MIXED ACOUSTIC EVENTS CLASSIFICATION USING ICA AND SUBSPACE CLASSIFIER
Résumé
A B S T R A C T This paper describes a new neural architecture for u i i-supervised learning of a classificat,ion of mixed t.rair-sient, signals. This method is I)asetl oii neural tkcli-niques for blind separation of sources and sul)space i-net,liotls. The feed-forward neural iiet,work dynaiii-ically builds and refreshes a n acoustic event.s classification by detecting novelties, creat,ing antl deleting classes. A self-organization process achieves a class prototype rotation in order to niinirnise the st,at,isti-cal dependence of class activities. Siiriulatd nirilt,i-tliniensional signals and rnixed acoustic signals i i i real noisy environment have been used to test, our inotlel. T h c result
Domaines
Informatique [cs]bibliothèque Universitaire Déposants HAL-Avignon : Connectez-vous pour contacter le contributeur
https://hal.science/hal-01318300
Soumis le : jeudi 19 mai 2016-14:24:30
Dernière modification le : mardi 22 mars 2022-14:40:01
Dates et versions
Identifiants
- HAL Id : hal-01318300 , version 1
Citer
Georges Linarès, Pascal Nocera, H. Meloni. MIXED ACOUSTIC EVENTS CLASSIFICATION USING ICA AND SUBSPACE CLASSIFIER. IEEE International Conference on Acoustics, Speech, and Signal ICASSP-97, Apr 1997, Munich, Germany. ⟨hal-01318300⟩
Collections
113
Consultations
0
Téléchargements