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Abstract7

In order to control the sound radiation by a structure, one aims to control vibration of radiating
modes of vibration using “Energy Pumping” also named “Targeted Energy Transfer”. This principle
is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled
by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is
made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass
fixed at its center having two equilibrium positions. The experiments showed that, once attached
onto a vibrating system to be controlled, under forced excitation of the primary system, the light
bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude
and frequency range around the first two vibration modes of the system.

Keywords: Noise Reduction, Energy Pumping, Nonlinear Absorber, Bi-stable Attachment,8

Buckled Beam.9

1. Introduction10

Despite active work along the years, reducing noise is an attractive topic because it allows, for11

example, improved fatigue resistance with a consequent reduction in maintenance costs and noise12

reduction resulting in increased comfort. Many active and passive devices have been developed to13

improve the vibroacoustic behaviour of mechanical assemblies such as double-leaf walls.14

In the passive domain, for example, the absorption of acoustic waves is typically accomplished15

through the absorbent material placed on the domain walls. The effectiveness of the device depends16

strongly on the frequency of the waves to be absorbed. To mitigate structural vibration, the Frahm17

absorber [1], consisting of a mass-spring-damper system, tuned to the frequency of vibration to18

eliminate is very efficient but has a limited frequency range of effectiveness [2]. Passive nonlinear19

Energy Pumping is a way to overcome such a limitation. Since the seminal work by Gendelman et20

al. [3, 4], because of its various and numerous applications, the problem of passive nonlinear energy21

pumping has become a subject of growing interest [5]. The simplest case requires consideration22

of a linear mechanical or acoustical system connected to a secondary oscillator having a strongly23

non linear stiffness (typically a cubic one). This attachment is usually termed as nonlinear Energy24

Sink (NES). This kind of non linearity corresponds to a resonance of the NES that varies with the25

amplitude of excitation. This enables a passive non linear energy transfer that is realized through26

resonance capture at high energy value [4]. Passive non linear energy transfer from the primary27

system to the NES occurs under resonance condition once the NES amplitude rises above a certain28
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threshold; reverse energy flow from the NES to the primary system is prevented because of resonance29

escape due to the energy decrease induced by dissipation. The existence of such threshold in purely30

cubic or quintic NES can be viewed either as advantage either as disadvantage depending upon31

application. But the main feature of energy pumping lies in the fact that the higher the frequency32

of the primary linear system to control, the higher the amplitude for efficient non linear passive33

dissipation.34

To date a wide variety of NESs have been proposed and tested: pure cubic spring in mechanical35

systems [5], membrane acting as cubic or quintic spring in acoustical systems [6], loudspeaker used as36

a suspended piston acting as an essentially nonlinear oscillator [7]. A numerical work by Gourdon37

and Lamarque [8] suggest that a NES described by a nonlinear Duffing equation with negative38

stiffness, acting as a chaotic system, is able to achieve energy pumping for low energy level. The39

recent theoretical and numerical work by Savadkoohi et al [9] and Manevitch et al [10, 11] showed40

that a bi-stable nonlinear oscillator manifests significant advantages with respect to energy pumping41

efficiency. We have developed an experimental nonlinear bi-stable absorber made of a small mass42

fixed at the midspan of a buckled beam, similar to that proposed in [11], that provides improved43

efficiency in frequency and excitation range over existing passive devices.44

In order to control the sound radiation by a panel, one aims to control vibration of radiating45

modes of vibration using energy pumping. This principle is here applied to a simplified model of46

a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is47

connected to the nonlinear resonator. This nonlinear resonator is made of a 3D-printing support48

on which is clamped a buckled thin beam with a mass fixed at its middle. The main feature of this49

nonlinear resonator lies in the buckling that allows a bi-stable comportment easy to control, in the50

following it is denoted by bi-stable attachment (BSA) . Our experimentations show that this simple51

device leads up to more than 10 dB attenuation for the first two vibration modes of the system.52

An optimization made on a simplified model of the device by a parametric study of the influence53

of dissipation is conducted. We show that for a wide range of configurations with one nonlinear54

dynamic absorbers, a reduction up to more than 10 dB of the vibration of the primary system55

around its first two resonances is obtained.56

Sec. 2 is devoted to the description of the experiment. In Sec. 3 a simplified model is established.57

In Sec. 4 experimental and numerical results show the efficiency of the nonlinear absorber to58

attenuate the vibration of the primary linear system. The conclusions are given in Sec. 5.59

2. Experimental Fixture60

Since our aim was to describe the main feature of a double leaf wall close to its mass-air-mass61

resonance, we have chosen to make a simplified but representative experiment. A photograph of62

the fixture is given in Fig. 1 and a sketch of it is given in Fig. 2. Each panel is replaced by a63

cantilever viscously damped beam whose dimension had been chosen to recover the feature of the64

panel. Each beam is made of steel with Young modulus Eb = 185 GPa, volume mass density65

ρb = 7621 kg/m3 and viscous damping µb = 0.1 kg/s. Its dimensions are given by its thickness66

that is hb = 4.2 mm and its height that is eb = 2.52 cm ; its length L = 35 cm is comparable to67

the half size of a double leaf panel made with BA13 plaster plates fixed on vertical studs whose68

spacing is generally recommended to be close to 60 cm. The two beams are connected by a coupling69

spring with mass mc = 6 g and stiffness rc = 2200 kg.s−2 corresponding to the stiffness of the air70

gap separating two panels in usual conditions. This spring is located close to the free end of the71

beams at xN = 34.5 cm. The excitation is made by a non-contact driver located at x0 = 3.5 cm72
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Figure 1: Photograph of the experiment. In that experiment, only one BSA is active. The second remains fixed.

of the clamped end of a beam. The BSA consists in a small mass (here a mass m0 = 2.6 g had73

been chosen) fixed at the middle of very thin buckled viscously damped steel beam with Young74

modulus E = 200 GPa and volume mass density ρ = 7800 kg/m3 ; its length is ℓ = 10 cm, its75

thickness is h = 0.1 mm and its height is e = 5 mm. The buckled beam is rigidly fixed at its76

ends to an ABS (Acrylonitrile Butadiene Styrene) support made by a 3D-printer. The support is77

fixed close to the end the cantilever beam at xN = 34.5 cm. The total weight of the each BSA78

is MN = 32 g. It is worth noting that the viscosity of BSA buckled beam can be defined in line79

with that of the primary one as µ = 0.1 kg/s, but as shown later on, most of the damping of the80

BSA is induced by its support and the actual value of the BSA damping will be deduced from81

experimental measurement. To ensure a symmetry in the system a support is fixed at the end of82

each of the cantilever beam, but only one supports an active BSA, the other remains blocked all83

along the experiment.84

The first two modes of this system are obtained for the in-phase (close to 22 Hz) and the out-85

of-phase (close to 39 Hz) movement of the first mode of each cantilever beam. The displacement86

of the cantilever beam is measured by a Keyence CCD Laser Displacement Sensor LK-G 32. The87

displacement of the BSA is measured by a a Keyence CCD Laser Displacement Sensor LK-G 8288

and its velocity by Polytech Laser Doppler Vibrometer OVF-303.89

3. Simplified Model of the Fixture90

Since our aim is to study the nonlinear dynamics of the system around its two first modes,91

we have chosen to approximate the continuous model by a simplified three or four degrees of92

freedom (dof) that capture the main features of the physical device. As can be seen below, despite93

the strong approximations, this simplified model is able to recover the whole dynamics of the94

experimental fixture. This allows to make a simplified parametric study able to put in light the95
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Figure 2: Sketch of the experiment.

principal parameters acting on the system. We start by presenting the model of the two coupled96

cantilever beams with a BSA attached close to their free ends. The second part is devoted to the97

damped buckled beam approximation for the BSA, its limits and the way to overcome them.98

3.1. Approximation of the coupled beams displacement99

Let us consider two identical cantilever beams (denoted hereafter by beam 1 and beam 2) coupled100

by a spring close to their free ends at x = xN . This spring has a stiffness rc and a mass mc. To101

simplify, one can consider that half of the spring mass is attached to each beam. Also, a point mass102

MN is fixed at x = xN . Under the classical Euler-Bernoulli hypothesis, if only the first beam if103

excited by an external force, the displacement of the beams w1(x, t) and w2(x, t) are the solutions104

of105

EbIb
∂4w1(x, t)

∂x4
+ µb

∂w1(x, t)

∂t
+
(

ρbSb +
(

MN +
mc

2

)

δxN
(x)
) ∂2w1(x, t)

∂t2
(1)

+rcδxN
(x) (w1(x, t)− w2(x, t)) = F (t)δx0

(x),

EbIb
∂4w2(x, t)

∂x4
+ µb

∂w2(x, t)

∂t
+
(

ρbSb +
(

MN +
mc

2

)

δxN
(x)
) ∂2w2(x, t)

∂t2
(2)

−rcδxN
(x) (w1(x, t)− w2(x, t)) = 0,

with Ib = ebh
3
b/12 and Sb = ebhb. δxN

(x) is the Dirac delta distribution located at x = xN . If Ht(t)106

is the Heaviside unit step function, then one defines F (t) = AHt(t) cos(ωt) as the sinusoidal forcing107

at a frequency f starting at t = 0. ω = 2πf is the angular frequency. To these equations, one adds108

initial conditions w1,2(x, t = 0) = 0 and ∂w1,2(x, t = 0)/∂t = 0, ∀x ∈ [0, L] and boundary conditions109

for the displacement w1,2(x = 0, t) = 0, ∂w1,2(x = 0, t)/∂x = 0, ∂2w1,2(x = L, t)/∂x2 = 0,110

∂3w1,2(x = L, t)/∂x3 = 0, ∀t ≥ 0.111

Since only low frequency movement is considered, the two coupled beams dynamics is described112

by a simplified system with two degrees of freedom. At low frequency, each displacement w1,2(x, t)113
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is expanded as w1,2(x, t) = φ1(x)u1,2(t), where φ1(x) is the first mode of the cantilever beam.114

Introducing these expansions in the two coupled equation 1 and 2 together with a Ritz reduction115

leads to a system of two coupled differential equations:116

m1ü1(t) + µbu̇1(t) + k1u1(t) + kc(u1(t)− u2(t)) = φ1(x0)F (t) (3)

m1ü2(t) + µbu̇2(t) + k1u2(t)− kc(u1(t)− u2(t)) = 0, (4)

u̇i(t) is the time derivative of each component ui(t). In these equationsm1 = ρbSb+
(

MN + mc

2

)

φ2
1(xN )117

represents the total dynamic mass and kc = rcφ
2
1(xN ) the dynamic coupling stiffness.118

3.2. Approximation of the BSA displacement119

2 b

l

m0

Figure 3: Sketch of the BSA geometry.

A thin viscously damped fixed-fixed beam with a small mass m0 fixed at its center when buckled
under axial constraint N has a geometric nonlinearity. Thereafter, one considers that, in our case,
the axial load is in-between the first two critical loads, allowing only the first stable buckled mode to
exist. Then the beam has a static buckled configuration with two symmetrical equilibrium positions
as presented in Fig. 3. b is the rise at the midspan of the beam that depends on the constraint N .
Accounting for thin structure large displacement is classically made by using the Von Kármán’s
nonlinear plate theory [12, 13, 14]. As shown in the Appendix A, a simple change of variable
together with a Ritz reduction transforms the nonlinear partial differential equation governing the
beam displacement dynamics of the BSA into a one dof Helmholtz-Duffing nonlinear equation for
the non-dimensional BSA displacement q̃(t̃):

(3/8 + β)¨̃q(t̃) +
3

8
µ̃ ˙̃q(t̃) +

b̃2π4

4

(

q̃(t̃) +
3

2
q̃(t̃)2 +

1

2
q̃(t̃)3

)

=
1

b̃2
Ht̃(t̃) cos(ω̃t̃)

∫ 1

0

F̃ (x̃)w̃0(x̃)dx̃ (5)

It is easy to show that this equation has three equilibrium points. Two are stable (0 and -2)120

corresponding to each buckled position. One is unstable (-1).121

The obvious counterpart of the simplified description of the buckled beam dynamics is that this122

single mode approximation does not allow to describe the whole dynamics of the BSA. A simple123

linear analysis of the buckled beam, obtained by dropping the quadratic and cubic terms in Eq. (5),124

leads to a linear resonance frequency of b̃π
2

2
/
√

3
8
+ β that shows a linear dependence in b̃. Since125

in our case, b̃ ≈ 81, we obtain a physical value of f̌ th
Nl ≈ 352 Hz. The measurement of the first126

natural linear resonance of the BSA gives f̌e
N1 ≈ 36 Hz. This shows an obvious strong deviation127

of the theoretical model from the experimental one. As observed by Kreider and Nayfeh [13], the128

single mode approximation is valid only for very low values of b̃ < 2. If one computes the exact129
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linear undamped natural frequencies for a buckled beam [13], one obtains for b̃ ≈ 81 an exact value130

of about f̌ th
Nl ≈ 39.7 Hz, closer to the measured one. It is worth noting that the point mass at131

the beam centre lowers the natural frequencies of the symmetric buckling modes. Since our aim132

is to keep the model as simple as possible, we have decided to retain Eq. (5) but with its physical133

parameter (stiffness and damping) estimated from a measure of the first linear resonance of the134

BSA. As presented in the next paragraph for the linear coupled beams, one obtains the experimental135

linear resonance by identification of the linear response of the BSA around its first resonance to a136

Lorentzian singly peaked function. One obtains fN1 = f̌N1 − ıf̂N1 ≈ 35.7 − ı0.3 Hz. The value of137

the damping ratio ζ = f̂N1/f̌N1 ≈ 0.8% is about 20 times greater than steel’s natural damping,138

since it is of the same order as that of the BSA support damping which is made of ABS and which139

has been measured close to 1.5%, most of the BSA’s damping is given by its support.140

Then returning to the physical parameter, one obtains the following nonlinear differential equa-
tion for the BSA movement q(t)

mN q̈(t) + µN q̇(t) + kNF (q(t)) = AHt̃(t̃) cos(ω̃t̃), (6)

where mN = (3/8ρAℓ + m0) is the dynamic mass, µN = 4πmN f̂N1 is the identified dynamic141

damping and kN = (2πf̌N1)
2mN is the identified dynamic stiffness. In this equation, the non linear142

stiffness is given by F (q(t)) = (q(t)− b) + 3/(2b) (q(t)− b)
2
+ 1/(2b2) (q(t)− b)

3
. The solution of143

this equation was calculated without any particular difficulty under the Mathematica [15] software144

by using the built-in numerical differential equation solving function “NDSolve”.145

This BSA was fixed to a measurement shaker. In order to measure its velocity nonlinear fre-146

quency response function, the following experimental procedure had been set on: the excitation147

frequency varies from 13 Hz to 40 Hz using 101 frequency steps while the amplitude varies from148

0.1 V to 1.25 V using 24 voltage steps. For each pair frequency/amplitude the signal is set on, 10 s149

after the beginning of the signal, the time record starts at a sampling rate of 4096 Hz for a duration150

of 10 s. 7 s after the beginning of the recording, the excitation is stopped. This procedure allows151

recording 7 s of stabilized signal and 3 s of transient state. After the end of the recordings, the BSA152

returns to one of its equilibrium position. Then one waits 10 s more to keep the system calm. Each153

measurement takes 30 s, allowing an experimental set to be completed by 12 hours. The velocity of154

the moving mass located at the middle of the BSA was measured using a non contact laser vibrom-155

eter (Polytech OVF-303). When necessary, the velocity data was converted to displacement using156

numeric integration using the cumulative trapezoidal numerical integration function in Matlab.157

One presents below three-dimensional plots of the measured (see Fig. 4 (a)) and computed158

(see Fig. 4 (b)) frequency response for the displacement of the mass at the middle of the BSA.159

In both cases the frequency response was computed using a root mean square value (RMS) of the160

displacement over the RMS amplitude excitation. These RMS values were calculated by taking the161

last three seconds of the 7 s long stabilized signal. For the two figures, the frequency ranges from162

13 Hz to 40 Hz using 101 frequency steps while, since there is no clear correspondence between the163

excitation amplitude for the model and the experimental one, the amplitude range of the model164

was adjusted to fit with that of the experiment, here 24 amplitude steps were used for the model165

to be in line with the experimental set up.166

This result shows that on the whole, the simplified 1 d-o-f model is able to recover the main167

features of the BSA: softening a low amplitude, resonance at 1/2 the natural frequency induced by168

the quadratic non linear term, strong displacement values for a large amplitude-frequency domain,169

chaotic movement over a large amplitude-frequency range. Obviously some features are not captured170
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(dB)

(a)

(dB)

(b)

Figure 4: Frequency response of the RMS value for the measured (a) and computed (b) BSA displacement
20 log(q̃RMS/ARMS) vs frequency and amplitude. On both curves, the thin black curves are separated by 5 dB.

by this simplified model: the strong displacement values computed do not fit well with the measured171

ones at the highest frequencies, also the damping model is not satisfactory since while the value for172

the BSA damping, which was estimated from the linear resonance, gives satisfactory results at low173

amplitude, it should have been increased to keep q̃RMS/ARMS in line with the highest amplitude174

of the experimental data, but in that case the damping model could not have been described by175
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the viscous linear model used here. To see in more details the measured and computed behaviour,176

we present in the Appendix B results for some chosen experimental amplitude-frequency pairs and177

their corresponding computed pairs.178

3.3. The full system179

The complete system corresponding to the two coupled primary beams (with displacement u1(t)180

and u2(t)) solution of equations 3 and 4) with two BSAs fixed at each primary beam end (with181

displacement q̃1(t) and q̃2(t), solution of Eq. (6)) is given by182

m1ü1(t) + µ1u̇1(t) + k1u1(t) + kc(u1(t)− u2(t))

−µN (q̇1(t)− φ1(xN )u̇1(t))− k1NF (q1(t)− φ1(xN )u1(t)) = Aφ2
1(x0)F (t) (7)

m1ü2(t) + µ1u̇2(t) + k1u2(t)− kc(u1(t)− u2(t))

−µN (q̇2(t)− φ1(xN )u̇2(t))− k2NF (q2(t)− φ1(xN )u2(t)) = 0 (8)

mN q̈1(t) + µN (q̇1(t)− φ1(xN )u̇1(t)) + k1NF (q1(t)− φ1(xN )u1(t)) = 0 (9)

mN q̈2(t) + µN (q̇2(t)− φ1(xN )u̇2(t)) + k2NF (q2(t)− φ1(xN )u2(t)) = 0 (10)

with F (t) = AHt(t) sin(ωt), where A is the given excitation amplitude. When a BSA is not active183

as in the experimental results presented below, only the BSA fixed on the excited beam is active184

while the other remains blocked, then the system of four coupled nonlinear differential equations185

given by Eq. (7), (8), (9) and (10) is simply reduced to a three-equations system given by Eq. (7),186

(9) and (8) in which not only the non linear term k2NF (q2(t)− φ1(xN )u2(t)) but also the viscous187

term µN u̇2(t) had been deleted.188

The solutions u1(t), u2(t) and q1(t) of the system given by Eq. (7), (8) and (9) were also189

calculated without any particular difficulty under the Mathematica[15] software by using the built-190

in numerical differential equation solving function “NDSolve”. It is worth noting that all the191

mechanical parameters for both beams and BSA given in the previous section are the same except192

the linear resonance of the BSA that has slightly changed during the installation of the BSA on the193

beam. Its real part was measured as f̌N ≈ 29 Hz and its imaginary part was estimated from the194

previous measurement as f̂N ≈ 0.26 Hz.195

To validate all these approximations, we have done a comparison of the first two measured and196

computed resonance frequencies of the system when excited at very low amplitude to ensure a linear197

comportment.198

To do so, around each resonance, we have estimated each of the two complex resonances as a199

complex value fi = f̌i − ıf̂i, i = 1, 2. This approximation is valid in the present case since, for200

sufficiently separated modes, a linear vibrating system can be approximated by a one dof damped201

oscillator mü(t)+cu̇(t)+ku(t) = 0, of mass m, viscous damping c and stiffness k. It is obvious that202

such an oscillator has a complex resonance 2πf = ω that is given by ω = ±
√

k/m+ c2/(4m2) −203

ıc/(2m) = ±ω̌− ıω̂. It is worth noting that for such an oscillator with small damping, the damping204

ratio ζ = 1/2c/
√
mk ≈ ω̂/ω̌. Then, it is sufficient to measure or compute the normalized frequency205

response function (FRF) of the system around each resonance and to estimate fi = f̌i − ıf̂i,206

i = 1, 2 by fitting the FRF by a Lorentzian singly peaked function Ai/
∣

∣f2 − f2
i

∣

∣, i = 1, 2. In207

the present case, the displacement amplitude normalised by the excitation amplitude of the beam208

2 had been measured and computed at a given very low excitation amplitude when varying the209

excitation frequency. The fitting had been made using Mathematica [15] software by using the210
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built-in standard fitting procedure without any difficulty. An example of measured FRF around211

the first mode and the identified Lorentzian is given in Fig. 5.212

Identi�ed Lorentzian FRF

Measured Beam 2 FRF

f (Hz)

FRF (arbitrary unit)

Figure 5: Example of linear modal identification. The black continuous curve represents experimental FRF of beam
2. The red discontinuous curve represents the identified Lorentzian with frequency fe

1
= 22.2− ı0.006 Hz

One obtains for the experimental resonances fe
1 = 22.2− ı0.006 Hz and fe

2 = 39.3− ı0.023 Hz.213

At very low amplitude, to ensure a linear movement for the BSA, one obtains for the system given214

by equations 7, 8 and 9 the computed resonances f c
1 = 22 − ı0.015 Hz and f c

2 = 39 − ı0.031 Hz.215

The very good agreement indicates that not only the mechanical and geometrical characteristics216

are well identified but that the simplified 3 dof is able to recover the fine details of low frequency217

dynamics of the two coupled beams. It is worth noting that the damping ratio of the system, close218

to 0.05 %, is very small and mainly induced by the damping in the two coupled linear beams. For219

such an underdamped system, the oscillations take a rather significant time, ie several seconds, to220

vanish. In the present configuration, the BSA has little effect on the system, it only slightly shift221

the two linear resonances of the primary system ; obviously if its resonance is chosen close to one222

of the linear system, a shift of it is observed and the BSA acts as a Frahm absorber [1, 2].223

4. Results224

4.1. Attenuation of the FRF around the first two modes225

As already said, in the experiments reported here, only the BSA fixed on beam 1 was active.226

Around each mode of the primary system (that is 22.2 Hz and 39.3 Hz), a set of beam 1 displacement227

frequency response (FR) had been measured with a stepped sine source at constant amplitude.228

The sinusoidal forcing signal had a duration of 30 s, enough to reach stable movement for the229

primary system at a given amplitude and frequency. Only the last three seconds of the forced230

movement were used to compute the RMS value of the displacement of the beam. After that, the231

source was switched off and it has been waiting for 20 s, enough for the vibration of both beams to232

vanish, before beginning a new measure. The lowest excitation amplitude had been fixed in order to233

ensure a linear comportment of the whole system (coupled beams and BSA). The highest excitation234

amplitude chosen ensures a linear comportment of the coupled beams (in that case, the maximum235

amplitude at their free ends remained much smaller than their thickness). The experimental and236
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numerical ranges were fixed to the following: around the first mode the frequency ranges from237

21 Hz to 23 Hz with 53 steps while the experimental amplitude varies from 0.05 V to 2 V using 30238

voltage steps and the numeric amplitude A was fixed to vary from 0.01 to 2 using 30 steps ; around239

the second mode the frequency ranges from 38 Hz to 40 Hz with 53 steps while the experimental240

amplitude varies from 0.1 V to 2.5 V using 25 voltage steps and the numeric amplitude A varies241

from 0.1 to 3.5 using 25 steps. It is worth noting that around each mode, the numeric amplitude242

range was fitted to give the best correspondence with experimental results. Obviously, in the results243

presented in Fig. 6 for the first mode around 22 Hz and in Fig. 7 for the second mode around 39244

Hz, the results were obtained for a BSA that remains unchanged.245

In these figures the difference between two successive thin horizontal black lines corresponds to a246

change in level by 5 dB. Each point of the surface corresponds to a given amplitude/frequency pair,247

the quantity plotted is the ratio of the RMS value calculated on the last 3 seconds of the signal of the248

displacement and of the excitation, that is 20 logURMS/A, where URMS =
√

1/3
∫ t1
t1−3

u2
1(t)dt is the249

measured beam 1 displacement and A =
√

1/3
∫ t1
t1−3

A2(t)dt is the measured excitation amplitude,250

the time t1 correspond to the time just before the source switch off. These results show that when251

the BSA is activated, the energy pumping lowers the response of the primary system up to 10 dB.252

Figure 6: Surface plot of beam 1 displacement frequency response around the first mode. Left: measurement, right:
model

It is worth noting that, in the results presented here, the higher the excitation amplitude the253

lower the relative response of the primary system. These results show that, not only a light BSA (the254

weight of the moving part of the BSA is 3 g and its supports is about 35 g) is able to significantly255

reduce the vibratory amplitude of a quite heavy system (it weighs about 0.6 kg), but also that256

despite all hypothesis, the simplified model is able to recover most of the features of the system : a257

small shift of the frequency of the firsts two modes of the primary system, spreading and lowering258

of the FR up to 10 dB.259

To see it more clearly, one presents in Fig. 8 for the first mode around 22 Hz and in Fig. 9260

for the second mode around 39 Hz the ridge curves for these results. The ridge curve is defined261

as the curve connecting the maxima of each frequency response, each point showing the maximal262
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Figure 7: Surface plot of beam 1 displacement frequency response around the second mode. Left: measurement,
right: model

frequency response amplitude of beam 1 displacement observed for a given excitation amplitude.263

In these figures, the red line corresponds to the ridge curve of the associated linear system which is264

a straight line. The experimental linear ridge curve is estimated by drawing a straight horizontal265

line from the maximum FR obtained from the lowest amplitude. The numerical one is obtained in266

a similar way ; the linear FR is obtained by cancelling the nonlinearity in the BSA equation. While267

details are not perfectly recovered, in particular the first mode attenuation is a bit overestimated,268

on the whole most of the features of energy pumping are obtained. It is worth noting that one of269

the difficulty of such an experiment is ensuring its long term stability since each experiment lasts270

about 20 hours; the fixture is very robust since all along these experiments, without any particular271

action undertaken to ensure stability of the system parameters (mainly the buckling of the thin272

beam), the system has shown a very good repeatability.273

Measured ridge curve around the �rst mode
Calculated ridge curve around the �rst mode

Figure 8: Ridge curve of beam 1 displacement frequency response around the first mode. Left: measurement, right:
model. The straight line corresponds to the ridge curve for the linear BSA.
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Measured ridge curve around the second mode
Calculated ridge curve around the second mode

Figure 9: Ridge curve of beam 1 displacement frequency response around the second mode. Left: measurement,
right: model. The straight line corresponds to the ridge curve for the linear BSA.

We present in Fig. 10 to 15 results for some characteristic experimental beam and BSA response274

for fixed amplitude-frequency pairs around the two modes of linear system. Each of these plots is275

composed of four sub-plots: the (a) plot shows the location of the point of interest in the density276

plot (corresponding to an upside view of the two experimental frequency response around the first277

mode given in Fig. 6 and second mode in Fig. 7) as a black oval, the (b) plot shows a phase plot278

(displacement/velocity) for the BSA in which the equilibrium points had been represented as black279

circles, the (c) curve shows the spectrum of the normalised BSA displacement and the (d) curve280

shows the spectrum of the normalised beam 1 response signal.281

The first set of typical results around the first mode for the linear system is given in Fig. 10 and282

12. The results presented in Fig. 10 correspond to the linear response of the system; in that case,283

the BSA was not active, while showing a very small nonlinear response. The results presented in284

Fig. 11 correspond to the activation of the BSA (allowing an overall attenuation of the frequency285

response of the linear system of about 6 dB), it has a quasi periodic response; the response of the286

linear system was no longer perfectly periodic as the BSA response has spread the energy over the287

whole spectrum; in that case, the second mode of the linear system has a amplitude 20 dB below288

that of the first mode.The results presented in Fig. 12 shows that the BSA was activated (allowing289

an overall attenuation of the frequency response of the linear system of more than 10 dB) with a290

chaotic motion around its two equilibrium positions in line with that predicted by Romeo et al. [11]291

for transient dynamics. This spreading of the energy over the whole spectrum, not so obvious to292

observe on these results because the displacement laser sensors are limited to the low frequency293

domain (more or less below 300 Hz), has excited the high frequency modes of the linear system. It294

is worth noting that, in the present case, the peak level of the second mode of the linear system295

remained at least 10 to 15 dB below that of the main peak.296

The second set of typical results is obtained around the second mode for the linear system and297

it is given in Fig. 13, 14 and 15. On the whole, the interpretation of these results is similar to that298

done for the first mode. The results presented in Fig. 13 correspond to the linear response of the299

system; in that case, the BSA is not active, while showing a small nonlinear response. The results300

presented in Fig. 14 correspond to the activation of the BSA (allowing an overall attenuation of the301

frequency response of the linear system of about 6 dB), it has a quasi periodic response and again,302

the response of the linear system is not perfectly periodic since the BSA response has spread the303

energy over the whole spectrum, in that case, the fist mode of the linear system has a amplitude 30304
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(a) (b)

(c) (d)

Figure 10: Typical measured system response around the linear system first mode at an excitation frequency fex ≈

22.15 Hz and amplitude Aex ≈ 0.3925 V. (a): density plot, the black oval represents the point of interest, (b):
phase plot, the black circle shows the equilibrium point, (c): BSA displacement spectrum, (d): beam 1 displacement
spectrum.

dB below that of the second mode. For the results presented in Fig. 15, the BSA is active (allowing305

an overall attenuation of the frequency response of the linear system of more than 10 dB) with a306

chaotic motion around its two equilibrium positions. Here again, the spreading of the energy over307

the whole spectrum has allowed a re-excitation of both the low and high frequency modes of the308

linear system. For this case also, the peak level of the first mode of the linear system has remained309

at least 10 to 15 dB below that of the main peak.310

To keep a paper length acceptable, only one typical numerical results is given in Fig. 16. It311

correspond to an excitation close to the linear resonance frequency of the linear system first mode312

at an amplitude for which the BSA was activated (allowing an overall attenuation of the frequency313

response of the linear system of more than 15 dB) with a chaotic motion around its two equilibrium314

positions.315

The results presented in Fig. 11, 12, 14 and 15 show a chaotic-like behaviour. To characterize it,316

the first Lyapunov exponent was computed for all the data [17, 18] using the TISEAN package [19].317

The results are given in Tab. 1. In this table, qe represents the measured BSA displacement, ve318

the measured BSA velocity, ue1 the measured beam 1 displacement and ue2 the measured beam319

2 displacement. For all data, the embedding delay τ , the minimal embedding dimension m and320

the measure for determinism κ are given. τ was estimated by a mutual information routine and321

is given in sample unit (let us recall that here a sampling rate of 4096 Hz had been chosen). The322
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(a)
(b)

(c) (d)

Figure 11: Typical measured system response around the linear system first mode at an excitation frequency fex ≈

22.15 Hz and amplitude Aex ≈ 0.39 V. (a): density plot, the black oval represents the point of interest, (b):
phase plot, the black circle shows the equilibrium point,(c): BSA displacement spectrum, (d): beam 1 displacement
spectrum.

minimal embedding dimension m was obtained by the dimension at with the fraction of false nearest323

neighbour drops to zero. The measure for determinism allows to distinguish between deterministic324

chaos and irregular random behaviour. The determinism factor κ ∈ [0, 1] is such as for a perfectly325

deterministic system κ approaches 1 while for a system with stochastic component κ will be signif-326

icantly smaller than 1. Finally, the maximal Lyapunov exponent λ1 was estimated using the Kantz327

algorithm.328

These results reveal interesting features. As expected for a signal with strong periodic compo-329

nent, the embedding delays for all beam displacements correspond roughly to a quarter period of330

the forcing signal, for example in Fig. 11, for which the excitation frequency fex ≈ 22.15 one obtain331

τ ≈ 45 samples, that is τ ≈ 4096/(4×22.5). The significant BSA embedding delay change observed332

for the data in Fig. 12 and Fig. 15 reveals that the forcing signal remains no longer visible in the333

BSA (this is confirmed by the spectra for these two configurations) indicating a dramatic change in334

the response of the BSA. This is not the case for the numerical results given in Fig. 15 for which the335

embedding delay stay close to a quarter period of the forcing signal; in that case, the BSA spectrum336

reveals the presence of the forcing signal. For all the measurements, the determinism factor κ stays337

sufficiently close to 1 to validate the signature for a deterministic chaos.338

The main feature that emerges from the results given in Tab. 1 is that every set of data,339
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(a) (b)

(c) (d)

Figure 12: Typical measured system response around the linear system first mode at an excitation frequency fex ≈

22.15 Hz and amplitude Aex ≈ 1.33 V. (a): density plot, the black oval represents the point of interest, (b): phase
plot, the black circles show the equilibrium points,(c): BSA displacement spectrum, (d): beam 1 displacement
spectrum.

experimental or numerical, possess a positive Lyapunov exponent. It is small and of same order340

for all data for the results presented in Fig. 11 and 14 indicating the start of chaotic motion for341

the BSA. It becomes large for the experimental results presented in Fig.12 and in Fig.15 and for342

the numerical result presented in Fig. 16, indicating a deterministic chaotic motion of the BSA. It343

these cases, even if the beam motions are dominated by the forcing signal, a trace of the strong344

chaotic motion of the BSA remains visible on their movements.345

4.2. Attenuation of the FRF around the first two modes: brief parametric study346

An example of parametric study is given in Fig. 17 and 18 for the first mode and in Fig. 19 and347

20 for the second mode to evaluate the influence of the damping of the BSA. The linear resonance348

of the BSA remains fixed at 29 Hz, with damping fixed at µ = 0.05 kg/s and µ = 0.15 kg/s in349

Fig. 17 and 19 and µ = 0.35 kg/s and µ = 0.50 kg/s in Fig. 18 and 20, with all other parameters350

of the system remaining fixed. Each curve is obtained within 10 minutes of computation on a four351

cores workstation using Mathematica’s parallelization ability [15]. It is worth noting that the FRF352

reference level of linear system has decreased with increasing damping indicating that the overall353

damping was significantly influenced by the BSA damping. These results show that, in the present354

case, when the damping of the BSA is of the same order than that of the primary system (let us355
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(a) (b)

(c) (d)

Figure 13: Typical measured system response around the linear system second mode at an excitation frequency
fex ≈ 39.27 Hz and amplitude Aex ≈ 0.1 V. (a): density plot, the black oval represents the point of interest, (b):
phase plot, the black circle shows the equilibrium point, (c): BSA displacement spectrum, (d): beam 1 displacement
spectrum.

recall that each beam has a viscous damping µb = 0.1 kg/s), its variation has not a great influence356

on the observed attenuation.357

The second example of parametric study is obtained by varying the linear resonance of the BSA358

while fixing its damping to µ = 0.24 kg/s. But in that case, care must be taken to avoid a linear359

resonance close to one of the primary system (ie 22 Hz and 38 Hz) because in that case, the BSA360

acts as a tuned mass damper. As shown by Den Hartog [2], for a small mass linear absorber, with361

m = mN/m1 ≈ 0.005 ≪ 1, for each resonance of the primary system f̌i, i = 1, 2, an optimal tuned362

mass damped (TMD) would have a linear resonance fopt
i = f̌i

√
1− 0.5m/(1 + m) ≈ f̌i, i = 1, 2.363

Four computed different linear frequency responses of the beam 1 of the 3-dof linear system for364

different linear resonances of the BSA acting as a linear mass damper are presented in Fig. 21;365

in this figure, the maximum frequency response around each resonance had been spotted on the366

y-axis. As stated, when the resonance of the BSA acting as a linear absorber is tuned to the367

resonance of the primary system, a significant attenuation is obtained. And, as showed by Vigui368

and Kerschen [20], this maximum attenuation corresponds more or less to a limit of attenuation for369

BSA.370

Two frequencies of the linear resonance of the BSA are shown: f̌N ≈ 17 Hz in Fig. 22, below371

the first resonance of the primary system andf̌N ≈ 48 Hz in Fig. 23, above its second resonance. In372

each figure, the two horizontal lines correspond to the frequency response obtained for the linear373
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(a) (b)

(c) (d)

Figure 14: Typical measured system response around the linear system second mode at an excitation frequency
fex ≈ 39.19 Hz and amplitude Aex ≈ 0.4 V. (a): density plot, the black oval represents the point of interest, (b):
phase plot, the black circle shows the equilibrium point, (c): BSA displacement spectrum, (d): beam 1 displacement
spectrum.

mass damper: one for the linear resonance of the BSA and one for the linear resonance of the TMD.374

It is worth noting, as observed by Vigui and Kerschen [20] that the efficiency of the BSA tends to375

that of the TMD without reaching it. As previously observed [21], if a better attenuation around a376

particular mode can be obtained by a fine tuning of the characteristics of the BSA (linear resonance377

and damping), it deteriorates the other. For example, the best attenuation (up to 20 dB) for the378

second mode is observed for a BSA linear resonance f̌N ≈ 48 Hz as shown in the right curve of379

Fig. 23 but in that case, instead of up to 18 dB attenuation around the first mode as observed in380

the left curve of Fig. 18, obtained for a linear resonance f̌N ≈ 29 Hz, the attenuation around the381

first mode is limited up to 10 dB, as shown in the right curve of Fig. 22. In the case considered382

here, the BSA damping must be of the same order than that of the primary system alone and its383

linear resonance must be chosen between those of the two modes to control.384

5. Conclusion385

In this paper, a linear system formed by two coupled linear Euler vibrating beams around its386

two first modes coupled to a bistable NES has been experimentally and numerically studied. The387

bistable NES was made by attaching a small mass at the center of a very thin buckled beam fixed388

on an ABS support. Using Ritz procedure, a simplified three degrees of freedom model has been389
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(a) (b)

(c) (d)

Figure 15: Typical measured system response around the linear system second mode at an excitation frequency
fex ≈ 39.11 Hz and amplitude Aex ≈ 2 V. (a): density plot, the black oval represents the point of interest, (b):
phase plot, the black circles show the equilibrium points, (c): BSA displacement spectrum, (d): beam 1 displacement
spectrum.

developed to describe both linear, using the first mode of a cantilever beams, and nonlinear parts390

of the complete system. The bistable NES, using the Ritz procedure with the first mode of a fixed391

buckled beam, has been described by a viscous one degree of freedom Helmholtz-Duffing nonlinear392

differential equation. The stiffness and damping parameters of this nonlinear equation had been393

adjusted to fit the measured linear mode of the buckled beam.394

The results presented here, both experimental and numerical, show that a very simple nonlinear395

bi-stable NES is able to strongly reduce the amplitude of a primary system with multiple resonance.396

Without any particular optimisation, a reduction up to 10 dB of the vibration amplitude level of397

primary linear system was experimentally observed. It was observed that most of the energy398

reduction of the primary system was attained when the dynamics of the bistable NES was a chaotic399

motion around its two equilibrium positions. In that case, the spreading the energy over the whole400

spectrum has allowed a re-excitation of both the low and high frequency modes of the linear system401

but at a level at least 10 to 15 dB below that of the main mode.402

The parametric study conducted on the simple model describing the system reveals that this403

result, not only can easily be obtained for a large class of configuration of the nonlinear bi-stable404

NES but also that under particular conditions, an even stronger attenuation is possible. It is worth405

noting that the weight of the nonlinear bi-stable NES was small compared to the primary system406

weighing 500 g since the weight of the nonlinear bi-stable NES itself was less than 3 g and that of407
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(a) (b)

(c) (d)

Figure 16: Typical calculated system response around the linear system first mode at an excitation frequency
fex ≈ 22 Hz and amplitude Aex ≈ 1.31 U. (a): density plot, the black oval represents the point of interest, (b):
phase plot, the black circles show the equilibrium points, (c): BSA displacement spectrum, (d): beam 1 displacement
spectrum.

Calculated ridge curve around the !rst mode Calculated ridge curve around the !rst mode

Figure 17: Calculated ridge curve of beam 1 displacement frequency response around the first mode for different BSA
damping. Left: viscous damping µ = 0.05 kg/s, right: viscous damping µ = 0.15 kg/s. The straight line corresponds
to the ridge curve for the linear BSA.

the support was about 30 g. Our recent experiments, still in progress, made on a thin plate excited408

by acoustic sound waves show a similar ability. These various results have confirmed the very409

interesting feature of this nonlinear bi-stable NES, that is contrarily to the usual NES (generally a410
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qe ve ue1 ue2

Fig. 11 τ = 45 τ = 42 τ = 45 τ = 45
m = 8 m = 9 m = 8 m = 8
κ = 0.97 κ = 0.88 κ = 0.96 κ = 0.93
λ1 = 0.12 λ1 = 0.12 λ1 = 0.10 λ1 = 0.08

Fig. 12 τ = 136 τ = 53 τ = 42 τ = 42
m = 11 m = 10 m = 8 m = 8
κ = 0.8 κ = 0.83 κ = 0.97 κ = 0.98
λ1 = 0.55 λ1 = 1.35 λ1 = 4.5 λ1 = 4.6

Fig. 14 τ = 33 τ = 29 τ = 27 τ = 27
m = 10 m = 9 m = 7 m = 8
κ = 0.93 κ = 0.98 κ = 0.99 κ = 0.98
λ1 = 0.25 λ1 = 0.86 λ1 = 0.08 λ1 = 0.14

Fig. 15 τ = 132 τ = 57 τ = 31 τ = 31
m = 10 m = 10 m = 7 m = 8
κ = 0.94 κ = 0.82 κ = 0.98 κ = 0.97
λ1 = 3.6 λ1 = 4.4 λ1 = 10.8 λ1 = 8.2

Fig. 16 τ = 46 τ = 47 τ = 44 τ = 44
m = 6 m = 6 m = 5 m = 5
κ = 0.98 κ = 0.97 κ = 0.99 κ = 0.99
λ1 = 9.5 λ1 = 9 λ1 = 10.6 λ1 = 10.8

Table 1: Computation of the first Lyapunov exponent for the experimental (Fig.11, 12, 14 and 15) and numerical
data (Fig. 16 ). qe: BSA displacement, vr: BSA velocity, ue1: beam 1 displacement, ue2: beam 2 displacement. τ :
estimated embedding delay, m: estimated embedding dimension, κ: measure for determinism, λ1: First Lyapunov
exponent

Calculated ridge curve around the !rst mode Calculated ridge curve around the !rst mode

Figure 18: Calculated ridge curve of beam 1 displacement frequency response around the first mode for different BSA
damping. Left: viscous damping µ = 0.35 kg/s, right: viscous damping µ = 0.50 kg/s. The straight line corresponds
to the ridge curve for the linear BSA.

cubic non linear absorber), the linear frequency of the absorber could be greater than that of the411

linear system to control. This combined with the unique feature of the bistable NES, as noted by412

Romeo et al. [11], that is to attain the passive targeted energy transfer at low amplitude, make the413

bistable NES a very promising way to passive non linear control.414

20



Calculated ridge curve around the second mode Calculated ridge curve around the second mode

Figure 19: Calculated ridge curve of beam 1 displacement frequency response around the second mode for different
BSA damping. Left: viscous damping µ = 0.05 kg/s, right: viscous damping µ = 0.15 kg/s. The straight line
corresponds to the ridge curve for the linear BSA.

Calculated ridge curve around the second mode Calculated ridge curve around the second mode

Figure 20: Calculated ridge curve of beam 1 displacement frequency response around the second mode for different
BSA damping. Left: viscous damping µ = 0.35 kg/s, right: viscous damping µ = 0.50 kg/s. The straight line
corresponds to the ridge curve for the linear BSA.

6. Appendix A. Approximate one degree-of-freedom Helmholtz-Duffing equation for415

the bistable attachment response.416

In this appendix, we present the Ritz method that transforms the equation governing the non417

linear transverse planar vibration of the BSA with a mass attached at its center into an approximate418

one degree-of-freedom Helmholtz-Duffing non linear equation.419

First of all, it is classical that the equation governing the non linear transverse planar vibration420

of the clamped-clamped buckled beam whose displacement is w(x, t) is given by (see eg [13] or [14])421

:422

(ρA+m0δℓ/2(x))
∂2w

∂t2
+EI

∂4w

∂x4
+N

∂2w

∂x2
+µ

∂w

∂t
−EA

2ℓ

∂2w

∂x2

∫ ℓ

0

(
∂w

∂x
)2 dx = F (x)Ht(t) cos(ωt), (11)

with I = eh3/12 and A = eh. δℓ/2(x) is the Dirac delta distribution located at the center of the423

BSA. Ht(t) is the Heaviside unit step function that is equal to zero if t < 0 and equal to one if424
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Figure 21: Four computed beam 1 different linear frequency responses. Each curve corresponds to the BSA acting
as a linear absorber with a particular resonance frequency: 17 Hz, 22 Hz (TMD for the first mode), 39 Hz (TMD for
the second mode) and 48 Hz and viscous damping µ = 0.24 kg/s.

Calculated ridge curve around the �rst mode Calculated ridge curve around the !rst mode

Figure 22: Calculated ridge curve of beam 1 displacement frequency response around the first mode for different
BSA linear resonance. Left: f̌N ≈ 17 Hz, right: f̌N ≈ 48 Hz. The two horizontal lines correspond to the frequency
response curve for the linear BSA: the continuous one is for the BSA frequency used in the non linear response while
the discontinuous is the one obtained for the TMD.

t ≥ 0. To this equation, one adds the initial conditions w(x, t = 0) = 0 and ∂w/∂t(x, t = 0) = 0425

and the usual boundary conditions for a clamped beam given by :426

{

w = 0, ∂w
∂x = 0 at x = 0,

w = 0, ∂w
∂x = 0 at x = ℓ.

(12)

One defines the non dimensional quantities as x̃ = x/ℓ, w̃ = w/r where r =
√

I/A is the radius

of gyration of the cross section, ω0 = 1/ℓ2
√

EI/(ρA), t̃ = ω0t, ω̃ = ω/ω0, Ñ = Nℓ2/(EI). Let

us denote Ñc = 4π2 the non dimensional critical load, one defines b̃ = b/r =
√

4(N −Nc)/π2 as
the non-dimensional post buckling deflection. The non dimensional displacement of the clamped
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Calculated ridge curve around the second mode Calculated ridge curve around the second mode

Figure 23: Calculated ridge curve of beam 1 displacement frequency response around the second mode for different
BSA linear resonance. Left: f̌N ≈ 17 Hz, right: f̌N ≈ 48 Hz. The two horizontal lines correspond to the frequency
response curve for the linear BSA: the continuous one is for the BSA frequency used in the non linear response while
the discontinuous is the one obtained for the TMD.

buckled beam is written as

w̃(x̃, t̃) = w̃0(x̃) + ṽ(x̃, t̃), with w̃0(x̃) =
1

2
b̃(1− cos 2πx̃). (13)

w̃0(x̃) is the statics buckled configuration [14], solution of the non linear integrodifferential problem427

d4w̃0

dx̃4
+

(

Ñ − 1

2

∫ 1

0

(

dw̃0

dx̃

)2

dx̃

)

d2w̃0

dx̃2
= 0, (14)

w̃0 = 0 and
dw̃0

dx̃
= 0, at x̃ = 0 and x̃ = 1. (15)

Writing Eq. (11) with non dimensional variables, noting that δℓ/2(x/ℓ) = 1/ℓδ1/2(x/ℓ), substi-428

tuting Eq. (13) in Eq. (11) and using Eq. (14) leads to the non linear equation that governs the429

dynamics of the BSA :430

(1 + βδ1/2)
∂2ṽ

∂t̃2
+

∂4ṽ

∂x̃4
+ 4π2 ∂

2ṽ

∂x̃2
− 2b̃2π3 cos 2πx̃

∫ 1

0

∂ṽ

∂x̃
dx̃− b̃π2 cos 2πx̃

∫ 1

0

(
∂ṽ

∂x̃
)2dx̃ =

+b̃π
∂2ṽ

∂x̄2

∫ 1

0

∂ṽ

∂x̃
sin 2πx̃dx̃+

1

2
(
∂ ˜̃v

∂x̃
)2dx̃− µ̃

∂ṽ

∂t̃
+ F̃ (x̃)Ht̃(t̃) cos(ω̃t̃), (16)

together with the initial and boundary conditions. The non dimensional quantities are defined431

as β = m0

ρAℓ ≈ 7 is the ratio of the small mass m0 to the BSA beam mass, µ̃ = µ
ρAω0

is the432

non-dimensional viscous damping and F̃ (x̃) = ℓ4

rEIF (x/ℓ).433

Now let us approximate the dynamic deflection around equilibrium position ṽ(x̃, t̃) using only
the first buckling mode as

ṽ(x̃, t̃) = w̃0(x̃)q̃(t̃). (17)

This approximation allows us to describe the change of equilibrium position but does not give access
to a fine description of the buckled beam movement [13], particularly near its linear resonance.
After introducing Eq. (17) in Eq. (16), a Ritz reduction, ie multiplying both member of Eq. (16)
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by w̃0(x̃) and integrating both member of the resulting equation on the beam length ℓ, leads to a
Helmholtz-Duffing nonlinear equation for the BSA displacement

(3/8 + β)¨̃q(t̃) +
3

8
µ̃ ˙̃q(t̃) +

b̃2π4

4

(

q̃(t̃) +
3

2
q̃(t̃)2 +

1

2
q̃(t̃)3

)

=
1

b̃2
Ht̃(t̃) cos(ω̃t̃)

∫ 1

0

F̃ (x̃)w̃0(x̃)dx̃ (18)

7. Appendix B. Experimental and numerical examples of the bistable attachment re-434

sponse435

In this appendix, we present results for some chosen experimental amplitude-frequency pairs436

and their corresponding computed pairs for the BSA alone. Each of these plots is composed of four437

sub-plots : the (a) plot shows the location of the point of interest in the density plot (corresponding438

to an upside view of the frequency response of the RMS value for the measured or computed BSA439

displacement given in Fig. 4) as a black oval, the (b) plot shows the spectrum of the signal, the440

(c) curve is a phase plot (displacement/velocity) for one second recorded (or computed) signal441

and the (d) shows the time signal of the displacement. As the mounting of the BSA on the442

shaker does not allow a simultaneous measurement of velocity and displacement, the displacement443

was estimated from velocity measurements by numerical integration. The change of equilibrium444

positions make the integration constants difficult to estimate; while correct in amplitude, the sign445

of the displacement value has little signification. To see it, it had been reported on the various446

phase plots the equilibrium positions as black circles. Since the model differs from the experiment,447

instead of looking for strict correspondence at amplitude-frequency pairs, we propose to find a448

correspondence between pairs located near zones of interest.449

The first zone is located close to the half linear resonance of the BSA at low amplitude. We450

present in Fig. 24 the measured signal and in Fig. 25 the computed signal. In these low amplitude451

and frequency ranges, the model is able to describe very precisely most of the features observed452

experimentally (amplitude, phase portrait and spectrum).453

The second zone is located close to the non linear resonance of the BSA at medium excitation454

amplitude at the beginning of the high amplitude movements of the BSA with chaotic motion. We455

present in Fig. 26 the measured signal and in Fig. 27 the computed signal. These curves reveal the456

main limitation of our simplified model. For this chaotic motion, it appears that our one degree of457

freedom viscous model is not able to describe finely all the features of the experiment. Here, the458

computed amplitude is clearly overestimated by a factor two. But as shown by the results, this not459

a real problem since the important feature here is the chaotic motion of the BSA that spreads the460

energy over the a large spectrum. When connected to the linear system, this energy re-repartition461

over the spectrum acts like a dissipation of the energy since the primary linear system to control462

not only responds at its resonances, but also dissipates energy by viscosity.463

This is confirmed by the observation of the third zone, that is located above the linear resonance464

of the BSA at high excitation amplitude showing a high amplitude chaotic movements zone of the465

BSA. We present in Fig. 28 the measured signal and in Fig. 29 the computed signal. There is always466

an overestimation of the amplitude of the BSA displacement but on the whole, the chaotic motion467

is well described.468
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Figure 24: Measured BSA response. (a): density plot, the black oval represents the point of interest, (b): displacement
spectrum, (c): phase plot, the black circle shows the equilibrium point, (d): displacement time recording.
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Figure 25: Computed BSA response. (a): density plot, the black oval represents the point of interest, (b): displace-
ment spectrum, (c): phase plot, the black circle shows the equilibrium point, (d): displacement time recording.
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Figure 26: Measured BSA response. (a): density plot, the black oval represents the point of interest, (b): displacement
spectrum, (c): phase plot, the black circles show the equilibrium points, (d): displacement time recording.
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Figure 27: Computed BSA response.(a): density plot, the black oval represents the point of interest, (b): displacement
spectrum, (c): phase plot, the black circles show the equilibrium points, (d): displacement time recording.
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Figure 28: Measured BSA response. (a): density plot, the black oval represents the point of interest, (b): displacement
spectrum, (c): phase plot, the black circles show the equilibrium points, (d): displacement time recording.
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Figure 29: Computed BSA response. (a): density plot, the black oval represents the point of interest, (b): displace-
ment spectrum, (c): phase plot, the black circles show the equilibrium points, (d): displacement time recording.
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