Tobias Rauter
email: tobias.rauter@tugraz.at

Integrity of Distributed Control Systems

Security is a vital property of SCADA systems, especially in critical infrastructure. In this work we focus on the integrity of the overall distributed control system. First, we classify properties that enable the verification and proof of the integrity of different subsystems. Based on this classification, we show how we protect the overall system's integrity at different system levels and which implications arise for the development and manufacturing stage of control devices by applying the proposed approaches. Based on an exemplary system in the domain of hydro-electric power plants, we also show practical examples how we plan to apply our work in real world.

I. INTRODUCTION

The growth of the renewable energy sector has a high impact on the technology of hydropower plant unit control systems [START_REF] Liserre | Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics[END_REF]. Nowadays, these have to react on power grid changes in time to achieve overall grid stability. As a consequence, control devices (depending on the provided functionality, they are also referred to as Remote Terminal Unit (RTU) or Programmable Logic Controller (PLC)) in single power plants, as well as control devices of different power plants have to cooperate in order to achieve the system-wide control goal. These requirements lead to networks of small, embedded control devices and heavyweight Supervisory Control and Data Acquisition (SCADA) servers and clients. At the same time, these power plants represent critical infrastructures that have to be protected against security attacks that raised lately [START_REF] Miller | A survey SCADA of and critical infrastructure incidents[END_REF].

Fig. 1 shows one exemplary architecture of such systems. One central SCADA client is used to supervise RTUs of different plants at different sites. The RTUs are the actual control devices that execute the control strategy and interface with the environment (i.e., communicate with sensors and actuators). Since the control strategy could be distributed, the RTUs have to communicate directly with each other. Technically, RTUs often comprise different hardware components, where each one is in charge for a specific functionality. For example, the device consists of a main controller that executes the control strategy and communicates with the outer world. However, in order to access sensors and actuators, an additional I/O device is connected via an internal bus system. This I/O device usually contains its own, lightweight CPU and provides the actual physical interface to connect peripherals.

While recent work in the SCADA field is focusing on the security properties of the servers (e.g., [START_REF] Tantillo | Toward Survivable Intrusion-Tolerant Open-Source SCADA[END_REF]), we focus on security properties of the RTUs and their interactions. A lot of research has been done to improve the authentication of devices and the integrity and confidentiality of their communication. However, even if a communication partner is authenticated, how is it possible to ensure that it can be trusted? Fig. 1. Overview of an exemplary SCADA system which is used to control power plants at different locations According to the Trusted Computing Group (TCG), a trusted system is a 'device that will behave in a particular manner for a specific purpose' [START_REF] Tcg | Trusted Computing Group[END_REF]. Similarly, the integrity property of a computer system is seen as the guarantee, that the system will perform as intended by the creator [START_REF] Biba | Integrity Considerations for Secure Computer Systems[END_REF]. Therefore, one can trust a system if we trust the initial system state and we can ensure that its integrity is not violated.

In this work, we examine the question of how integrity can be ensured in such distributed systems. Since integrity cannot be 'measured' directly, other properties that reflect the integrity of sub-systems have to be found. These properties have to be measureable and verifiable. The first part of our contribution is a classification on how integrity can be verified (locally and remotely) and what types of properties could be used (static and dynamic) based on patterns. As a next step, we identify such properties for distributed control systems on different system levels, such as bus-level, device-level and compoundlevel. On bus-level, we plan to use statistical analysis of sensor data, which has already been done in previous work. On device level, we propose a new attestation method that uses privileges of software components as integrity property to overcome common problems of integrity attestation. For compound-level, we plan to exploit the distributed nature of control devices that work in the same environment to verify whether specific behaviours of single subsystems reflect an ©2015 IEEE integer subsystem state. Additionally, we propose methodologies and tools for the development and manufacturing process that enable the integrity checks in the further life-cycle. In order to simplify the integrity checks, the system has to be carefully designed, especially concerning the principle of least privilege and privilege separation. Moreover, a unified production process for all types of devices and components enables a secure provisioning of secrets like private keys that have to be in place later on.

Section II describes the pattern-based classification. In Section III, how we want to ensure the overalls system integrity and which properties we use for different system levels. Section IV shows supportive methods we propose for earlier parts of the system lifecycle (development and manufacturing) and Section V sums up the work and describes future directions.

II. CLASSIFICATION OF INTEGRITY VERIFICATION

There are different attributes to classify integrity checks in distributed systems. During our research, we investigated two dimensions concerning the entity of verification and the frequency of the measurements..

Regarding the verification entity, we identified two patterns [START_REF] Rauter | Patterns for Software Integrtiy Protection[END_REF]. INTEGRITY PROTECTION adds the ability to enforce a policy that protects the system from behaviour that would violate its integrity. INTEGRITY ATTESTATION (also known as 'Remote Attestation') is used to prove the system's integrity state to a remote system. In both cases, the integrity of a system A is 'measured' somehow. For INTEGRITY PROTECTION implementations, these measurements are checked against a policy on the same system. The system A thus enforces its own integrity. On the other hand, INTEGRITY ATTESTATION implementations send this measurements to a remote system B. In this case, B verifies the integrity of A by checking whether the measurements comply to B's policy for A. In this case, B verifies the integrity of A. This can be done periodically or event-based (for example prior to normal communication).

However, integrity cannot be 'measured' directly. Therefore, one has to find system properties that reflect the integrity of the overall system when checked against a policy (e.g., the hash of an executed software module has to be signed by the software vendor). In this work, we denote such properties as 'integrity properties'. Using such properties is only an approximation because they always only reflect a sub-set of the overall system integrity. They thus have to be chosen carefully in order to fit given integrity requirements.

Similarly to the verification entity, we plan to document two patterns, STATIC INTEGRITY PROPERTIES and DYNAMIC INTEGRITY PROPERTIES, as classification regarding their measurement frequency. STATIC INTEGRITY PROPERTIES do not change during execution of the system and are thus only measured once (i.e., before the execution of the measured subsystem). One example would be the hash of an executed binary that can be verified to detect malicious modifications of the executable. DYNAMIC INTEGRITY PROPERTIES reflect the behavior during execution of the system or usage of the data. Therefore, they have to be measured (and also verified) continuously. The access to critical system functions is one example of such properties.

Based on these patterns, we can classify integrity verification for distributed systems into 4 segments. Secure Boot, for example is INTEGRITY PROTECTION based on STATIC IN-TEGRITY PROPERTIES. Another example is remote attestation with Integrity Measurement Architecture (IMA) [START_REF] Sailer | Design and implementation of a TCG-based integrity measurement architecture[END_REF]. Here, IN-TEGRITY ATTESTATION based on STATIC INTEGRITY PROP-ERTIES is used.

This classification is used as foundation for further discussions of integrity properties in our work. The pattern-based description enables a common language and also supports decisions whether specific properties with specific verification points fulfill our integrity requirements.

III. INTEGRITY PROPERTIES

As illustrated in Fig. 1, we consider three different levels:

The bus level consist of sensors and actuators, as well as the physical world. The second level is the device level. Here, the interaction of different RTUs and components inside one RTU are considered. We thus consider point-to-point connections between devices at one side and connections between different sites. However, at the compound-level, additional examinations are required. Even if the direct communication partner of the other site is trusted, the system has to ensure that the complete remote network of systems is acting on behalf of the common control strategy.

In common systems, an attacker may be able to gain limited physical access to sensors and actuators, since the facilities are spaciously. Moreover, he may have logical access to the device network but no physical access to the RTUs or SCADA server, since they are protected physically.

We neither consider authentication of the different devices nor security measures on the channels (such as integrity and confidentiality protection) here. We assume that proper measures are in place. Therefore we have to ensure that the required secrets (such as private keys and certificates) are distributed securely. Moreover, we do not consider the bus level in this work. A lot of research has been done in the field of data veracity [START_REF] Krotofil | The Process Matters : Ensuring Data Veracity in Cyber-Physical Systems[END_REF]. Here, the trustworthiness of sensor data is ensured based on the correlation entropy in a cluster of related sensors. In our work we thus focus on device and compound level.

A. Device Level

As mentioned before, in our real world scenario we have to consider component compositions that form one RTU, as well as the connection between devices at this level. From a security point of view, both types are basically computing platforms that are connected via a network bus (e.g., Ethernet). Therefore, we only consider inter-device communication because the same technologies can be used for the internal components. Fig. 2 shows the basic integrity measures at device level. To achieve INTEGRITY PROTECTION, each device uses secure boot and sandboxing (if applicable). We thus use static (i.e., hash values of the executables) and dynamic (i.e., the behaviour) properties to ensure the integrity. These technologies are well known and state of the art.

However, RTUs also have to verify the integrity of potential communication partners. In today's systems, remote attestation is used to achieve such a verification. One device (prover) proves its integrity by sending a signed representative measurement to another entity (challenger). Similar to secure boot, common methods use hash values (binary measurements) of all files that comprise a device's configuration (e.g., executed programs and their configuration files) to represent the overall integrity (e.g., IMA [START_REF] Sailer | Design and implementation of a TCG-based integrity measurement architecture[END_REF]). The challenger thus has to know a reference hash value of all 'good' executables. Due to the high amount of possible RTU configurations and different versions of single programs, this method is not feasible in distributed control systems. Every time one device is updated, all other devices would have to update their references too.

In order to tackle this problem, we proposed PRIvilege-Based remote Attestation (PRIBA) [START_REF] Rauter | Privilege-Based Remote Attestation: Towards Integrity Assurance for Lightweight Clients[END_REF]: The prover may execute many services that are not of interest for the challenger (e.g., Service 1.1 in Fig. 2). When such a service does not have the privileges or permissions to harm the integrity of the targeted service, the challenger does not have to know a reference measurement. The list of binary measurements is thus reduced to the number of targeted services. Additionally, the prover has to provide a 'measurement' of the privileges of all other services. The challenger checks this measurement against a policy and decides whether the prover's integrity is intact. We have investigated different methods of privilege measurements and propose a simple check for library calls as most efficient way.

However, the implementation of PRIBA raises some challenges. In order to identify and analyze them, we integrated PRIBA into IoTivity, an existing Internet of Things (IoT) communication stack. IoTivity offers a flexibility and multiple platform support, which enables different experiments with low effort. The integration of our method into the actual RTUs is planned later.

In order to implement PRIBA, we had to build a framework [START_REF] Rauter | Thingtegrity: A Scalable Trusted Computing Architecture for Resource Constrained Devices[END_REF]: First, the privilege measurement unit requires 'measureable' accesses to privileged system functions. Therefore, we introduced an API with appropriate access granularity (API calls have to reflect privileges, e.g., access to system files). Furthermore, the system has to ensure, that these measured accesses are not circumvented at runtime. This is ensured by a sandbox. In order to enable a simple integration, we designed the introduced API in a way that enables automated generation of sandbox-policies at service-startup. The privilege-measurement unit is the Root of Trust for Measurement (RTM) for this type of measurements. However, privilege measurements of this component as well as other low-level components cannot be taken. Therefore, we integrated the existing IMA [START_REF] Sailer | Design and implementation of a TCG-based integrity measurement architecture[END_REF] implementation for Linux into our framework to enable binary-measurements.

For verification, we introduced a simple policy that enables the decision whether the communication partner's integrity is intact. However, through the IMA-based measurements, the reference configuration lists may be too big and too dynamic to be handled in a network of constrained devices. Therefore, we also implemented a property-based attestation scheme, where measurement lists are signed by Trusted Third Parties (TPP). Additionally, we use the authentication mechanisms of the underlying communication protocol to integrate authentication of the device hardware.

To recap, we combined concepts from binary-, propertyand privilege-remote attestation and integrated it into IoTivity. The architecture is transparent and hides the complexity of remote attestation from the overlying application. Additionally, we provide a testbed that enables the investigation of further attestable properties for future devices and systems. We showed that the architecture enables a simplified bootstrapping of trusted environments. Compared to traditional remote attestation systems, the maintainability and scalability of the trusted relations is improved. This is achieved by reducing the complexity of configuration measurements. This reduces the memory and communication overhead significantly for systems with a high number of services or devices.

B. Compound Level

While the checks on device level verify the integrity of the device's configuration, we also have to ensure the integrity of control decisions. Recent studies have shown that one effective attack vector is to get logical access to the control clients and perform malicious actions [START_REF]Electricity Information Sharing and Analysis Center[END_REF]. While such attacks have to be prevented in the infrastructure of the plant operators, we plan to exploit the distributed nature of the system to verify at least some integrity properties of control commands.

One example in the domain of hydro-electric power plants is shown in Fig. 3: An adversary has access to the SCADA client and tries to perform a command with potentially enormous impact (e.g., open the gates to flood a valley). However, before executing the command, the control system gathers information from a third party. In this case, it may ask other downstream plants about their water level. Only if their level is low enough to compensate the released water, the command is executed and the gates are opened.

In contrast to other security protections, such a system has to be configured by domain experts, not security experts. They map domain properties to DYNAMIC INTEGRITY PROPERTIES that are used for INTEGRITY ATTESTATION. Therefore, we plan to introduce a Domain Specific Language (DSL) that enables domain experts to formulate and analyze different policies for their specific use-cases.

IV. LIFECYCLE SUPPORT

The proposed approaches raise requirements for the development and production phase of the system. In order to ensure Since all of the proposed methods rely on asymmetric cryptography for authentication and message integrity verification, we have to provide a process that securely distributes secrets such as private keys to a variety of devices. Here, two main challenges exist: First, even the manufacturer may be (partly) compromised. We thus have to ensure that the access to private key material is as hard as possible during the production process. Moreover, a high number of different and customized devices has to be built and provided with key materials. Therefore, we plan to introduce a model-based production and test system that enables an easy adoption of a secure provisioning process to the variety of produced devices.

V. ONGOING ACTIVITIES AND FUTURE WORK

In summary, we plan to investigate properties that reflect the integrity of distributed control systems at different system levels. Moreover, we want to use the identified properties to integrate integrity verification into actual control devices used in hydro-electric power plants. We already finished a classification scheme for such properties and identified software privileges as property that enables remote attestation in our system.

As a next step, we want to finish the automated privilege separation process and investigate how to find optimal positions of filter components based on the dataflow graph. Moreover, based on the already finished implementation of our production tool, we have to analyze different approaches for the provisioning-approach.

The second big workpackage is the analysis of the compound-level integrity properties. Here, we have to investigate what kind of policies have to be formulated and provide a DSL that enables their generation. Moreover, we have to provide a framework that enforces the policies and examine whether the proposed approach is feasible in terms of communication and time overhead.

Finally, we plan to integrate a proof-of-concept implementation into a demonstrator for next-generation control systems that enables run-time reconfiguration of the system based on the identified integrity violations [START_REF] Höller | Poster: Towards a Secure, Resilient , and Distributed Infrastructure for Hydropower Plant Unit Control[END_REF].

Compound Level

their feasibility, we have to provide supportive methodologies and tools for these lifecyle phases.

A. Support Separation of Privilege

An efficient implementation of PRIBA is only possible, when the different components and services running on a system are separated as strictly as possible. Therefore we plan to help to automate the process of privilege separation in early system design phases.

As a first step, we proposed a metric that quantifies software components by the assets they are able to access [START_REF] Rauter | Asset-Centric Security Risk Assessment of Software Components[END_REF]. Based on a component model of the software architecture, it is possible to identify trust domains and add filter components that split these domains. We show how the integration of the methodology into the development process of a distributed manufacturing system helped us to identify critical sections (i.e., components whose vulnerabilities may enable threats against important assets), to reduce attack surface, to find isolation domains and to implement security measures at the right places.

Based the data-flow flow graph and the information, which components have to access which assets, we plan to automated the process of finding the optimal position of filter components and thus minimizing the size of high-privilege trust domains. B. Support for the Provisioning Process