N
N

N

HAL

open science

Adaptive Fault Tolerance: Is ROS a Relevant Executive
Support ?
Matthieu Amy

» To cite this version:

Matthieu Amy. Adaptive Fault Tolerance: Is ROS a Relevant Executive Support ?. Student Forum
of the 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Jun

2016, Toulouse, France. hal-01318364

HAL Id: hal-01318364
https://hal.science/hal-01318364
Submitted on 19 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01318364
https://hal.archives-ouvertes.fr

Adaptive Fault Tolerance:
Is ROS a Relevant Executive Support ?

Matthieu AMY
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
Email: mamy @laas.fr

Abstract—Every system evolves in operation. A system that
remains dependable when facing changes (new threats, failures,
updates) is called resilient. We present advantages of Component-
Based Software Engineering technologies for tackling a crucial
aspect of resilient computing, namely the on-line adaptation of
fault tolerance mechanisms. Then we show how this approach can
be implemented on ROS, presently used for robotic and automo-
tive applications, e.g. ADAS. We give some implementation details
and result of different experiments to validate the solution. We
finally report the lessons learned and the future work targeting
resilient computing for automotive applications.

I. INTRODUCTION

A computer system is resilient when it remains dependable
when facing changes (new threats, change of fault models,
updates of applications) [1]. At runtime, dependability relies on
Fault Tolerance Mechanisms (FTMs). The FTMs are designed
and developed to match a fault model specific to an application.
This fault model considers both hardware and software faults
that may lead to failure modes which impair the correct
behavior of the system. In resilient systems, the fault model
may evolve during its operational lifetime. Therefore, Adap-
tive Fault Tolerance (AFT) [2] is required to accommodate
changes. However, solutions are mostly preprogrammed [3],
FTMs are loaded at the beginning for the entire operational
lifetime. Adapting the mechanisms means selecting the appro-
priate one or tuning them with few parameters (e.g. number
of replicas). Adapting provisions for all events and threats a
system may encounter throughout its service life is one of the
best way to achieve the dependability of the system.

The agile adaptation of FTMs is investigated as an alter-
native to preprogrammed FT solutions. The term “agile” is
inspired from agile software development [4]. Agile adaptation
of FTMs enables systematic evolution: according to runtime
observations of the system and of its environment, new FTMs
can be designed off-line and integrated on-line in a flexible
manner, with limited impact on the existing software. In
order to develop an agile solution, Component-Based Software
Engineering (CBSE) techniques [5][6] are some of the most
relevant approaches in developing adaptive FTMs. The idea is
to design an FTM as a graph of software bricks that can be
removed or changed at runtime. The purpose of this design
approach is to change the least amount of “’software bricks”
for an easier adaptation. This approach maximizes reuse and
flexibility, contrary to monolithic replacements of FTMs. Us-
ing CBSE techniques, software bricks are components.

The objective of the work reported in this paper is to
analyze to what extent ROS (Robot OS) [7] is an appropriate
executive support for AFT based on CBSE design concepts.

ROS is an open-source middleware for robotic applications
providing a component-based system architecture. Its user base
is very large and this middleware is already used for critical
applications in industry, e.g. for unmanned military vehicles at
NREC (National Robotics Engineering Center, Pittsburgh).

In this paper, we consider two FTM mechanisms tolerating
cash faults, Primary Back-Up Replication (PBR) and Leader
Follower Replication (LFR), and one targeting transient value
faults, namely Time Redundancy (TR). These mechanisms are
designed using a CBSE approach and implemented on ROS.
We investigate the on-line adaptation of these mechanisms
using ROS capabilities and services. We consider three types
of adaptations: i) the update of a FTM, ii) the substitution of
a FTM by another one, and iii) the composition of several
FTMs.

In section II we describe more precisely the concept of
Adaptive Fault Tolerance. We detail the software architecture
of an FTM on ROS and the various means to make them
adaptive in section III. In the next section IV we illustrate our
approach on a simple case study. We draw the lessons learnt,
mention on-going work and conclude in section V.

II. ADAPTIVE FAULT TOLERANCE

Adaptive Fault Tolerant relies on three essential concepts:
Separation of Concern, implying a clear separation between
the functional code (i.e. the application) and the non-functional
code (i.e. the fault tolerance mechanisms), Componentization,
implying the decomposition of the software into a graph of
software components, and the Design for adaptation, implying
that the software is designed to facilitate its adaptation.

A. Fault tolerance assumptions and requirements

The choice of an FTM attached to an application depends
on three class of parameters: The FaulT model (FT), the
characteristics of the Application (A) and the Resources of
the system (R).

As mentioned in introduction, three FTM have been used
in our experiments. PBR (Primary Back-Up Replication) and
LFR (Leader Follower Replication) are two variants of a
duplex strategy to tolerate crash faults. With PBR, just one
replica is active and processes input requests, the backup
replica handles state checkpoints. In LFR, both replicas are
active and process input request; the leader delivers the outputs.
To tolerate transient faults, TR (Time Redundancy) repeats the
execution a number of time to detect and tolerate faults.

In Fig.1, we summarize the fault model, the application
characteristics and some required resources for each of these

Assumptions / FTM PBR LFR TR
Crash v v
Fault Model (FT)
Transient
Application Deterministic v
behaviour (A) State access v
Bandwidth high low nil
Resources (R)
CPU 2 2 1

Fig. 1: Assumptions and fault tolerance mechanisms

FTMs. We consider in the rest of this paper simple implemen-
tation of these mechanisms tolerant to hardware faults. It is
worth noting that solutions to the same fault model (e.g. PBR
and LFR for crash faults) comply with different application
characteristics (e.g. determinism, state access) and require a
different amount of resources (e.g., number of CPU, bandwidth
usage). This means that any evolution leading to a change in
the fault model or the application characteristics implies an
adaptation of the FTMs accordingly.

B. Componentization of FTMs

The idea is to decompose FTM into elementary compo-
nents. Based on Object-Oriented and Aspect-Oriented Pro-
gramming concepts, and following a CBSE approach, an FTM
is divided into three components, Before - Proceed - After.

e Before is responsible for coordination among replicas
(e.g. client request agreement).

e Proceed triggers the execution of the application at-
tached to the FTM.

e After is responsible for the post coordination and
synchronisation among replicas (e.g. checkpointing).

The decomposition of the FTMs is shown in Fig. 2:

FTM Before Proceed After
PBR (primary) Compute Checkpointing
PBR(backup) State update

LFR (leader) Forward request Compute Notify
LFR (follower) Handle request Compute noiilfailzi:?(m
TR Save/restore state Compute Compare

Fig. 2: Generic design for Fault Tolerance Mechanisms

Thanks to this decomposition, only the Before and After
components have possibly to be modified during a transition
from one FTM to another.

C. On-line Adaptation

The concept of AFT implies transitions between FTM
when we observe a change in the parameters FT, A or R.
The transition may involve updating the Before and After
components, or compose mechanisms together dynamically.

Applying CBSE techniques allows us to adapt the FTM while
minimizing the number of changes.

For instance, suppose that at a given point in time an appli-
cation update lead to invalidate the state access assumption. If
the current strategy is PBR then, it must be substituted to LFR.
This implies changing both Before and After components.

Suppose now that, transient faults need to be tolerated.
The LFR strategy must be combined with TR. The Proceed
component of LFR must delegate the computation to the
Before-Proceed-After of TR.

The challenge now is to select a runtime support able to :

e Map components to runtime units and control their
life cycle.

e Manipulate components interaction channels dynami-
cally.

The aim of the rest of this paper is to evaluate to what extent
ROS provides theses features.

III. ADAPTIVE FT OoN ROS

ROS is a middleware for robotics systems such as the PR2!.
It allows the development of a modular software architecture
where each process, known as Node, is a separate entity in both
time and space. Each Node can communicate with another by
Asynchronous messages (7opic) through a publish-subscribe
communication or Synchronous messages (Service). A special
node, called the ROS master is launched in the background to
control communications between application Nodes.

A. Componentization of FTMs with ROS

We consider a Server delivering a service to a Client. The
Server is attached to a FTM at initialization according to the
initial values of FT, A and R parameters. Our main challenge
is to implement the FTM between the Client and the Server
without modifying these nodes (Separation of Concerns).

The Client node interacts with the Server node through
a Prozxy node. The Server node uses a Protocol node to
communicate with the Client proxy. The FTM is implemented
according to the B-P-A framework, each components of this
framework being a node on ROS (cf Fig.2). In practice the final
FTM implementation is composed of four nodes (Protocol-B-
P-A) in addition to the Server node. A Watchdog node is
used on each computer to detected crash faults.

The behavior of the PBR strategy on ROS is the following:

e C(lient sends a request to Proxy (service clt2pxy);

e Proxy adds an identifier to the request and transfers it
to Protocol (topic pxy2pro) of the Primary replica;

e Protocol checks whether it is a duplicate request: if
so, following the “ar_most_once” semantics, it sends
directly the stored reply to Proxy (topic pro2pxy).
Otherwise, it sends the request to Before (service
pro2bfr);

Thttps://www.willowgarage.com/pages/pr2/overview

e Before transfers the request for processing to Proceed
(topic bfr2prd);

e Proceed calls the service provided by the Server
(service prd2srv) and forwards the result to After
(topic prd2aft);

e After gets the last result from Proceed, captures Server
state (service aft2srv), and builds a checkpoint which
is sent to node After of the backup replica (topic
aft2aft_S);

e Protocol gets the result (topics aft2pro) and sends it
to Proxy (topic pro2pxy);

e In the backup replica, After transfers the last result
to its Protocol node (topics aft2pr_S) and updates its
own state with the checkpointed state.

e If the Primary crashes, the Recovery Node reestab-
lishes the connection between the Client and the
Backup becoming now Primary alone (while a new
Backup is not created). The Recovery Node uses a
service (recovery) to reconnect the Protocol node of
the Primary alone server the Proxy of the Client.

MASTER
PRIMARY
CLIENT pro2bir

Jpxy2pro

Before

clt2pxy

ciient |4
Recover

<x0= 7D

Ipro2pxy

CD_M

SLAVE

BACK-UP
pro2bfr
/af2aft

.S

Festorestate

- Service
-~

aft2prs —» Topic
ct2pxy

cd2rec Ipxy2pro Global request

Local request

Fig. 3: Implementation of PBR on ROS

This example shows that ROS provides a convenient exec-
utive support to map a graph of software components, such as
our FTMs. The key point now is to check to what extent ROS
enables the dynamic adaptation of the graph for AFT.

B. Adaptation of FTM

Three types of adaptation can be identified: i) updating the
current FTM, ii) switching from one FTM to another, and iii)
composing the an FTM with another one. The first type implies
a revision of the design or the implementation of the FTM. The
other two are used to comply with parameters evolution (FT,
A or R). In all cases, the same services are required. Some are
provided by ROS or the underlying OS and some have been
developed in-house.

We illustrate adaptation through a composition example.
Our FTMs architecture is designed for composability. With
respect to request processing, a Protocol node and a Proceed
node present the same interfaces: a request as input, a reply as
output. Hence, a way to compose mechanisms is to substitute

the Proceed node of a mechanism by a Protocol and its
associated Before/Proceed/After nodes, as shown in Fig. 4.

| Before |

e

After |

Before |

P p

r r
0‘0

- t t
=R
[c
Oiﬂ
\‘_l\

1

< x< 0 =~ U

After |
P M2

ETM

Fig. 4: Composition of two FTMs

Since ROS does not provide services to manipulate a
component graph at runtime, we have developed an Adaptation
Engine node. Its purpose is to run a script controlling the
adaptation of an FTM. For instance, the composition of a PBR
with a TR mechanism goes through the following steps:

e The Primary Protocol is suspended using the Unix
signal SIGSTOP;

e The Proceed node is killed using a ROS command
(rosnode kill Primary/Proceed);

e The TR nodes (Protocol-B-P-A) are launched (on each
replicas) using a script in XML and a ROS command
(roslaunch TR TR.launch);

e The TR Protocol links itself to the PBR Before topic
and the PBR After one;

e The Primary Protocol is restarted using the Unix
signal SIGCONT.

Note that ROS ensures that messages are not lost during
adaptation. A publisher node buffers all on-going messages
until all its subscriber nodes read them. Thus stoping a node
is safe with respect to communication.

The other types of adaptation are based on a similar
sequence of steps: suspend, substitute, link, and restart. For
an update, only one node may be replaced. For a transition
between two mechanisms only the before and after nodes need
to be changed.

A key issue during adaptation is dynamic binding between
nodes. Two situations may arise: i) a node must subscribe
and/or publish to an existing topic, ii) nodes needs to commu-
nicate through a new topic. These two situations are treated in
the same manner: if a topic does not exists, it is automatically
created by the ROS master when a node starts to publish
to it. However, these bindings are realized during a node
initialization and ROS does not provide commands to change
them afterwards. Thus, to achieve dynamic binding we have
added some ad-hoc APIs to our nodes. With these APIs,
accessed through specific topics, we are able to select to which
topics a node publishes or subscribes to. Note that these ad-
hoc APIs are also useful beside adapation. For example, we
use these APIs to enable the transition that occurs after the
Primary fails (cf. section III-A), in order to dynamically bind
the backup server, and its FTM, to the client.

In summary, AFT is possible on ROS. However, it lacks
some essential features. In our prototype, a node’s life cycle

(stop, start) is controlled directly through Unix signals. Dy-
namic binding is achieved through implementation of custom
methods in the nodes and we have developed a specific node,
called the Adaptation Engine, to orchestrate the adaptation.

IV. CASE STUDY

This section gives some performance results of our ap-
proach on a case study, a Car Control simulation. The experi-
ments have been run on a PC with the following characteristics:
Ubuntu 14.04 Trusty, Processor Intel i5 Dual Cores 2,5 GHz
(20 000 BogoMIP), 16 Go DDR3 of RAM. In the experiments,
initialization, processing, recovery, and adaptation times have
been collected.

We have developed an application to prevent car crashes
like an embedded front radar does in a real car. Several FTMs
have been evaluated. The initialization time is almost the same
for every FTM and it is due to the ROS launch command:
the launch time is around 0.5s (0.4s for LFR and PBR, 0.3s
for TR). The difference is due to the launch time of the
master which controls every communication and establishes
the Topics and the Services.

Even if PBR and LFR have the same number of compo-
nents, the cycle of PBR is around 4ms — 5ms whereas the
cycle of LFR is around 5ms — 6ms. This small difference is
due, in our implementation, to the synchronization between
the Leader and the Follower (requests and notifications). For
instance, when the car is driving at 50km.h~! the impact on
the distance estimation is about 1,4cm.

The recovery time for PBR or LFR corresponds to the time
spent to connect the Protocol node of the slave replica (Backup
or Follower) to the Proxy. The value varies between 1ms and
2ms. Consequently, a Client request won’t be handled during
this time window. For a car driving at 50km.h~!, the car will
go on moving forward for 3cm at most before the front radar
request is processed.

The composition of PBR or LFR with the TR mechanism
increases the number of component running in parallel from
17 to 23. The computing time is around 7ms to 10ms.
The recovering time also correspond to the duration of the
reconnection of the slave replica (Backup or Follower) with
the Client. The composition of FTMs implies launching and
connecting Nodes, so the duration is of the same order of
magnitude of the initialization time (i.e. 0.3s and 0.1s).

This time overhead is one of the main problems with ROS.
In our application, 300ms is an incredibly long reaction time
when a failure occurs. The given results were obtained with all
the cores activated. Reducing the number of cores will scale
up the results accordingly. The performance issue calls for an
optimized implementation of the ROS middleware on (ideally)
a very efficient real-time microkernel.

V. LESSONS LEARNED AND ON-GOING WORK

This work aimed at evaluating to what extent ROS was
an appropriate execution support to implement Adaptive Fault
Tolerance and component-based FTMs. Two positive aspects
emerge: firstly, ROS provides a notion of components at
runtime (Node), a node being a Unix process ; and secondly

both asynchronous and synchronous communication models
are available for nodes interaction.

The negative points are essentially related to the manage-
ment of components and their interaction channels at runtime.
The components are activated even if unused which slows
down execution. So, having multiple applications on the same
computer attached to complex FTMs (e.g. more than 17 pro-
cesses running in parallel per application) is an issue regarding
the implementation of AFT on ROS. A second negative point
is the dynamic binding between ROS nodes. A solution was
found by implementing custom services in nodes. Last but not
least, the control over components execution (e.g. suspend,
activate) required by AFT to modify the component graph at
runtime was missing in ROS. Again, a solution was based on
Unix features and some custom services.

To conclude this paper, ROS is not a perfect executive
support for AFT. While it facilitates the implementation of
our component model for FTM, it lacks some key features
for adaptivity, especially regarding dynamic binding. However,
we have shown in the paper how these weaknesses can be
circumvent with some Unix services and some ad-hoc imple-
mentation. The main drawback is the performance overhead.
A minimized version of ROS with an optimization of the
Nodes execution is required for industrial embedded systems.
Nevertheless, ROS is still a good middleware for a proof of
concept for CBSE concepts and Adaptive Fault Tolerance.

Future work will be carried out in cooperation between
the LAAS-CNRS and Renault-Nissan. The main objective is
the design of an agile development process for fault tolerance
mechanisms in embedded systems. A second objective is
to apply AFT in safety critical applications, in particular,
considering the results of safety critical systems analysis to
determine and classify safety mechanisms. From the classifi-
cation, we aim at defining possible adaptation patterns with
respect to realistic evolution scenario. Last but not least, a
special attention will be paid to the executive support since
the performance of AFT is real issue.

REFERENCES

[1] Jean-Claude Laprie. From dependability to resilience. In 38th IEEE/IFIP
Int. Conf. On Dependable Systems and Networks, pages G8—G9. Citeseer,
2008.

[2] KH Kim and Thomas F Lawrence. Adaptive fault tolerance: Issues
and approaches. In Distributed Computing Systems, 1990. Proceedings.,
Second IEEE Workshop on Future Trends of, pages 38—46. IEEE, 1990.

[3] C Mani Krishna and Israel Koren. Adaptive fault-tolerance fault-
tolerance for cyber-physical systems. In Computing, Networking and
Communications (ICNC), 2013 International Conference on, pages 310—
314. IEEE, 2013.

[4] Jim Highsmith and Alistair Cockburn. Agile software development: The
business of innovation. Computer, 34(9):120-127, 2001.

[S] V Kozaczynski and Jim Q Ning. Component-based software engineering
(cbse). In icsr, page 236. IEEE, 1996.

[6] Clemens Szyperski, Jan Bosch, and Wolfgang Weck. Component-
oriented programming. In Object-oriented technology ecoop’99 work-
shop reader, pages 184—192. Springer, 1999.

[7]1 Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5, 2009.

