Xueyi Zou 
email: xz972@york.ac.uk
  
Validating Unmanned Aerial Vehicle Sense and Avoid Algorithms with Evolutionary Search

Keywords: Validation, Sense and Avoid, Evolutionary Search, Agent-Based Simulation, Challenging Situations. I

The integration of Unmanned Aerial Vehicles (UAVs) into civilian airspace requires UAVs to provide a Sense and Avoid (SAA) capability to stay safe. Given their safetycritical nature, SAA algorithms must undergo rigorous validation before deployment. The validation of UAV SAA algorithms involves identifying some rare challenging situations that the algorithms have difficulties in handling. By borrowing ideas from Search-Based Software Testing research, I explore the idea of using evolutionary search to automatically identify rare challenging situations for SAA algorithms. An approach is proposed that combines agent-based simulation and evolutionary search. Preliminary evaluation results by case studies show that the proposed approach is able to automatically identify such situations and it has the potential to be more efficient than some plausible rivals. Directions are also identified for future research.

INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are attracting the attention of innovators and companies due to their huge potential for civilian and commercial uses. Several large technology companies are testing UAVs for delivering goods (e.g. Amazon's Prime Air project, and Google's Project Wing), providing Internet access (e.g. Facebook Connectivity Lab's work), etc., and they are seeking to get permits to operate UAVs beyond visual line of sight. Once such operation is allowed, manufacturers and operators will race to exploit UAVs for many applications, and future airspace is likely to be crowded with all kinds of UAVs. Air traffic management for these UAVs will be a major concern, particularly because of the increased opportunity for unsafe encounters.

To make safe operation possible, UAVs must provide a Sense and Avoid (SAA) capability, which, according to FAA's "Integration of Civil Unmanned Aircraft Systems (UAS) in the National Airspace System Roadmap" [START_REF]Integration of Civil Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) Roadmap[END_REF], is defined as: "The capability of a UAS to remain well clear from and avoid collisions with other airborne traffic. Sense and Avoid provides the functions of self-separation and collision avoidance to establish an analogous capability to 'see and avoid' required by manned aircraft."

By its name SAA can be understood as the combination of two parts: the "sense" part and the "avoid" part. For the "sense" part, UAVs must be able to surveil surrounding airspace and to detect and track threats by means of Radar, camera, and ADS-B1 etc. For the "avoid" part, according to the FAA's definition, UAVs must be capable of avoiding accidents with other air traffic by two means (sub-functions): selfseparation and collision avoidance.

These two sub-functions of "avoid" form a safety barrier of two layers. In the first layer (i.e. self-separation), UAVs strategically plan their flight paths to resolve conflicts with each other (and potentially with conventional aircraft) and maintain a defined safe separation distance. If this safe separation is predicted to be violated or the collision risk is predicted to be higher than a defined threshold, the second layer (i.e. collision avoidance) will provide tactical evasive maneuvers for the UAVs to avoid an imminent collision. Both layers function in a similar way -each UAV uses its situation awareness to calculate and execute a change to its flight path to avoid violation of safe separations or collisions. Usually, collision avoidance algorithms deal with pair-wise encounters and take no account of restoring the UAVs to their original flight paths, while self-separation algorithms deal with multi-UAV (two or more) encounters and need to take the recovery to the intended flight path into account.

My research mainly focuses on the "avoid" part, that is, the decision-making and maneuvers the UAVs take to avoid midair accidents. UAVs are assumed to be equipped with ADS-B so that they have good sensing capability. However, sensing uncertainty will also be considered in analyzing the decisionmaking algorithms.

A wide variety of aircraft (or robots, agents) collision avoidance approaches (e.g. [START_REF] Richards | Aircraft trajectory planning with collision avoidance using mixed integer linear programming[END_REF][START_REF] Kochenderfer | Robust airborne collision avoidance through dynamic programming[END_REF][START_REF] Jenie | Selective velocity obstacle method for cooperative autonomous collision avoidance system for UAVs[END_REF]) and conflict resolution approaches (e.g. [START_REF] Menon | Optimal strategies for freeflight air traffic conflict resolution[END_REF][START_REF] Ghosh | Maneuver design for multiple aircraft conflict resolution[END_REF][START_REF] Van Den Berg | Reciprocal n-Body Collision Avoidance[END_REF]) that have been proposed in the fields of air traffic management, automatic control, and mobile robotics have the potential to be adapted for UAV SAA use. However, given the strict safety requirements of the aviation sector, an algorithm cannot be accepted and deployed for UAVs without rigorous validation.

In my research, as case studies, I focus on the validation of the following three SAA algorithms:  A simple 2D collision avoidance algorithm named Selective Velocity Obstacle (SVO) [START_REF] Jenie | Selective velocity obstacle method for cooperative autonomous collision avoidance system for UAVs[END_REF];

 A prototype of an industrial level collision avoidance algorithm, i.e. ACAS XU [START_REF] Kochenderfer | Robust airborne collision avoidance through dynamic programming[END_REF];

 An open-source multi-UAV conflict resolution algorithm named ORCA-3D [START_REF] Van Den Berg | Reciprocal n-Body Collision Avoidance[END_REF].

One of the major criteria for choosing the SAA algorithms is whether they have the potential to be used in real applications. The availability of open-source implementations is another concern.

II. CHALLENGES FOR SAA ALGORITHMS VALIDATION

For the validation of SAA algorithms, both flight tests and simulation studies are required. Flight tests evaluate the system in actual operation environments, but can only be conducted in few situations due to time, cost and safety constraints. Simulation studies, however, can be conducted to test the system in various situations to find system deficiencies, albeit subject to limitations in the fidelity of the simulation. In addition, if the simulated situations are representative of the actual operations, then probabilities of different events, such as accident rate, can be estimated by Monte-Carlo techniques.

My research focuses on simulation studies. With respect to validating SAA algorithms through simulations, there are some specific requirements and challenges:

1. To reveal as many faults as possible, a wide range of diverse test situations should be generated and simulated. It is important to favour situations that have a high likelihood of causing undesired behaviours of the validated system; otherwise, computation cost is wasted in evaluating normal behaviours.

2.

A second challenge is "situation coverage" -testing the maximum proportion of potentially dangerous situations that the system could ever encounter [START_REF] Alexander | Situation coverage-a coverage criterion for testing autonomous robots[END_REF]. Monte-Carlo techniques test situations generated according to statistical aircraft encounter models (e.g. [START_REF] Kochenderfer | Airspace encounter models for estimating collision risk[END_REF] for manned aircraft) to cover the operation situations probabilistically. However, to build representative encounter models is very difficult and heavily relies on a large volume of realistic radar data, which may not exist for UAVs (After all, there are not many UAVs in the airspace at the moment and UAV encounters are even rarer).

3. A third challenge is simulation fidelity, in particular whether there are faults in the system that the simulation cannot reveal because they depend on details that are not modelled. What's more, to model situations with moderate fidelity (e.g. to model the wind effects on collision avoidance systems), many control variables are needed. As a result, a huge number of possible situations need to be simulated and evaluated;

4. Finally, with SAA algorithms the happening of a midair collision is very rare. It is also non-deterministic because of the influence of modelled random factors. As a result, a large number of simulation runs are needed to get a good estimation of the system performance (e.g. mid-air collision rate).

III. SEARCH-BASED SOFTWARE TESTING

Search-Based Software Testing (SBST) [START_REF] Mcminn | Search-based software testing: Past, present and future[END_REF] considers software testing as an optimization problem and applies metaheuristic search techniques, such as Genetic Algorithms (GAs) [START_REF] Goldberg | Genetic algorithms and machine learning[END_REF], simulated annealing [START_REF] Eglese | Simulated annealing: a tool for operational research[END_REF] and tabu search [START_REF] Glover | Tabu search: A tutorial[END_REF], to solve the optimization problem. In order to apply a search-based optimization technique to a testing problem, two key requirements need to be fulfilled [START_REF] Mcminn | Search-based software testing: Past, present and future[END_REF][START_REF] Harman | Search-based software engineering[END_REF][START_REF] Harman | The current state and future of search based software engineering[END_REF]:

1. Solution representation. The candidate solutions for the testing problem must be able to be encoded so that they can be manipulated by the search algorithms. In the case of GAs, the solution representation is usually encoded as arrays of elements (e.g. float numbers) named chromosomes or genomes.

Fitness function.

There should be a way to define a problem-specific fitness function that guides the search to promising areas of the search space. In the case of GAs, a fitness function is used to compare individual solutions and to guide the selection of the fittest ones.

SBST is increasingly used to generate test data for functional or structural testing, prioritize test cases, reduce human oracle cost, optimize software test oracles, minimize test suites etc. [START_REF] Mcminn | Search-based software testing: Past, present and future[END_REF]. SBST has two main advantages:

1. It can generate test cases satisfying certain requirement that human have difficulties in generating;

2. It can automate or partially automate the software testing process.

IV. RESEARCH PROBLEM AND RESEARCH METHOD

The development of SAA algorithms is an iterative process by improving the algorithms based on simulation results. The process terminates only when the algorithm meets certain quantitative performance requirements.

Monte-Carlo techniques have the advantage of deriving such probabilities, but since the state space is very large on the one hand and some events are very rare on the other hand, it is very costly in term of computation resource and time. In addition, as been said, it requires a good statistical encounter model, which does not yet exist for UAVs.

As a compliment, rather than deriving probabilities of certain events, we can search for situations where certain undesired events for the SAA algorithm happen and then analyze the situations to decide whether the undesired events are unavoidable in such cases. If we decide the undesired events should not have happened, then the algorithm needs improvement. But if we have searched enough but still cannot find any undesired events, we can then be more confident that the undesired event will not happen, or we can further evaluate the system using Monte-Carlo simulations. Such an approach can contribute to the fast iteration and validation of the algorithms.

By borrowing ideas from SBST, I explore the idea of using evolutionary search (e.g. GAs) to automatically identify rare challenging situations for the SAA algorithms.

The proposition of my research is defined as follows:

The validation of UAV SAA algorithms involves identifying some rare challenging situations that the algorithms have difficulties in handling. It is possible to identify such situations using evolutionary search. By this way, the validation process has the potential to be partially automated and be more efficient than some plausible rivals.

The main research methods are:  Demonstration through case studies: I will demonstrate the use of the proposed approach (see next section) on three SAA algorithms (i.e. SVO, ACAS X, and ORCA-3D). SVO is relatively simple and is used as a preliminary demonstration and evaluation of the proposed approach. ACAS X and ORCA-3D are a collision avoidance algorithm and a conflict resolution algorithm respectively and are more complex. The latter two also have some additional requirements for the proposed approach.

 Evaluation by contrast experiments: I will conduct contrast experiments to compare the proposed approach with some plausible rivals (mainly randomsearch-based approaches) in terms of efficiency in finding required challenging situations.

V. PROPOSED APPROACH

I propose an approach to efficiently identifying rare challenging situations where certain undesired events for the SAA algorithm happen, for example, identifying situations where accident rate is significantly higher than others. If found, the challenging situations can be further analyzed and act as the start point for improving the algorithm. If not found, it will gain confidence that the algorithm is safe.

The approach is shown schematically in Fig. 1. In this approach, the space of all possible encounter scenarios of the SAA algorithm is unknown, but every single scenario of it can be parameterized. Since some parameters (e.g. UAV speed, heading) can be assigned a continuous value, the search space is infinite. The parameterized scenarios can then be encoded as genomes for the use of evolutionary search. The genomes configure scenarios, based on which encounter scenarios can be generated for simulating by a scenario generator. The generated scenarios are evaluated by running simulations and the result as fitness is passed to the evolutionary search. According to the fitness, the evolutionary search evolves the encoded scenarios in order to get a higher fitness in the next iteration. The process iterates until a scenario with the desired fitness is found or the allotted time is over.

The proposed approach is quite general and could be used to search for any situations where certain events happen. The only requirement is that a proper fitness function can be defined to quantify the extent to which any generated scenario agrees with the searched-for situations. A good fitness function should provide a higher quantitative value for more agreed situations than less agreed ones. Use this value as a heuristic, evolutionary search algorithms can possibly guide the search to increasingly promising areas of the search space. I use MASON 2 , an open-source agent-based simulation platform in Java, as the simulation framework. Agent-based simulation is selected for two main reasons: (1) it naturally models the multi-body interaction problem; and (2) it is already widely used in air traffic simulations. MASON was chosen mainly because it is open-source and the user can easily control the fidelity of the simulation so that it can be run faster than real-time. I implemented the evolutionary search by using ECJ 3 , which is an open-source Java-based evolutionary computation system. With ECJ, it is convenient to define specific evolutionary search algorithms (e.g. GAs) by a user-provided parameter file.

VI. PRELIMINARY RESULTS

In [START_REF] Zou | Safety Validation of Sense and Avoid Algorithms Using Simulation and Evolutionary Search[END_REF] the proposed approach was applied to SVO. Two experiments were conducted. In the first experiment, we used both random search and GA [START_REF] Goldberg | Genetic algorithms and machine learning[END_REF] to find mid-air collisions where UAVs have perfect sensing ability. We found GA can find some faults (here, interesting problems with SVO) that random search takes a long time to find. The second experiment added sensor noise to the model. Random search found similar problems as it did in the first experiment, but GA found some interesting new problems. The two experiments show that the proposed approach has the potential for validation of SAA algorithms and it is more efficient in finding some subtle faults than random search.

In [START_REF] Zou | A Testing Method for Multi-UAV Conflict Resolution Using Agent-Based Simulation and Multi-Objective Search[END_REF] the proposed approach was applied to test a multi-UAV conflict resolution algorithm (i.e. ORCA-3D). We have formulated the problem as a multi-objective search problem, with two objectives: finding air traffic encounters that (1) are able to reveal faults in conflict resolution algorithms, and (2) are likely to happen in the real world. To find encounters meeting the two objectives, we use an evolutionary multiobjective search algorithm (specifically, NSGA-II [START_REF] Deb | A Fast Elitist Nondominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II[END_REF]). We compared the proposed method's performance against a plausible random testing approach. The experiment results show that the proposed method can find the required encounters whereas the random testing approach failed to do so in reasonable time.

VII. FUTURE DIRECTIONS

As explained before, I plan to apply the proposed approach to a prototype of an industrial level collision avoidance algorithm named ACAS X [START_REF] Kochenderfer | Robust airborne collision avoidance through dynamic programming[END_REF]. ACAS X was developed by a model-based optimization approach, where the collision avoidance logic is automatically generated based on a probabilistic model and a set of preferences [START_REF] Kochenderfer | Robust airborne collision avoidance through dynamic programming[END_REF]. It has the potential for safety benefits and shortening the development cycle, but it poses new challenges for system validation. I have identified the challenges in a newly submitted and accepted paper [START_REF] Zou | On the Validation of a UAV Collision Avoidance System Developed by Model Based Optimization: Challenges and a Tentative Partial Solution[END_REF]. More research work is needed to apply the proposed approach to identify gaps between the model and the real operational environment that can cause a major system performance degradation.

A limitation of our proposed approach is that it only directly identifies discrete situations (points in the search space) that show problems. It might be possible to extend the approach to instead find areas of the search space that show certain properties (e.g. having high accident rate). Data mining techniques, such as clustering [START_REF] Carlson | A clustering approach to improving test case prioritization: An industrial case study[END_REF], could potentially be used to analyse the logged data to find such areas.

Fig. 1 .

 1 Fig.1. A search based approach to identifying challenging situations.

ADS-B (Automatic Dependent Surveillance-Broadcast) is a cooperative surveillance technology with which a UAV will send its real time information, such as position and velocity, to its peers via a radio frequency.

http://cs.gmu.edu/~eclab/projects/mason/

http://cs.gmu.edu/~eclab/projects/ecj/

ACKNOWLEDGMENT

Xueyi Zou would like to thank the China Scholarship Council (CSC) for its partial financial support for his Ph.D. study.