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Adaptive Fault Tolerance: Is ROS a Relevant Executive Support ?

Every system evolves in operation. A system that remains dependable when facing changes (new threats, failures, updates) is called resilient. We present advantages of Component-Based Software Engineering technologies for tackling a crucial aspect of resilient computing, namely the on-line adaptation of fault tolerance mechanisms. Then we show how this approach can be implemented on ROS, presently used for robotic and automotive applications, e.g. ADAS. We give some implementation details and result of different experiments to validate the solution. We finally report the lessons learned and the future work targeting resilient computing for automotive applications.

I. INTRODUCTION

A computer system is resilient when it remains dependable when facing changes (new threats, change of fault models, updates of applications) [START_REF] Laprie | From dependability to resilience[END_REF]. At runtime, dependability relies on Fault Tolerance Mechanisms (FTMs). The FTMs are designed and developed to match a fault model specific to an application. This fault model considers both hardware and software faults that may lead to failure modes which impair the correct behavior of the system. In resilient systems, the fault model may evolve during its operational lifetime. Therefore, Adaptive Fault Tolerance (AFT) [START_REF] Kim | Adaptive fault tolerance: Issues and approaches[END_REF] is required to accommodate changes. However, solutions are mostly preprogrammed [START_REF] Mani | Adaptive fault-tolerance faulttolerance for cyber-physical systems[END_REF], FTMs are loaded at the beginning for the entire operational lifetime. Adapting the mechanisms means selecting the appropriate one or tuning them with few parameters (e.g. number of replicas). Adapting provisions for all events and threats a system may encounter throughout its service life is one of the best way to achieve the dependability of the system.

The agile adaptation of FTMs is investigated as an alternative to preprogrammed FT solutions. The term "agile" is inspired from agile software development [START_REF] Highsmith | Agile software development: The business of innovation[END_REF]. Agile adaptation of FTMs enables systematic evolution: according to runtime observations of the system and of its environment, new FTMs can be designed off-line and integrated on-line in a flexible manner, with limited impact on the existing software. In order to develop an agile solution, Component-Based Software Engineering (CBSE) techniques [5][6] are some of the most relevant approaches in developing adaptive FTMs. The idea is to design an FTM as a graph of software bricks that can be removed or changed at runtime. The purpose of this design approach is to change the least amount of "software bricks" for an easier adaptation. This approach maximizes reuse and flexibility, contrary to monolithic replacements of FTMs. Using CBSE techniques, software bricks are components.

The objective of the work reported in this paper is to analyze to what extent ROS (Robot OS) [START_REF] Quigley | Ros: an open-source robot operating system[END_REF] is an appropriate executive support for AFT based on CBSE design concepts.

ROS is an open-source middleware for robotic applications providing a component-based system architecture. Its user base is very large and this middleware is already used for critical applications in industry, e.g. for unmanned military vehicles at NREC (National Robotics Engineering Center, Pittsburgh).

In this paper, we consider two FTM mechanisms tolerating cash faults, Primary Back-Up Replication (PBR) and Leader Follower Replication (LFR), and one targeting transient value faults, namely Time Redundancy (TR). These mechanisms are designed using a CBSE approach and implemented on ROS. We investigate the on-line adaptation of these mechanisms using ROS capabilities and services. We consider three types of adaptations: i) the update of a FTM, ii) the substitution of a FTM by another one, and iii) the composition of several FTMs.

In section II we describe more precisely the concept of Adaptive Fault Tolerance. We detail the software architecture of an FTM on ROS and the various means to make them adaptive in section III. In the next section IV we illustrate our approach on a simple case study. We draw the lessons learnt, mention on-going work and conclude in section V.

II. ADAPTIVE FAULT TOLERANCE

Adaptive Fault Tolerant relies on three essential concepts: Separation of Concern, implying a clear separation between the functional code (i.e. the application) and the non-functional code (i.e. the fault tolerance mechanisms), Componentization, implying the decomposition of the software into a graph of software components, and the Design for adaptation, implying that the software is designed to facilitate its adaptation.

A. Fault tolerance assumptions and requirements

The choice of an FTM attached to an application depends on three class of parameters: The FaulT model (FT), the characteristics of the Application (A) and the Resources of the system (R).

As mentioned in introduction, three FTM have been used in our experiments. PBR (Primary Back-Up Replication) and LFR (Leader Follower Replication) are two variants of a duplex strategy to tolerate crash faults. With PBR, just one replica is active and processes input requests, the backup replica handles state checkpoints. In LFR, both replicas are active and process input request; the leader delivers the outputs. To tolerate transient faults, TR (Time Redundancy) repeats the execution a number of time to detect and tolerate faults.

In Fig. 1, we summarize the fault model, the application characteristics and some required resources for each of these 

B. Componentization of FTMs

The idea is to decompose FTM into elementary components. Based on Object-Oriented and Aspect-Oriented Programming concepts, and following a CBSE approach, an FTM is divided into three components, Before -Proceed -After.

• Before is responsible for coordination among replicas (e.g. client request agreement).

• Proceed triggers the execution of the application attached to the FTM.

• After is responsible for the post coordination and synchronisation among replicas (e.g. checkpointing).

The decomposition of the FTMs is shown in Fig. 2: 

C. On-line Adaptation

The concept of AFT implies transitions between FTM when we observe a change in the parameters FT, A or R. The transition may involve updating the Before and After components, or compose mechanisms together dynamically.

Applying CBSE techniques allows us to adapt the FTM while minimizing the number of changes.

For instance, suppose that at a given point in time an application update lead to invalidate the state access assumption. If the current strategy is PBR then, it must be substituted to LFR. This implies changing both Before and After components. Suppose now that, transient faults need to be tolerated. The LFR strategy must be combined with TR. The Proceed component of LFR must delegate the computation to the Before-Proceed-After of TR.

The challenge now is to select a runtime support able to :

• Map components to runtime units and control their life cycle.

• Manipulate components interaction channels dynamically.

The aim of the rest of this paper is to evaluate to what extent ROS provides theses features.

III. ADAPTIVE FT ON ROS

ROS is a middleware for robotics systems such as the PR21 . It allows the development of a modular software architecture where each process, known as Node, is a separate entity in both time and space. Each Node can communicate with another by Asynchronous messages (Topic) through a publish-subscribe communication or Synchronous messages (Service). A special node, called the ROS master is launched in the background to control communications between application Nodes.

A. Componentization of FTMs with ROS

We consider a Server delivering a service to a Client. The Server is attached to a FTM at initialization according to the initial values of FT, A and R parameters. Our main challenge is to implement the FTM between the Client and the Server without modifying these nodes (Separation of Concerns).

The Client node interacts with the Server node through a P roxy node. The Server node uses a P rotocol node to communicate with the Client proxy. The FTM is implemented according to the B-P-A framework, each components of this framework being a node on ROS (cf Fig. 2). In practice the final FTM implementation is composed of four nodes (Protocol-B-P-A) in addition to the Server node. A W atchdog node is used on each computer to detected crash faults.

The behavior of the PBR strategy on ROS is the following:

• Client sends a request to Proxy (service clt2pxy);

• Proxy adds an identifier to the request and transfers it to Protocol (topic pxy2pro) of the Primary replica;

• Protocol checks whether it is a duplicate request: if so, following the "at most once" semantics, it sends directly the stored reply to Proxy (topic pro2pxy).

Otherwise, it sends the request to Before (service pro2bfr);

• Before transfers the request for processing to Proceed (topic bfr2prd);

• Proceed calls the service provided by the Server (service prd2srv) and forwards the result to After (topic prd2aft);

• After gets the last result from Proceed, captures Server state (service aft2srv), and builds a checkpoint which is sent to node After of the backup replica (topic aft2aft S);

• Protocol gets the result (topics aft2pro) and sends it to Proxy (topic pro2pxy);

• In the backup replica, After transfers the last result to its Protocol node (topics aft2pr S) and updates its own state with the checkpointed state.

• 

B. Adaptation of FTM

Three types of adaptation can be identified: i) updating the current FTM, ii) switching from one FTM to another, and iii) composing the an FTM with another one. The first type implies a revision of the design or the implementation of the FTM. The other two are used to comply with parameters evolution (FT, A or R). In all cases, the same services are required. Some are provided by ROS or the underlying OS and some have been developed in-house.

We illustrate adaptation through a composition example. Our FTMs architecture is designed for composability. With respect to request processing, a Protocol node and a Proceed node present the same interfaces: a request as input, a reply as output. Hence, a way to compose mechanisms is to substitute the Proceed node of a mechanism by a Protocol and its associated Before/Proceed/After nodes, as shown in Fig. 4.

Fig. 4: Composition of two FTMs

Since ROS does not provide services to manipulate a component graph at runtime, we have developed an Adaptation Engine node. Its purpose is to run a script controlling the adaptation of an FTM. For instance, the composition of a PBR with a TR mechanism goes through the following steps:

• The Primary Protocol is suspended using the Unix signal SIGSTOP;

• The Proceed node is killed using a ROS command (rosnode kill Primary/Proceed);

• The TR nodes (Protocol-B-P-A) are launched (on each replicas) using a script in XML and a ROS command (roslaunch TR TR.launch);

• The TR Protocol links itself to the PBR Before topic and the PBR After one;

• The Primary Protocol is restarted using the Unix signal SIGCONT.

Note that ROS ensures that messages are not lost during adaptation. A publisher node buffers all on-going messages until all its subscriber nodes read them. Thus stoping a node is safe with respect to communication.

The other types of adaptation are based on a similar sequence of steps: suspend, substitute, link, and restart. For an update, only one node may be replaced. For a transition between two mechanisms only the before and after nodes need to be changed.

A key issue during adaptation is dynamic binding between nodes. Two situations may arise: i) a node must subscribe and/or publish to an existing topic, ii) nodes needs to communicate through a new topic. These two situations are treated in the same manner: if a topic does not exists, it is automatically created by the ROS master when a node starts to publish to it. However, these bindings are realized during a node initialization and ROS does not provide commands to change them afterwards. Thus, to achieve dynamic binding we have added some ad-hoc APIs to our nodes. With these APIs, accessed through specific topics, we are able to select to which topics a node publishes or subscribes to. Note that these adhoc APIs are also useful beside adapation. For example, we use these APIs to enable the transition that occurs after the Primary fails (cf. section III-A), in order to dynamically bind the backup server, and its FTM, to the client. In summary, AFT is possible on ROS. However, it lacks some essential features. In our prototype, a node's life cycle (stop, start) is controlled directly through Unix signals. Dynamic binding is achieved through implementation of custom methods in the nodes and we have developed a specific node, called the Adaptation Engine, to orchestrate the adaptation.

IV. CASE STUDY

This section gives some performance results of our approach on a case study, a Car Control simulation. The experiments have been run on a PC with the following characteristics: Ubuntu 14.04 Trusty, Processor Intel i5 Dual Cores 2,5 GHz (20 000 BogoMIP), 16 Go DDR3 of RAM. In the experiments, initialization, processing, recovery, and adaptation times have been collected.

We have developed an application to prevent car crashes like an embedded front radar does in a real car. Several FTMs have been evaluated. The initialization time is almost the same for every FTM and it is due to the ROS launch command: the launch time is around 0.5s (0.4s for LFR and PBR, 0.3s for TR). The difference is due to the launch time of the master which controls every communication and establishes the Topics and the Services.

Even if PBR and LFR have the same number of components, the cycle of PBR is around 4ms -5ms whereas the cycle of LFR is around 5ms -6ms. This small difference is due, in our implementation, to the synchronization between the Leader and the Follower (requests and notifications). For instance, when the car is driving at 50km.h -1 the impact on the distance estimation is about 1, 4cm.

The recovery time for PBR or LFR corresponds to the time spent to connect the Protocol node of the slave replica (Backup or Follower) to the Proxy. The value varies between 1ms and 2ms. Consequently, a Client request won't be handled during this time window. For a car driving at 50km.h -1 , the car will go on moving forward for 3cm at most before the front radar request is processed.

The composition of PBR or LFR with the TR mechanism increases the number of component running in parallel from 17 to 23. The computing time is around 7ms to 10ms. The recovering time also correspond to the duration of the reconnection of the slave replica (Backup or Follower) with the Client. The composition of FTMs implies launching and connecting Nodes, so the duration is of the same order of magnitude of the initialization time (i.e. 0.3s and 0.1s).

This time overhead is one of the main problems with ROS. In our application, 300ms is an incredibly long reaction time when a failure occurs. The given results were obtained with all the cores activated. Reducing the number of cores will scale up the results accordingly. The performance issue calls for an optimized implementation of the ROS middleware on (ideally) a very efficient real-time microkernel.

V. LESSONS LEARNED AND ON-GOING WORK

This work aimed at evaluating to what extent ROS was an appropriate execution support to implement Adaptive Fault Tolerance and component-based FTMs. Two positive aspects emerge: firstly, ROS provides a notion of components at runtime (Node), a node being a Unix process ; and secondly both asynchronous and synchronous communication models are available for nodes interaction.

The negative points are essentially related to the management of components and their interaction channels at runtime. The components are activated even if unused which slows down execution. So, having multiple applications on the same computer attached to complex FTMs (e.g. more than 17 processes running in parallel per application) is an issue regarding the implementation of AFT on ROS. A second negative point is the dynamic binding between ROS nodes. A solution was found by implementing custom services in nodes. Last but not least, the control over components execution (e.g. suspend, activate) required by AFT to modify the component graph at runtime was missing in ROS. Again, a solution was based on Unix features and some custom services.

To conclude this paper, ROS is not a perfect executive support for AFT. While it facilitates the implementation of our component model for FTM, it lacks some key features for adaptivity, especially regarding dynamic binding. However, we have shown in the paper how these weaknesses can be circumvent with some Unix services and some ad-hoc implementation. The main drawback is the performance overhead. A minimized version of ROS with an optimization of the Nodes execution is required for industrial embedded systems. Nevertheless, ROS is still a good middleware for a proof of concept for CBSE concepts and Adaptive Fault Tolerance. Future work will be carried out in cooperation between the LAAS-CNRS and Renault-Nissan. The main objective is the design of an agile development process for fault tolerance mechanisms in embedded systems. A second objective is to apply AFT in safety critical applications, in particular, considering the results of safety critical systems analysis to determine and classify safety mechanisms. From the classification, we aim at defining possible adaptation patterns with respect to realistic evolution scenario. Last but not least, a special attention will be paid to the executive support since the performance of AFT is real issue.
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 2 Fig. 2: Generic design for Fault Tolerance Mechanisms

  If the Primary crashes, the Recovery Node reestablishes the connection between the Client and the Backup becoming now Primary alone (while a new Backup is not created). The Recovery Node uses a service (recovery) to reconnect the Protocol node of the Primary alone server the Proxy of the Client.
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 3 Fig. 3: Implementation of PBR on ROS

https://www.willowgarage.com/pages/pr2/overview