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Modelling a weak turbulent flow in a narrow and wavy channel: case of
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Abstract The baffle-fitted labyrinth channel is commonly
used in micro-irrigation systems. The flow in this labyrinth-
channel has a rather low-Reynolds number. In addition, emit-
ter clogging, which is the major drawback of the micro-
irrigation technique, is significantly related to flow charac-
teristics. In order to design an anti-clogging emitter with a
good performance, the hydrodynamics must be understood
and analyzed. As CFD modelling is nowadays the most ef-
ficient approach for improving emitter geometry, this pa-
per presents assessment of several k− ε turbulence models
for computation of micro-irrigation emitter hydrodynamics.
The objective is to determine the simplest and most effi-
cient model to improve emitter conception, in terms of both
discharge/pressure loss and limitation of the areas where
low velocity is likely to generate emitter clogging. Low-
Reynolds number k−ε models are often assumed to be more
suitable for the labyrinth-channel flow; since these models
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have no wall functions, they can take into account low tur-
bulence levels and they account for the effect of damped tur-
bulence. The low-Reynolds number k−ε models used in the
present study are compared to high-Reynolds number k− ε

models. Very different trends are observed between low-
Reynolds number k− ε models. Some models reproduce a
turbulent behavior while others reproduce a laminar behav-
ior. The head loss analysis reveals that, contrary to classical
smooth pipe flow, the contribution of turbulent dissipation
cannot be neglected since its contribution is larger than wall
friction ones. This feature explains why different models can
induce quite different flow behavior.

Keywords damping functions · emitters · low- Reynolds
number k−ε models · narrow channel · turbulent dissipation

1 Introduction

Micro-irrigation is an irrigation system characterized by low
water flow rates. Water drops near the plants through emit-
ters. This type of irrigation improves efficiency by reduc-
ing energy consumption, evaporation, drift, runoff and deep
percolation losses when compared with the other techniques
such as sprinkler irrigation. In this technique, the emitters
are the most important and critical component. They work
with weak flow rate between 0.5 and 8 l.h−1 for pressure be-
tween 50 and 400 kPa. The emitter flow rate increases with
static pressure in a lateral pipe according to a power-law re-
lation (Karmeli 1977) [8]:

q = KPx (1)

where q is the flow rate of emitter (l.h−1), K is the con-
stant of proportionality that characterizes each emitter, P
is the pressure head (kPa) and x is the emitter discharge
exponent. The value of this exponent depends on emitter
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conception. Indeed, manufacturers try to design emitters for
which the flow rate is not directly dependent on the pres-
sure head (x < 0.5). To reach this goal, they introduce some
elements in the emitter such as a labyrinth-channel which
generates local pressure head losses. The problem is that
this labyrinth-channel is very sensitive to the clogging phe-
nomenon, which reduces micro-irrigation system efficiency.
Clogging is partially governed by hydrodynamics (Li et al.
2008) [14]. Therefore, it is necessary to analyze the flow.
Flow analysis in the labyrinth-channel is focused on the swirl
zones at the downstream side of the baffles where the veloc-
ities are very low, thus favoring the deposition mechanism
for particles. Therefore, when designing emitters, clogging
can be prevented or at least significantly reduced by decreas-
ing, as much as possible, the size of the swirl zones. The
shape of the swirling region can be predicted by computa-
tional fluid dynamic (CFD) modelling. The Reynolds num-
ber Re =Umeandh/ν , based on the mean velocity Umean and
on the hydraulic diameter dh, is low (around 500). So the
flow should be laminar. But, as the channel is narrow and
wavy, some authors postulate a laminar to turbulent transi-
tion at lower Reynolds number: around 350 (Nishimura et
al.1984) [16] or between 100 and 700 (Pfahler et al.1990)
[18]. Thus, it appears that the question is still open on the
characteristics of such a flow and consequently on the choice
of the model, i.e., turbulent or not.
CFD modelling differs from one study to another. For ex-
ample, Palau Salvador et al. (2004) [17] employ the lam-
inar model, while Wei et al. (2006) [22] choose the stan-
dard k− ε model. They consider that this model is typically
used for most engineering calculations even if it has been
developed for fully turbulent flows. While Wei et al. (2012)
[23] and Mohammed Ali (2013) [15] employ the RNG k−ε

model, the realizable k− ε model is used by Dazhuang et
al. (2007) [5]. The RNG k−ε model generally improves the
accuracy for rapidly strained and swirling flows. These fea-
tures make the RNG k−ε model more accurate and reliable
for a wider class of flows than the standard k− ε model.
The realizable k− ε model is effectively applied in vari-
ous flow simulations, including vortex steady shear flow,
free flow containing jet and mixed flow, pipe flow, bound-
ary layer flow, and segregated flow. But all of these models
calculate the turbulent stress with isotropic turbulent viscos-
ity assumption, and the variation of surface curvature along
the channel is not taken into account. That is why Reynolds
Stress Model (RSM) is also used in several studies (Zhang
et al. 2007 [28]; Philipova et al. 2009 [19]; Zhang et al. 2010
[29]). This model can account for the effects of streamline
curvature, swirl, rotation and rapid changes in strain rate
in a more rigorous way. Other more complex simulations
such as LES model (Large Eddy Simulation) can be found
(Dan et al. 2013) [26]. However, LES still requires substan-
tially finer meshes than those typically used for Reynolds-

Averaged Naviers-Stokes equations (RANS) calculations. In
addition, LES has to be run for a sufficiently long flow-
time to obtain stable statistics. As a result, the computational
cost involved with LES is usually some orders of magnitude
higher than that for steady RANS calculations in terms of
memory and Central Processing Unit (CPU) time. There-
fore, high-performance computing is a necessity for LES,
especially for industrial applications.
The objective of this study is to develop the simplest numer-
ical model that will be used to better define flow regions that
generate pressure losses. Therefore, it is limited to turbu-
lence models (no LES model). The use of high-Reynolds
number models is not always justified or accurate. Espe-
cially, in the case of flow with separation, as it is found
by Grasso and Falconi (1993) [6]. In addition, unsatisfac-
tory results are obtained with this type of model for flows
with recirculation. Considering that the flow rate is weak
and then that the Reynolds number is low, the present study
introduces the low-Reynolds number k− ε models in or-
der to model the flow in labyrinth-channel. Such models
have another advantage as they eliminate the wall functions
and modify model equations directly to take into account
the near-wall region turbulence. This avoids inappropriate
choice of the wall function. Several turbulence models are
examined in the paper: the standard k− ε , RNG k− ε and
low-Reynolds number k− ε models. The adapted model,
simple and fairly inexpensive in computation time, will be
used in the future to optimize the baffles shape in terms of
discharge/pressure loss and limit the areas where low veloc-
ity is likely to generate emitter clogging.
The next sections of the paper present the numerical mod-
els and procedure to simulate and validate the flow within a
narrow labyrinth representative of emitter. The numerical re-
sults are discussed and compared to experimental measure-
ments. The main objective of the paper is to determine the
simplest and most efficient model to improve emitter con-
ception. The emitter baffles are used to generate head losses
to dissipate flow energy and thus to regulate the flow. That is
why, in the results section, we focus on pressure head losses
and we try to numerically understand the respective contri-
butions of wall shear stress and turbulent and mean flow dis-
sipation rates.

2 Materials and methods

2.1 Governing equations

In this study, incompressible steady-state flow is assumed.
Buoyancy and gravity are not taken into account. There-
fore, the RANS equations, according to these approxima-
tions, are:

∂ui

∂xi
= 0 , (2)
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ρ
∂

∂x j
(uiu j) =−

∂ p
∂xi

+
∂

∂x j

[
µ

(
∂ui

∂x j
+

∂u j

∂xi

)]
+

∂

∂x j

[
−ρu′iu

′
j

]
, (3)

where, i and j are indices denoting cartesian coordinate di-
rections, ui and u j are the averaged velocities [m.s−1], ρ is
the fluid density [kg.m−3], µ is the dynamic fluid viscosity
[kg.m−1.s−1], p is the fluid averaged pressure [Pa], and u′i
and u′j are the velocity fluctuations [m.s−1].
The last term in Eq.3, which is called the Reynolds stress
tensor, must be modelled in order to close the equation sys-
tem. A common method is to refer to the Boussinesq hypoth-
esis [20] to relate the Reynolds stresses to the mean velocity
gradients :

−ρu′iu
′
j = µt

(
∂ui

∂x j
+

∂u j

∂xi

)
− 2

3
ρkδi j , (4)

where µt is the turbulent viscosity [kg.m−1.s−1], k is the tur-
bulent kinetic energy [m2.s−2], k = 1

2 u′iu
′
i and δi j is the Kro-

necker delta.
This hypothesis is employed in several turbulent models,
such as k− ε models. Momentum equation for all the mod-
els using the Boussinesq approximation is then given by the
following formula:

ρu j
∂ui

∂x j
=− ∂ p

∂xi
+

∂

∂x j

[
(µ +µt)

(
∂ui

∂x j
+

∂u j

∂xi

)]
(5)

k− ε models are based on the equations 2, 5 and two ad-
ditional equations for computing the turbulent kinetic en-

ergy (k) and its dissipation rate (ε), ε = ν
∂u′i
∂x j

∂u′i
∂x j

, where

ν [m2.s−1] is the kinematic viscosity. There are two types
of k− ε models, namely, high-Reynolds number k− ε mod-
els and low-Reynolds number k− ε models.

2.2 k− ε models

2.2.1 High-Reynolds number k− ε models

The standard k− ε model is initially proposed by Launder
and Spalding (1972) [12]. Then, it is developed by Laun-
der and Jones (1972) [10]. This model is derived by assum-
ing that the flow is fully turbulent. Therefore, the effects of
molecular viscosity are negligible (Launder and Spalding
1972) [12]. The standard k− ε model is recommended for
high Reynolds number flows (Launder and Spalding 1974)
[13]. It is considered as a powerful tool for prediction of
many complex flow problems including jets, wakes or wall
flows. Another model is the RNG k− ε model which uses

a technique, namely the renormalization group theory, de-
scribed by Yakhot and Orszag (1986) [27]. The effect of
swirl is accounted for in the RNG k− ε model, which en-
hances the accuracy for swirling flows. The RNG k−ε model
uses an analytically derived differential formula for the ef-
fective turbulent viscosity which is adapted for low-Reynolds
number flows. So, the RNG k− ε model is generally con-
sidered as more accurate and more reliable than the stan-
dard k− ε model for a wider range of flows. However, for
wall bounded flows, these models require additional semi-
empirical parameterization, namely, wall functions detailed
in section 2.2.4.

2.2.2 Low-Reynolds number k− ε models

The standard k− ε model is modified, in the low-Reynolds
number k−ε models, to account for the low-Reynolds num-
ber effects. There are quite a few low-Reynolds number k−
ε models. The following low-Reynolds number k−ε models
are used in this paper: [Abid] (Abid 1991) [2], [LS] (Laun-
der and Sharma 1974) [11], [AKN] (Abe; Kondoh and Nagano
1994) [1] and [CHC] (Chang; Hsieh and Chen 1995) [3].

2.2.3 k− ε equations

The modelled equations for the turbulent kinetic energy k
and the dissipation rate ε , for k− ε models, are then:

ρu j
∂k
∂x j︸ ︷︷ ︸

advk

=
∂

∂x j

[(
µ +

µt

σk

)
∂k
∂x j

]
︸ ︷︷ ︸

di f fk

+ Gk︸︷︷︸
prodk

− ρε︸︷︷︸
dissk

− D︸︷︷︸
source termk

; (6)

ρu j
∂ε

∂x j︸ ︷︷ ︸
advε

=
∂

∂x j

[(
µ +

µt

σε

)
∂ε

∂x j

]
︸ ︷︷ ︸

di f fε

+C1ε f1
ε

k
Gk︸ ︷︷ ︸

prodε

−C2ε f2ρ
ε2

k︸ ︷︷ ︸
dissε

+ E︸︷︷︸
source termε

. (7)

Gk represents the generation (or production) of turbulent ki-
netic energy due to the mean velocity gradients:

Gk =−ρu′iu
′
j
∂u j

∂xi
= µtS2 ; (8)

where S is the modulus of the mean rate-of-strain tensor,
defined as:

S =
√

2Si jSi j ; (9)

and

Si j =
1
2

(
∂u j

∂xi
+

∂ui

∂x j

)
. (10)
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Table 1 The constants involved in all k− ε models used in this study.

High-Reynolds number k− ε models Low-Reynolds number k− ε models

Model Standard RNG AKN Abid, LS and CHC

C1ε 1.44 1.42 1.50 1.44
C2ε 1.92 1.68 1.90 1.92
σk 1.00 0.72 1.40 1.00
σε 1.30 0.72 1.40 1.30
Cµ 0.09 0.085 0.09 0.09

Table 2 The damping functions of all k− ε models used in this study, where η = Sk/ε , η0 = 4.38 and β = 0.012.

Model fµ f1 f2 Source terms Boundary conditions

Abid tanh(0.008ReY )
(
1+4

(
Re−0.75

t
))

1
[
1− 2

9 exp
(
− Re2

t
36

)]
× D = 2ν

(
∂
√

k/∂Y
)2

k = 0;[
1− exp

(
−ReY

12

)]
E = 0 ε = 2ν

(
∂
√

k/∂Y
)2

AKN [1− exp(−Reε/14)]2× 1 [1− exp(−Reε/3.1)]2× D = 0 k = 0;[
1+5exp(−Ret/200)2 /Re3/4

t

] [
1−0.3exp

(
−(Ret/6.5)2

)]
E = 0 ε = 2ν

(
∂
√

k/∂Y
)2

CHC [1− exp(−0.0215ReY )]
2× 1

[
1−0.01exp

(
Re2

t
)]
× D = 0 k = 0;(

1+31.66/Re5/4
t

)
[1− exp(−0.0631ReY )] E = 0 ε = ν

(
∂ 2k/∂Y 2

)
LS exp

[
−3.4/(1+Ret/50)2

]
1 1−0.3exp

(
−Re2

t
)

D = 2ν

(
∂
√

k/∂Y
)2

; k = 0;

E = 2ννt
(
∂ 2u/∂Y 2

)2
ε = 0

RNG 1 1 1 D = 0 ; Wall function

E =
(

Cµ η3(1−η/η0)

1+βη3
ε2

k

)
Enhanced wall treatment

Standard 1 1 1 D = 0 ; Wall function
E = 0 Enhanced wall treatment

The turbulent viscosity can be written as a general term mul-
tiplied by a damping function, fµ :

µt = ρ fµCµ

k2

ε
. (11)

The model constants for all k− ε models used in this work
are summarized in table 1, while the damping functions are
discussed in section 2.2.4 and summarized in table 21 It is
worth noting (see [20] for more details) that, in Eq.6 for k,
only the diffusion term is modelled on a global basis and the
production term modelling only involves the use of Eq.4 to
obtain Eq.8, while all terms except the advection term are
modelled on a global basis in Eq.7 for ε . For any specific
flow geometry, such as the present labyrinth-channel con-
figuration, analyzing the relative contributions of the terms
in these equations provides insight into the turbulence mech-
anisms which dominate. For Eq.6, this is usually named as
analyzing the turbulent kinetic energy budget (see section
3.3).

1 For convenience, we will use the notation Y to refer, in a general
way, to distances normal to the wall, while x and y refer to the carte-
sian axes which are used throughout the paper, with y the axis which
corresponds to the flow axis in the entry and exit sections and x the
perpendicular axis in planes such as that depicted in Fig.1. With this
choice, y and Y coincide for the reference lines 2, 3 and 5 for which
detailed results are presented hereafter.

2.2.4 Damping and wall functions

Turbulent flows are significantly affected by the presence
of walls since molecular viscosity effects become more and
more predominant relative to turbulence effects - which van-
ish at the wall - as the wall is approached. The mean ve-
locity field must satisfy the non-slip condition at the wall.
However, the turbulence is also changed by the presence of
the wall. Very close to the wall, viscous damping reduces
the tangential velocity fluctuations, while kinematic block-
ing reduces the normal fluctuations. Toward the outer part of
the near-wall region, however, the turbulence is rapidly aug-
mented by the production of turbulent kinetic energy due
to the large gradients in mean velocity. The wall region in-
volves three sub-regions, namely, the viscous sub-layer, the
buffer layer, and the fully turbulent region. In the viscous
sub-layer, the flow is almost laminar, and molecular viscos-
ity plays a dominant role. In the fully turbulent region, turbu-
lence plays the major role. Finally, there is a region between
the viscous sub-layer and the fully turbulent layer where the
effects of molecular viscosity and turbulence are equally im-
portant. This region is called the buffer region. In these re-
gions, we use u+ = u/uτ which is the dimensionless velocity
: the velocity u parallel to the wall (function of Y which is
the distance from the wall), divided by the friction velocity
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uτ .
The law of the wall, in the near-wall regions, can be written
as follows:

u+ = f (Y+) , (12)

with Y+ = Y ρuτ/µ , uτ =
√

τw
ρ

,

Y+ is the wall coordinate: the distance Y to the wall, made
dimensionless with uτ , µ and ρ; τw is the wall shear stress.
The µt , k and ε equations are modified using algebraic func-
tions to represent physical reality. Near the wall, Ret (de-
fined in Eq.13) and µt tend towards zero, therefore, ε ' dif-
fusion of k. While further from the wall, µt � µ , therefore,
ε ' production of k. In addition, very close to the wall, k
tends towards zero, but ε has a non-zero defined value. In
order to take into account these complex effects, one must
adapt the standard equations by adding the damping func-
tions. Indeed, the equations are integrated to the wall with-
out assuming an universal law for the velocity profile and an
equilibrium condition for k and ε . The damping functions
fµ , f1 and f2 for low-Reynolds number k− ε models are
summarized in table 2. The damping functions are written
in terms of the turbulence Reynolds numbers:

Ret =
ρk2

µε
, (13)

ReY =
ρY
√

k
µ

, and (14)

Reε =
ρ (µε/ρ)1/4 Y

µ
. (15)

This approach based on modelled equations for k and for
ε together with damping functions is developed for low-
Reynolds number flows. But, when high-Reynolds number
flows are considered, and especially for complex flows, the
mesh grid cannot in general be refined sufficiently in the
near-wall region for this approach to be implemented. For
such situations, the so-called enhanced wall treatment is then
used, which involves a two-layer model and wall functions.
For ReY > 200, the flow is assumed to be fully turbulent and
the k− ε models are used. Otherwise, for ReY < 200, the
one-equation model of Wolfshtein is used [25]. The turbu-
lent kinetic energy is then calculated with a transport equa-
tion, but the turbulent viscosity is determined using a char-
acteristic length scale `t , so that µt = ρCµ`t

√
k where `t

is given by `t = YC`(1− exp(−ReY/Aµ)), with Aµ a con-
stant. On the contrary, ε is not computed with a transport
equation, but it is evaluated through an algebraic relation,
namely, ε = k3/2/`ε where the length scale `ε is inferred
from a relation similar to that for `t , but with a constant Aε

instead of Aµ (see Hanjalic and Launder for more details
[7]).

Outlet

Line 4

Line 3 Line 2 Line 1

Inlet

dinlet
0

d2

doutlet

d1

α

3

2

1

D3

D2

D1

I I

I : I

dinlet

ddepth

[1], [2] and [3] are 1st,
2nd and 3rd baffle

Fig. 1 The emitter and the geometry studied. The green lines and the
red square define the zones where the mean velocity and turbulent
quantities are more deeply analyzed in section 3.

Table 3 The labyrinth-channel dimensions.

Inlet width dinlet 1.00 mm
Outlet width doutlet 1.20 mm
Labyrinth-channel depth ddepth 1.00 mm

d1 1.30 mm
d2 2.67 mm
D1 4.00 mm

Labyrinth-channel unit length D2 3.24 mm
D3 4.00 mm

Labyrinth-channel angle α 33 o

2.3 Geometry of the study and numerical approach

2.3.1 Geometry of the study

The emitter selected is integrated within the drip-line and is
characterized by labyrinth-channel features with an emitter
discharge exponent of 0.59 (see Eq.1). For this numerical
study, only the repeating pattern of the labyrinth-channel is
simulated (Fig.1). All dimensions are defined in table 3.

2.3.2 Numerical approach

The study is performed using commercial computational fluid
dynamics software where the models studied are implemented:
ANSYS/Fluent V14. Simulations are performed in two (2D)
and three (3D) dimensions. The main advantage of 2D is that
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Fig. 2 The velocity modulus [m.s−1] for four mesh cell sizes; [LS]
k− ε model for Re = 800 on line 2 defined in Fig.1.

it runs faster than 3D. However, the real labyrinth is narrow
and thus considering that the walls in the transverse direc-
tion are very distant from the simulated plane could result in
wrong predictions. That is why 2D and 3D results are com-
pared.
Firstly, the geometry is designed. Secondly, the mesh is gen-
erated and its quality is examined. The skewness, based on
the deviation from a normalized equilateral angle, is around
0.75 and 0.56 in two and three dimensions respectively, which
states that mesh quality is acceptable. For all models, we
opted for a quadratic-dominant (in two dimensions) and prism
with quadrilateral base (in three dimensions) mesh type. The
mesh is chosen with Y+ < 5 for high-Reynolds number k−ε

models. Low-Reynolds number k− ε models require fine
mesh, Y+ ≤ 1 at the wall-adjacent cell. Modelling by low-
Reynolds number k− ε models requires more mesh refine-
ment close to the wall in order to have a sufficient number
of points in the region 0 < Y+ < 10.
The independence of the results to the meshing has been ver-
ified. The velocity modulus profiles are plotted on line 2 for
different mesh cell numbers (Fig.2). The variation of the ve-
locity is weak when the mesh cell number is at least 1.33×
105 and then the smallest mesh size is 15.6 µm. Therefore,
the effect of mesh can be neglected. The chosen cell num-
bers are, for all models, 1.33×105 and 2.2×106 in two and
three dimensions respectively. That way, the results will not
depend on meshing to ensure that the differences will be due
to the model.
Inlet and outlet sections are offset from the studied region
in order to prevent perturbations. In addition, a low turbu-
lent intensity (5%) and a hydraulic diameter (DH = 2 mm
and 1 mm, in two-dimensions and three-dimensions respec-
tively) are chosen for the specification method. The simu-
lation, for high-Reynolds number and low-Reynolds num-
ber k− ε models, is performed with an initial inlet flow rate
of 1.4 l.h−1, then it is regularily increased until 2.9 l.h−1;

Labyrinth−channel

Air

Damper

Water container

Datalogger

dP

P

Q

Damper

Pump

(a) Scheme of the experiment.

Pump

A simple damper

Water container

Two highly precise pressure transmitters

Labyrinth−channel

Flow meter

Damper

(b) Experimental set-up.

Inlet point

Pressure port

Labyrinth-channel

Pressure port

Outlet point

a

b
c

de

f

(c) A prototype design.

Fig. 3 General scheme of experiment and experimental set-up.

which corresponds to a Reynolds number ranging from 400
to 800.
To solve the pressure-velocity coupling and to interpolate
face pressure, we choose respectively the ”SIMPLE” and
”STANDARD” methods which are robust and valid for a
large flow range. ”Third-order MUSCL” discretization is se-
lected to solve momentum, turbulent kinetic energy and tur-
bulent dissipation rate equations because this method is ac-
curate and adapted for all mesh types.
The convergence accuracy is not fixed. It changes from one
model to another. However, it is always less than 10−6 and
can reach 10−12 in some cases. The objective is to have
stable computation residuals. Results reported hereafter are
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plotted and compared on two transversal lines which cross
through a swirling region at its center, line 2 and line 3
(Fig.1).

2.4 Experimental validation

In order to validate the modelling results, an experiment has
been developed to determine the pressure head loss Fig.3(a)
and Fig.3(b). The repeating-pattern labyrinth-channel proto-
type which is composed of three baffles has been fabricated
from a plexiglas plate. Then, it has been covered by another
plate. One of these two plates contains pressure ports as well
as inlet and outlet points (Fig.3(c)). A diaphragm meter-
ing pump (SIMDOS 10 with an accuracy of 2% of the set
value) pumps water from a 1 l tank. Then, two dampers, a
hand-made damper (which is constituted by a pipe which
contains air) and a commercial damper (type: PML 9962-
FPD10, with a maximum efficiency of 97%), absorb the flow
pulsations, before going through a flow meter (Mc Millan,
accuracy of ± 3 ml.min−1) and the labyrinth-channel proto-
type. The pressure at the inlet as well as the pressure drop is
measured by two highly precise pressure transmitters (PR-
33x/80794 and PD-33x/80920, accuracy of 0.01 %). The test
duration is fixed to 10 min. The hydraulic circuit is turned on
30 min before acquiring the data to ensure that the flow has
reached its steady state. The number of measuring points
is about 20000. Then, the averaged value of each parame-
ter (pressure drop and flow rate) is calculated. This test is
repeated three times in three different days. The pressure
drop for each flow rate is measured by pressure transmit-
ter between the points b and e, ∆ pbe Fig.3(c). It contains
three contributions, namely, the pressure drop caused by the
labyrinth-channel ∆ pcd compared with numerical results in
section 3.1, the pressure drop between b and c, and the pres-
sure drop between d and e. The measured pressure drop
∆ pbe can be written as:

∆ pbe = ∆ pbc +∆ pcd +∆ pde , (16)

with

∆ pbc = fbc
`bc

Dbc
ρ

U2
bc
2

, (17)

∆ pde = fde
`de

Dde
ρ

U2
de
2

, (18)

where fbc = fde = 48/Re (square section), hydraulic diame-
ters Dbc = dinlet = 1 mm, Dde =

4 doutlet×ddepth
2 doutlet+2 ddepth

= 1.09 mm,
`bc = `de = 10 mm and U = q1/Asection. The two previous
equations can be written as:

∆ pbc = 4×q1 (19)

∆ pde = 2.825×q1 (20)

where ∆ pbc and ∆ pde are pressure drops in [Pa], and q1 is
the measured flow rate [ml.min−1].

3 Results

3.1 The pressure loss and discharge

The discharge-pressure loss curves (q = f (∆P)) where ∆P
stands for the inlet / outlet pressure losses) are plotted for
each turbulence model in 2D and two models in 3D and
compared with the experimental data (Fig.4). In the paper of
Karmeli (1977) [8], it can be noted that for long-path emit-
ters, which are used for our study, the emitter discharge ex-
ponent is between 1 and 0.5, the values respectively for lam-
inar and rough fully turbulent wall flows. In 2D (Fig.4(a)),
the exponents of the standard and RNG k− ε models are
those of rough fully turbulent regime (for which the fric-
tion factor C f , which is proportional to ∆P/q2, does not
depend anymore on the Reynolds number Re) and they are
close to, but slightly smaller than, the exponents of the [LS]
k− ε model and the experiments (0.57−0.59, such that C f
slightly decreases with Re, see [24]). [Abid], [AKN] and
[CHC] k− ε models have a laminar behavior since the ex-
ponents of these models are close to 1 and therefore such
that C f strongly decreases with Re (see table 4). It appears
that when the flow rate increases, all the models predict al-
most the same pressure drop. Even though it is quite diffi-
cult to comment and analyze in detail the results presented
in Fig.4(a) and Fig.4(b), a clear distinction can be made be-
tween the three types of flow regimes, with the [LS] k− ε

model being the only model which can simulate the turbu-
lent regime for which C f slightly decreases with Re.
From now, the numerical results of three models are more
deeply analyzed: the standard k−ε model as a high Reynolds
number model, the [LS] k− ε model as a low-Reynolds
number k− ε model which behaves like a high-Reynolds
number model and the [CHC] k−ε model as a low- Reynolds
number k− ε model which tends to a laminar behavior.
In three dimensions, two models are chosen : the standard
k− ε model and the [LS] k− ε model. [CHC] k− ε model
is not converged even when refining the mesh until 2× 106

cells. Therefore, it is not represented on the Fig.4(b). It can
be observed that the curve exponents, in 3D, are close to
0.5. These results confirm that the flow is turbulent. Differ-
ences can be observed between experimental and numerical
values. One could suspect that this is due to the 2D hypoth-
esis (Fig.4(a)). However, looking at 3D results, a larger gap
is noted (Fig.4(b)): pressure losses are larger than in 2D.
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Fig. 4 Discharge-pressure loss curves in two dimensions (2D) (a) and three dimensions (3D) (b).

Table 4 The exponent values in the Eq.1 for all models plotted in Fig.4.

Model Standard RNG Abid LS AKN CHC experiment

2D 0.50 0.49 1.00 0.57 0.99 0.88 –
x exponent

3D 0.50 – – 0.54 – – 0.59

Deeper analysis of the main drivers of head losses is pro-
posed in section 3.4. The exponents of the standard and [LS]
k−ε models are 0.5 and 0.54 respectively in 3D. Therefore,
with fine mesh and to avoid wall function, the [LS] model is
recommended.

3.2 The mean velocity fields

The mean velocity fields obtained from the CFD simulations
for the minimum and the maximum flow rates, Re= 400 and
800 respectively, are shown on Fig.5, for the three turbu-
lence models chosen in two dimensions. The velocity fields
show that there are two regions. One is the main flow char-
acterized by large velocity values. The other is the swirl re-
gion characterized by a low velocity value and negative ve-
locity values (Fig.6). It can also be observed (Fig.5) that the
maximum velocity is at the corner of the labyrinth-channel,
where the water hits the wall in the different baffles. The
swirl regions are approximately identical for the standard
and [LS] k− ε models (Fig.5). The swirl region form, for
the [CHC] k−ε model, is changed from Re= 400 (Fig.5(c)),
where the swirl region is large, to Re= 800 (Fig.5(f)), where
it is smaller and closer to the shape for standard and [LS]
models. It seems, as observed on discharge/pressure losses
curves, that at higher Reynolds number, the different models
predict almost the same flow.
In order to better understand and analyze the velocity field
within the labyrinth-channel unit, normalized mean velocity

profiles, in both 2D and 3D, are plotted along the lines 2 and
3 shown in Fig.1, allowing to compare results for Re = 400
and Re= 800. All mean velocity profiles have two peaks and
one trough which is located in the center of the swirling zone
(Fig.7). The peak as well as the trough values vary from one
model to another. Such comparison of normalized mean ve-
locity profiles on two lines positioned at the same position
in the labyrinth-channel unit helps to determine whether the
flow is developed for the different baffles or whether it still
undergoes evolution and is not yet developed. The mean ve-
locity is larger in the flow mainstream when the swirling
zone is larger, in accordance with the mass conservation as
the velocity in the swirling zone has a negative value (Fig.6).
In addition, velocity reaches higher values in 3D than in 2D.
In any case, the mean velocity is high on line 2 and it gen-
erally decreases on line 3. However, this diminution is more
or less notable according to the model. For example, only a
small diminution is observed for the standard k− ε model
in 2D and 3D for Re = 400 and Re = 800. While, for the
[LS] k− ε model, the velocity varies more for Re = 400
than for Re = 800. For the [CHC] k− ε model, the velocity
profile significantly evolves between lines 2 and 3 (Fig.7(e)
and Fig.7(f)). Therefore, the flow is not yet developed and
it evolves from one baffle to another. It can be noted that all
the turbulence models studied herein have the same velocity
profile at Re = 800 on line 3 (Fig.7).
It has been underlined that the flow for the low-Reynolds
number [CHC] k− ε model, in 2D, is not yet developed.
Therefore, a fourth baffle was added to analyze the flow
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Fig. 5 The mean velocity fields in the red square (defined in Fig.1) in 2D, [m.s−1].

characteristics on this baffle and compare it with the other
baffles. Fig.8 shows the mean velocity fields for two turbu-
lence models. The flow modelled by the [LS] k− ε model
is fully developed. This is seen when comparing the veloc-
ity profiles on lines 3 and 5 (Fig.9(a)). On the contrary, it
clearly appears, on Fig.9(b), that the velocity profile on line
5 is different from that on line 3. This confirms the previ-
ous observation that the flow modelled by the [CHC] k− ε

model is no yet developed at the third baffle. [Abid] and
[AKN] k− ε models, not shown, are similar to the [CHC]
k− ε model. This is in line with the results reported in table
4 which indicate that the exponent values in Eq.1 are very
close for these three models, and much larger than the other
values.

3.3 Turbulent kinetic energy budgets

The fields of the normalized turbulent kinetic energy (k) and
the normalized dissipation rate (ε) are shown on Fig.10 and
Fig.11 for Re= 400 and Re= 800. Such normalization helps
to better visualize and compare k and ε data. It is equiva-
lent to the use of the Reynolds number for comparing flow
properties which may vary as a function of velocity and/or
length scale. It allows, in particular, to have almost the same
levels for different Reynolds numbers, but also to analyze in
a quantitative way departure of the present results from re-
sults obtained for wall flows with standard geometries. As
an example, Pope (2000) [20] shows that the dissipation
term magnitude is about 0.5, with the maximum value of
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Fig. 6 The x and y velocities on line 3 defined in Fig.1 for Re = 400,
standard k− ε model.

about 1 attained at the wall, for a turbulent flow over a flat
and smooth plate. Similarly, the normalized turbulence level
k/u2

τ is about 5, corresponding to a maximum turbulence in-
tensity k/U2 of about 0.1, which is not very different from
what is obtained in our case since U/Uinlet can be as large
as 3.5 (Fig.7(e))(which is therefore compatible with values
of k/U2

inlet larger than 1). It can be observed that k and ε for
the standard and [LS] k− ε models no longer evolve from
just after the first baffle until the end, which has already been
observed for the mean velocity fields (Fig.7). For the [CHC]
k−ε model, k and ε are not impacted by the first baffle. The
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(a) Standard k− ε model, Re = 400
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(b) Standard k− ε model, Re = 800

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

y/dinlet

U
/
U

in
le
t

 

 
line 2, in 2D
line 3, in 2D
line 2, in 3D
line 3, in 3D

(c) LS k− ε model, Re = 400
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(d) LS k− ε model, Re = 800
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(e) CHC k− ε model, Re = 400
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Fig. 7 Evolution of the normalized mean velocity modulus profile on lines 2 and 3 defined in Fig.1.

Table 5 The pressure drop ∆ p with ε , ε̄ and τw, in 2D.

Model Unity Standard LS CHC

flow rate [l.h−1] 2.9 1.4 2.9 1.4 2.9 1.4
Re 800 400 800 400 800 400
(1) ε× ρAarea

Umean
[Pa.m] 4.81 81.6% 1.07 71.8% 4.50 79.1% 1.15 70.6% 5.36 81.8% 1.86 71.3%

(2) ε̄× ρAarea
Umean

[Pa.m] 0.27 4.6% 0.13 8.7% 0.21 3.7% 0.12 7.4% 0.26 4% 0.30 11.5%
(3) τw×Lwall [Pa.m] 0.81 13.8% 0.29 19.5% 0.98 17.2% 0.36 22.0% 0.93 14.2% 0.45 17.2%
(1) + (2) + (3) [Pa.m] 5.89 1.49 5.69 1.63 6.55 2.61
∆ p× ` [Pa.m] 6.00 1.52 5.89 1.68 6.90 3.01
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Table 6 The pressure drop ∆P with ε , ε̄ and τw, in 3D

Model Unity Standard LS

flow rate [l.h−1] 2.9 1.4 2.9 1.4
Re 800 400 800 400
(1) ε× ρV

Umean
[Pa.m2]×10−3 4.24 64.5 % 0.68 39.5% 4.26 59.1 % 0.60 31.3%

(2) ε̄× ρV
Umean

[Pa.m2]×10−3 0.82 12.5 % 0.41 23.8% 0.85 11.8 % 0.50 26 %
(3) τw×Awall [Pa.m2]×10−3 1.51 23% 0.63 36.7% 2.10 29.1% 0.82 42.7%
(1) + (2) + (3) [Pa.m2]×10−3 6.57 1.72 7.21 1.92
∆P×SSection [Pa.m2]×10−3 7.06 1.77 8.08 2.27

increase of k and ε can be observed only after the third and
the second baffle for Re = 400 and Re = 800 respectively
(Fig.10(c) and Fig.10(f)). This could be linked to the mean
velocity value in the principal flow which is high as the tur-
bulence is not well developed (Fig.7). The other models dis-
sipate flow energy from the first baffle whereas the [CHC]
k− ε model dissipates a large amount of energy only after
the second baffle.
The evolutions of each term of the k equation are then plot-
ted for the line 3 (Fig.12), for the standard, [LS] and [CHC]
k− ε models. To allow quantitative comparison between re-
sults obtained for different flow rates, all of these terms are
normalized by ρU3

inlet
dinlet

(since they obviously all have the same
dimension, namely, that of ρε). The k budget-equation is
composed of several terms which promote or destroy the
turbulent kinetic energy. The contribution of each term to
the production or the dissipation of k is signaled by the pos-
itive (source term) or negative (sink term) sign. Therefore,
the production term, anywhere, has positive values, while
the dissipation term (-ε) has, on the contrary, negative val-
ues. The signs of other terms change according to the local
flow conditions. In the middle of the flow, the normalized
diffusion terms, in k equation, for the standard, [LS] and
[CHC] k−ε models give the same profile for Re = 800. For
Re = 400, this term is different for [CHC] model. Far from
the wall, the damping functions are equal to 1. Therefore,
these factors do not affect the k-budget, hence they are the
same for all models. The production term for k equation is
identical for the different models. It has two peaks (Fig.12):
one is in the middle of the main flow and the other is at the
contact between the main flow and the swirl region due to
the shear rate. The advection term is also the same for all
models: it is positive between the main flow and the center
of the swirl region. That is due to the negative values of the
velocity components (Fig.6) and the gradients of k. Other-
wise, the turbulent kinetic energy increases from the wall
and the main flow to the center of the swirling region. The
main difference is the treatment at the wall: in the [CHC]
k−ε model, the boundary conditions imposed at the wall are

k = 0,ε = 2ν

(
∂
√

k
∂Y

)2
, therefore the dissipation at the wall

has a high value. It can be linked with the high value of the
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Fig. 8 The mean velocity fields, [CHC] (top) and [LS] (bottom) k− ε

models and Re = 400.

dissipation term for k equation which is related to ε . Con-
sequently, the diffusion term of the turbulent kinetic budget-
equation for the [LS] and [CHC] k−ε models reaches a sig-
nificant value at the wall (Fig.12(d) and Fig.12(f)), as this
term is then in equilibrium with the dissipation term.

3.4 Pressure losses

In a pipe flow, two processes may dissipate the mean flow
kinetic energy, the first is by volume dissipation or the inter-
nal dissipation and the second is by friction at the wall ([4]
and [24]). In general, these two mechanisms occur together.
Pressure drop is related to tube length. It can be written as:

d p
dx
≈ ρ

Qv

∫
εt ×dS+

τw

Rh
(21)

with εt = ε̄ + ε

In Eq.21, the sign (≈) is set instead of (=) because it is
assumed that turbulent production equals turbulent dissipa-
tion. The term, on the left-hand side, is the pressure drop ab-
solute value per length unit. On the right-hand side, the first
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> 5 in order to visualize the transition
between the main flow and the swirl region.

term is the dissipation rate integrated on the cross-section,
where Qv =Umean×Ssection is the volumetric flow rate [m3.s−1],
Ssection is the cross-section surface [m2]. The total dissipation
rate, εt , is also composed of two contributions. The first con-
tribution, ε̄ , is the dissipation due to the mean flow: in gen-
eral, it is of order Re−1 compared with the other terms, and
therefore negligible. The second contribution, ε , is the dis-
sipation due to the fluctuating flow. ε is the variable in Eq.7
and ε̄ is defined by the formula: ε̄ = νS2, where S is the
modulus of the mean rate-of-strain tensor (Eq.9) in the flow
core. The second term is the energy dissipated at the wall, by
friction, divided by the hydraulic radius Rh. The wall friction
is given by formula : τw = µS, where S is the modulus of the

mean rate-of-strain tensor at the wall (Eq.9). The volume of
fluid V , in the labyrinth-channel, can be written by different
ways:

V = Ssection×L=Aarea×ddepth = `mean×L×ddepth , (22)

where L is the path length of the fluid (m), and `mean =
Aarea/L is the mean width over the entire area of the labyrinth-
channel (m). Aarea = 32.44 mm2 and L = 26.48 mm. There-
fore, `mean = 1.22 mm (Eq.22). By multiplying and handling
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(a) LS k− ε model, Re = 400
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Fig. 9 The mean velocity modulus profiles for [LS] (a) and [CHC]
(b) k− ε models on the lines 3 and 5 (defined in Fig.8) in the case of
four baffles compared with the line 3 in the case of three baffles and
Re = 400.

Table 7 Standard k− ε model for Re = 600, in 2D

Unity [Pa.m] baffle 1 baffle 2 baffle 3 total

(1) ε× ρAarea
Umean

0.62 0.78 1.06 2.46
(2) ε̄× ρAarea

Umean
0.08 0.05 0.07 0.19

(3) τw×Lwall 0.23 0.13 0.19 0.54
(1) + (2) + (3) 0.93 0.96 1.32 3.19
∆P× ` 0.96 1.13 1.06 3.14

Table 8 [LS] k− ε model for Re = 600, in 2D

Unity [Pa.m] baffle 1 baffle 2 baffle 3 total

(1) ε× ρAarea
Umean

0.61 0.98 0.90 2.91
(2) ε̄× ρAarea

Umean
0.08 0.03 0.04 0.13

(3) τw×Lwall 0.25 0.15 0.25 0.66
(1)+(2)+(3) 0.94 1.16 1.19 3.70
∆P× ` 1.19 0.98 1.00 3.17

Table 9 [CHC] k− ε model for Re = 600, in 2D

Unity [Pa.m] baffle 1 baffle 2 baffle 3 total

(1) ε× ρAarea
Umean

0.21 1.81 0.98 3.00
(2) ε̄× ρAarea

Umean
0.11 0.14 0.04 0.18

(3) τw×Lwall 0.22 0.24 0.20 0.65
(1) + (2) + (3) 0.54 2.19 1.22 3.83
∆P× ` 1.69 1.96 0.93 4.58

Eq.21 by the total volume of fluid V, we obtain:

(pinlet ×dinlet − poutlet ×doutlet)×ddepth ≈

(ε̄ + ε)
ρAarea

Umean
×ddepth +

τw×Ssection×L
Rh

(23)

where, Rh = Ssection/P; P is the wetted perimeter of the cross-
section. Generally, in 2D, where ddepth� dinlet and Ssection =
dinlet×ddepth, Rh = dinlet/2. Therefore, Ssection/Rh = 2ddepth.
The previous equation can be written as:

pinlet ×dinlet − poutlet ×doutlet ≈ (ε̄ + ε)
ρAarea

Umean
+

τw×Lwall (24)

with Lwall = 2L.
In 3D, Eq.23 can be written as:

pinlet ×Sinlet − poutlet ×Soutlet ≈ (ε̄ + ε)
ρV

Umean
+

τw×Awall (25)

with Awall =
(
2`mean +2ddepth

)
×L.

The dissipation rate and the wall friction for the standard,
[LS] and [CHC] k− ε models are calculated and presented
in table 5, in 2D, and in table 6, in 3D, for the standard and
[LS] k− ε models, for Re = 400 and Re = 800 which are
the extreme values for the performed simulations. The per-
centage is calculated as the ratio of each contribution to the
pressure drop divided by the sum of the three contributions
to the pressure drop. It can be observed that the turbulent
dissipation rate for the [CHC] k−ε model is higher than for
the other models (Fig.11(c) and Fig.11(f)), which induces
a pressure loss which is significantly larger (almost double
for Re = 400 see table 5). The pressure drop generated by
the turbulent dissipation is dominant, and even greater than
the wall friction. Therefore, turbulent dissipation is the main
phenomenon which explains the pressure drop, unlike what
is observed for standard channel flows. This dissipation is
due to the large swirling regions where wall friction is min-
imal. The pressure drop for each part of labyrinth-channel
is also calculated in tables 7, 8 and 9 for the intermediate
Reynolds number (i.e. Re = 600). The pressure drop calcu-
lated by the numerical modelling is a function of ε , ε̄ and τw.
The gaps between the measured data and numerical results
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(a) Standard with Re = 400.
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(b) Standard with Re = 800.
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(c) LS with Re = 400
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(d) LS with Re = 800
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(e) CHC with Re = 400.
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(f) CHC with Re = 800.

Fig. 12 Normalized terms of turbulent kinetic energy budget-equation in 2D, where ys is the radial position of the center of the swirl.
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could be explained by the over-estimation of ε contribution
(in relation to the assumption that turbulent production and
dissipation are equal) which is the main responsible of pres-
sure drop (70− 80%, for the high flow rates). When com-
paring the curves plotted in Fig.4(a) and Fig.4(b), it is found
that the pressure drop is increased in the 3D case. One can
see from the tables 7, 8 and 9 that the pressure drop due to
the wall friction is greater in 3D. That is to say that the 3D
modelling generates a larger contribution of the wall fric-
tion, which is not surprising since the two lateral walls are
then considered, while this is not the case for the 2D mod-
elling. A significant shear-strain increase is observed with
respect to the dissipation. The ratio of turbulent dissipation
/ shear-strain, for the [LS] k− ε model, is decreased from
4.6/1, in 2D, to 2/1, in 3D for Re = 800 and from 3.3/1, in
2D, to 0.75/1, in 3D for Re = 400.

4 Discussion

The paper reports the assessment of several turbulent mod-
els compared with experimental data. In the literature, the
choice of turbulent model is not yet established. Several mod-
els as the k− ε , RSM and LES models are studied. As LES
model is not well adapted to simulate wall bounded flows
and as it is time consuming, RANS models were chosen
to perform the present study: high-Reynolds number k−
ε and low-Reynolds number k− ε models. But the high-
Reynolds number k− ε models require wall functions. Us-
ing wall functions to treat the flow near the wall can cause
errors because the wall function is applicable only for paral-
lel walls within a certain range of derivation (Li et al. 2008)
[14]. The complex structure of the labyrinth-channel flow
can thus produce errors. Therefore, other models such as low
-Reynolds number k− ε models are also studied.
The validation method is based on the discharge-pressure
curves. This method is used by Wei et al. (2012) [23] to
validate the choice of turbulent or laminar model. In addi-
tion, this curve defines the hydraulic performance of emit-
ter. That allows to optimize the emitter geometry. Mathe-
matically, Philipova et al. (2009) [19] calculated the emitter
discharge related to the pressure head losses (Eq.1), using a
polynominal depending on the geometric parameters of the
baffle.
In the present paper, these losses are calculated numerically
by the simulation, based on dissipation rate and wall friction.
The turbulence effect is clearly underlined. In tables 5 and 6,
the pressure losses due to the turbulent dissipation ε indeed
are dominant. They are about 79−81% for Re= 800. As ex-
pected, this effect decreases when Re decreases to Re = 400
(70.8− 71.4%). The percent of dissipation rate due to the
mean flow is weak, about 3.6−4.6% for Re=800 and it in-
creases when Re decreases. The wall shear stress contribu-
tion increases when Re decreases. This is due to the fric-

tion factor increase which is related to the Reynolds num-
ber through the Blasius relationship for a smooth wall: f =
0.3164×Re−1/4. In 3D, the results are more influenced by
the presence of walls and the percent increases until reach-
ing 37− 42%. The turbulence effects decrease by compari-
son with 2D. To our knowledge, this analysis is quite innova-
tive as it is the first time that it is conducted. The numerical
tools will be used to optimize the labyrinth geometry, with
the objective of minimizing the swirl regions where particle
deposition is likely to occur, while maintaining a sufficiently
large pressure loss.
In addition, the flow seems to be established after the first
baffle, with the [LS] model, where the flow becomes fully
turbulent (Fig.11). This is confirmed by the study of Takahiro
and Shougo (2006) [21] on a symmetric channel with ex-
panded grooves, in 2D and for small low-Reynolds num-
ber. As also shown by the present results, these authors con-
cluded that the flow characteristics within each unit are iden-
tical when the flow is fully developed. This observation is
of interest for manufacturers who could adjust the number
of labyrinth units according to the discharge they want to
achieve, in order to meet the plant needs.

5 Conclusion and perspectives

CFD simulations of the flow in a narrow labyrinth-channel
have been carried out. The results of the [LS] k− ε model
follow the high-Reynolds models (standard and RNG k− ε

models) and their predicted curve exponents are close to the
experimental data. The other low-Reynolds number k− ε

models ([Abid], [AKN] and [CHC]) reproduce a laminar
tendency. The flow modelled by the [CHC] k− ε model is
not yet developed. The damping functions are able to solve
the sub-layer and inner layer by modifying the equations
with damping factors. That helps to obtain accurate results,
without using wall functions at the vicinity of the wall, which
are important for pressure loss predictions (section 2.2.4).
The turbulent dissipation rate is the major responsible for
the pressure losses in labyrinth-channel (2D/3D) by com-
parison with the dissipation due to the mean flow and the
friction at the wall. In addition, this confirms that the flow is
turbulent, so that a turbulence model has to be used.
In order to avoid the wall functions, decrease the calculation
time, the [LS] k− ε model, in 2D, will be used for future
studies. Using this model, we could track particles inside
the labyrinth-channel. Finally, the results of modelling will
be compared with the results of Particle Image Velocime-
try (PIV) experiments, which allow to visualize the velocity
field, characterize the swirl region and determine the mean
velocity field as well as turbulent quantities.
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