System 1 used ...

System 2 used ...

System 3 used fusion ...

3http://gforge.inria.fr/projects/spro/

5.5.1 Voice Activity Detection and Speech Segmen-
tation

Voice activity detection is a simple approach based on
energy distributions. The threshold is set on the mean
of the Gaussian of highest energy out of three Gaussians
fitted with EM on the energy components.

5.5.2 Feature Extraction

Two types of frontends were used, F1 and F2, both
cepstral coefficient based. No downsampling was per-
formed. On such a wide band Mel-frequency cepstral
coefficients (MFCCs) were found to perform better than
linear ones (LFCCs). The difference between the two
frontends come from the number of filter bands and the
number of coefficients kept after discrete Cosine trans-
form (DCT). F1 and F2 configurations are as follow:

• F1: MFCC, 50 bands, 29 DCT coefficients, 29
delta + delta Energy

• F2: MFCC, 24 bands, 16 DCT coefficients, 16
delta + delta Energy

Apart from the fact that the filters are spread on a
wide band (0 Hz-24 kHz) F2 corresponds to a standard
MFCC configuration. With a larger number of filter
bands F1 was found to performed better and is used
in the system SUV A1. SUV A2 is a fusion of two
systems whose only difference are the frontends, one
based on F1 and the other one on F2.

After speech activity detection, 0-mean 1-variance
normalisation is performed on the full utterance.

5.5.3 Enrolment

Enrolment is based on conventional GMM with MAP
adaptation of the Gaussian components. The Universal
Background Models (UBMs) used are gender depen-
dant and trained with all the data from MOBIO “dev-
set”. GMMs have 512 components. The relevance fac-
tor is 14 and no channel normalisation is used.

5.5.4 Authentication

Speaker authentication tests are standard log-likelihood
ratio computations.

5.5.5 Normalization/Calibration

T-normalisation is performed with gender dependant
cohorts chosen randomly in MOBIO ’world-set’ (158
for female, 182 for male).

For SUV A2, score-level fusion of the two GMM
systems is done with equal weights after T-norm.



5.5.6 Discussion of Results

SUV submission is based on a standard GMM-UBM
approach. Due to the limited size of the development
set, no attempt was made to use more sophisticated ap-
proaches such as SVM or Factor Analysis. Results on
the test set are in line with the results on the develop-
ment set with actually some improvement on the fe-
male subset. By recording speaker directly on the hand-
set MOBIO provided a database of speech sampled at
48 kHz in contrast with the majority of other speech
databases usual recorded on 8 kHz telephony speech.
This was the main motivation and the main focus of de-
velopment for SUV submission. Results on the devel-
opment set suggests that working on wider band bring
relative improvements of performance in the region of
20 to 30 %. Further work is needed to contrast and
compare systems based on telephony speech which now
use recordings from 1000s of speakers and other “high-
quality speech” based systems whose background data
is limited to a few 10s of speakers.

Male Female Average
System 1 14.70% 16.00% 15.09%
System 1 (norm) 14.04% 15.42% 14.73%
System 2 15.09% 17.81% 16.45%
System 3 13.57% 15.27% 14.42%

Table 16. Table presenting the final results
(HTER) on the Test set for the MOBIO Pha-
seI database.

6. Discussion

A quick summary of the uni-modal face systems can
be found in Table 17. The results are also presented in
the DET plots in Figure 1 (male trials) and 2 (female
trials). The majority of the systems use an OpenCV
like face detection scheme and all seem to have similar
performance. The systems which use an alternative face
detection (Visidon, UNIS and ITI) scheme seem to have
a definite advantage over those who don’t.

The impact of the face detection algorithm can be
seen clearly when examining the two systems from ITI.
The difference between the two systems from ITI come
only from the use of a different face detection tech-
nique: System 1 uses the frontal OpenCV face detec-
tor and System 2 uses the OmniPerception SDK. The
difference in face detector alone leads to an absolute
improvement of the average HTER of more than 4%.
This leads us to conclude the one of the biggest chal-
lenges for video based face recognition is the problem

of accurate face detection.

Male Female Average
IDIAP* 25.45% 24.39% 24.92%
ITI* 16.92% 17.85% 17.38%
NICTA* 25.43% 20.83% 23.13%
TEC* 31.36% 29.08% 30.22%
UNIS* 9.75% 12.07% 10.91%
VISIDON* 10.30% 14.95% 12.62%
UON* 29.80% 23.89% 26.85%
NTU* 20.50% 27.26% 23.88%
UPV* 21.86% 23.84% 22.85%

Table 17. Table presenting the final results
for face recognition on the Test set for the
MOBIO PhaseI database.
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Figure 1. Male DET for the Video.

0.1 0.2 0.5 1 2 5 10 20 40
False Acceptance Rate

0.1

0.2

0.5

1

2

5

10

20

40

Fa
ls

e
 R

e
je

ct
io

n
 R

a
te

Video Systems on the Test Set (Female Trials)
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Figure 2. Female DET for the Video.

A quick summary of the HTERs for the uni-modal
speaker systems can be found below in Table 18.
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Figure 3. Male DET for the Audio.
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Figure 4. Female DET for the Audio.

Male Female Average
BUT* 10.47% 10.85% 10.66%
LIA* 14.49% 15.70% 15.10%
SUV* 13.57% 15.27% 14.42%
TEC* 15.45% 17.41% 16.43%
UWB* 11.18% 10.00% 10.59%

Table 18. Table presenting the final results
for speaker recognition on the Test set for
the MOBIO PhaseI database.

To examine the possibility of fusing the two modali-
ties we took two of the better systems from each modal-
ity and tried to fuse them. We took pairs of systems
from each modality and fused them, this led to four pos-
sible fusion system which are listed in Table 19. Fusing
the best combination (Face1 + Speaker1) we obtained
the a HTER of 3.00% and 5.50% on the Test set (which
is significantly better than either system on its own), the
results of this fusion are summarised by a DET plot 5
and two EPCs ??.

Fusion
Male Female

Face1 + Speaker1 2.22% 2.13%
Face1 + Speaker2 3.80% 2.80%
Face2 + Speaker2 1.78% 4.13%
Face2 + Speaker1 3.11% 4.67%

Table 19. Table presenting the initial fu-
sion results on the Development set for
the MOBIO PhaseI database in term of
equal error rate.

Figure 5. DET Plot for the fusion on the
Test set.
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Figure 6. EPC for male scores on the fu-
sion data on the Test set.
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Figure 7. EPC for female scores on the fu-
sion data on the Test set.

7. Conclusion
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