A SCALABLE SYSTEM FOR EMBEDDED LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

A SCALABLE SYSTEM FOR EMBEDDED LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION

Georges Linarès
D Massonié
  • Fonction : Auteur
Christophe Lévy
  • Fonction : Auteur
  • PersonId : 982044

Résumé

This paper presents a system for large vocabulary continuous speech recognition in condition of constrained hardware resources. We investigate efficient pruning and caching strategy aiming to handle extensive acoustic and linguistic modeling. Software components are analyzed in terms of resource consuming. Then, we evaluate the system performance in extreme configuration where acoustic and linguistic models are dramatically pruned. Results show that the system design we proposed allows to use large HMM-based acoustic models and tri-gram language models while performing very fast decoding, under 0.6 real-time on a standard desktop computer while remaining the transcript relevance.
Fichier non déposé

Dates et versions

hal-01318263 , version 1 (19-05-2016)

Identifiants

  • HAL Id : hal-01318263 , version 1

Citer

Georges Linarès, D Massonié, Pascal Nocera, Christophe Lévy. A SCALABLE SYSTEM FOR EMBEDDED LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION. 15th International Conference on Digital Signal Processing (DSP), Jul 2007, Cardiff, United Kingdom. ⟨hal-01318263⟩

Collections

UNIV-AVIGNON LIA
46 Consultations
0 Téléchargements

Partager

More