
HAL Id: hal-01318168
https://hal.science/hal-01318168

Submitted on 19 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A reinforcement learning formulation to the complex
question answering problem

Yllias Chali, Sadid A. Hasan, Mustapha Mojahid

To cite this version:
Yllias Chali, Sadid A. Hasan, Mustapha Mojahid. A reinforcement learning formulation to the complex
question answering problem. Information Processing and Management, 2015, vol. 51 (n° 3), pp. 252-
272. �10.1016/j.ipm.2015.01.002�. �hal-01318168�

https://hal.science/hal-01318168
https://hal.archives-ouvertes.fr


Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

This  is  an author-deposited version published in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 15249

To  link  to  this  article :  DOI  :10.1016/j.ipm.2015.01.002
URL : http://dx.doi.org/10.1016/j.ipm.2015.01.002

To cite this version : Chali, Yllias and Hasan, Sadid A. and Mojahid,
Mustapha  A  reinforcement  learning  formulation  to  the  complex
question  answering  problem. (2015)  Information  Processing  &
Management, vol. 51 (n° 3). pp. 252-272. ISSN 0306-4573 

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1016/j.ipm.2015.01.002
mailto:staff-oatao@listes-diff.inp-toulouse.fr


A reinforcement learning formulation to the complex question
answering problem

Yllias Chali a, Sadid A. Hasan b,⇑, Mustapha Mojahid c

aUniversity of Lethbridge, Alberta, Canada
b Philips Research North America, Briarcliff Manor, NY, USA
c IRIT, Toulouse, France

a b s t r a c t

We use extractive multi-document summarization techniques to perform complex ques-

tion answering and formulate it as a reinforcement learning problem. Given a set of com-

plex questions, a list of relevant documents per question, and the corresponding human

generated summaries (i.e. answers to the questions) as training data, the reinforcement

learning module iteratively learns a number of feature weights in order to facilitate the

automatic generation of summaries i.e. answers to previously unseen complex questions.

A reward function is used to measure the similarities between the candidate (machine gen-

erated) summary sentences and the abstract summaries. In the training stage, the learner

iteratively selects the important document sentences to be included in the candidate sum-

mary, analyzes the reward function and updates the related feature weights accordingly.

The final weights are used to generate summaries as answers to unseen complex questions

in the testing stage. Evaluation results show the effectiveness of our system. We also incor-

porate user interaction into the reinforcement learner to guide the candidate summary

sentence selection process. Experiments reveal the positive impact of the user interaction

component on the reinforcement learning framework.

1. Introduction

The increasing demand for access to different types of information available online have led researchers to a renewed

interest in a broad range of Information Retrieval (IR) related areas such as question answering, topic detection and tracking,

summarization, multimedia retrieval, chemical and biological informatics, text structuring, and text mining. The existing

document retrieval systems cannot satisfy the end-users’ information need to have more direct access into relevant docu-

ments. Question Answering (QA) systems can address this challenge effectively (Strzalkowski & Harabagiu, 2006). The

human variant of the QA systems were used effectively over the years. One such system is the popular QA system in Korea,

the Korean Naver’s Knowledge iN search,1 which allows users to ask almost any question and get answers from other users

(Chali, Joty, & Hasan, 2009). Another widely known QA service is Yahoo! Answers2 which is a community-driven knowledge

market website launched by Yahoo!. As of December 2009, Yahoo! Answers had 200 million users worldwide and more than
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1 billion answers.3 Furthermore, Google launched a QA system4 in April 2002 that was based on paid editors. However, the sys-

tem was closed in December 2006. The main limitation of these QA systems is that they rely on human expertise to help provide

the answers. Our goal is to automate this process such that computers can do the same as professional information analysts.

This research is a small step towards such an ambitious goal.

QA research can handle different types of questions: fact, list, definition, how, why, etc. Some questions, which we call

simple questions, are easier to answer. For example, the question: ‘‘Who is the prime minister of Canada?’’ asks for a person’s

name. This type of question (i.e. factoid) requires small snippets of text as the answer. On the other hand, complex questions

often require multiple types of information. For example, the question: ‘‘How was Japan affected by the earthquake?’’ sug-

gests that the inquirer is looking for information in the context of a wider perspective. Multi-document summarization tech-

niques can be applied to treat these questions successfully (Chali, Hasan & Joty, 2011; Chali, Joty, et al., 2009; Harabagiu,

Lacatusu, & Hickl, 2006).

Multi-document summarization can be used to describe the information of a document collection in a concise manner

(Wan, Yang, & Xiao, 2007a). Some web-based systems are already utilizing the potential of this technology. For example,

Google News5 and the Newsblaster6 system automatically collect, cluster, categorize, and summarize news from several sites

on the web, and help users find news of their interest. In the last decade, complex questions have received much attention from

both the Question Answering (QA) and Multi-document Summarization (MDS) communities (Carbonell, Harman, Hovy,

Maiorano, & Prange, et al., 2000). Typically, complex QA evaluation systems including the 2004 AQUAINT Relationship QA Pilot,7

the 2005 Text Retrieval Conference (TREC) Relationship QA Task,8 and the TREC definition9 return unstructured lists of candi-

date answers in response to a complex question. The MDS evaluations (including the 2005, 2006 and 2007 Document Under-

standing Conference (DUC10)) task systems with returning paragraph-length answers to complex questions that are responsive,

relevant, and coherent. Complex question answering in the form of a query-focused multi-document summarization task is use-

ful in the domain of document management and search systems. For example, it can provide personalized news services for

different users according to the users’ unique information need (Wan et al., 2009). Moreover, users can obtain the news about

a single event from different sources in the form of a summary containing multiple perspectives at the same time.

This paper is concerned with automatic answering of complex questions. We define the complex questions as the kind of

questions whose answers need to be obtained from pieces of information scattered in different documents. Our experiments

and evaluations were mainly influenced by the specific scenario proposed by the DUC (2005–2007) tasks. In fact, DUC pro-

poses a query-focused summarization task whose features have allowed us to simulate our experiments with complex ques-

tion answering. Hence, the considered complex questions are the type of questions that request information such as an

elaboration about a topic, description about an event or entity, illustration about an opinion, and definition or discussion

about an aspect or term or procedure. We use an extractive11 multi-document summarization approach to perform the com-

plex question answering task.

Effective complex question answering can aid to the improvement of the search systems. When a user searches for some

information, the traditional search engines usually offer a listing of sources through which the user has to continue navigat-

ing until the desired information need is satisfied. Moreover, the available search systems lack a way of measuring the level

of user satisfaction which could have been used to enhance the search policy in real time. User satisfaction can be observed

effectively by monitoring user actions (e.g., copy-pasting, printing, saving, emailing) after the search results are presented. A

user study can reveal the relationship between user satisfaction and retrieval effectiveness (Al-Maskari, Sanderson, & Clough,

2007). Zaragoza, Cambazoglu, and Baeza-Yates (2010) performed a quantitative analysis about what fraction of the web

search queries (posed to the current search engines) can lead to satisfactory results. Computation of user satisfaction, as well

as improvement to the search policy, is a difficult task to perform in real time. This motivates us to propose a reinforcement

learning formulation to the complex question answering task so that the system can learn from user interaction to improve

its accuracy according to user’s information need.

Formally, the complex question answering problem can be mapped to a reinforcement learning framework as follows:

given a set of complex questions, a collection of relevant documents12 per question, and the corresponding human-generated

summaries (i.e. answers to the questions), a reinforcement learning model can be trained to extract the most important sen-

tences to form summaries (Chali, Hasan & Imam, 2011). Our main motivation behind the proposal of the reinforcement learning

formulation is in fact to enable learning from human interaction in real time as we believe that the incorporation of user feed-

back into the learning process can lead to a robust system that produces more accurate summaries to increase the level of user

satisfaction. However, for simplicity during the learning stage, we assume that initially there is no actual user interaction

3 http://yanswersblog.com/index.php/archives/2009/12/14/yahoo-answers-hits-200-million-visitors-worldwide/.
4 http://answers.google.com/.
5 http://news.google.com.
6 http://newsblaster.cs.columbia.edu/.
7 http://trec.nist.gov/data/qa/add_QAresources/README.relationship.txt.
8 http://trec.nist.gov/data/qa/2005_qadata/qa.05.guidelines.html.

9 http://trec.nist.gov/overview.html.
10 http://duc.nist.gov/.
11 An approach where a subset of the sentences from the original documents are chosen as the candidate (i.e. machine-generated) summary.
12 In this paper, we focus more on the summarization aspects to answer complex questions. The information retrieval phase for question answering falls

outside the scope of this work. Hence, we assume the given set of documents as relevant for the given questions.



provided to the system rather the importance of a candidate document sentence can be verified by measuring its similarity with

the given human-made abstract summary sentences using a reward function. This assumption relies on the intuition that the

users are fully satisfied with the abstract summaries. The original document sentences that are mostly similar to the abstract

summary sentences are assigned good reward values. In reinforcement learning, the learner is not aware of which actions

(sentence selection in our case) to take, rather it must discover which actions deliver the most reward by trying them (Sutton

& Barto, 1998).

Real-time user interaction can help QA systems evolve by improving their policy automatically as time passes. Toward

this end, we treat the complex question answering task as an interactive problem. Supervised learning techniques are

alone not adequate for learning from interaction (Sutton & Barto, 1998). These techniques require a huge amount of

human-annotated training data and it is often impossible to collect training examples of all desired kinds in which the agent

has to act. Instead, a reinforcement learning approach can be used to sense the state of the environment and take suitable

actions that affect the state. We assume that a small amount of supervision is provided in the form of a reward function that

defines the quality of the executed actions. In the training stage, the reinforcement learner repeatedly defines action

sequences, performs the actions, and observes the resulting reward. The learner’s goal is to estimate a policy that maximizes

the expected future reward (Branavan, Chen, Zettlemoyer, & Barzilay, 2009).

In this paper, we present a reinforcement learning framework for answering complex questions. As noted before, we sim-

plify our formulation by assuming no real time user interaction by considering that the human generated abstract sum-

maries are the gold-standard and the users (if they were involved) are satisfied with them. The proposed system tries to

produce automatic summaries that are as close as the abstract summaries. The relationship between these two types of sum-

maries is learned and the final weights are used to output the machine generated summaries for the unseen data. We employ

a modified linear, gradient-descent version of Watkins’ QðkÞ algorithm (Sutton & Barto, 1998) to estimate the parameters of

our model. Experiments on the DUC benchmark datasets demonstrate the effectiveness of the reinforcement learning

approach. We also extend this work by proposing a model that incorporates user interaction into the reinforcement learner

to guide the candidate summary sentence selection process. Evaluation results indicate that the user interaction component

further improves the performance of the reinforcement learning framework (Chali, Hasan, & Imam, 2012). The rest of the

paper includes related work, our reinforcement learning formulation, feature space, user interaction modeling, experiments

with results, and finally, conclusion with some future directions.

2. Related work

We perform the complex question answering task using an extractive multi-document summarization approach within a

reinforcement learning setting. Extractive summarization is simpler than abstract summarization as the process involves

assigning scores to the given document sentences using some method and then picking the top-ranked sentences for the

summary. Although this kind of summary may not be necessarily smooth or fluent, extractive summarization is currently

a general practice due to its simplicity (Jezek & Steinberger, 2008). Over the years, various extraction-based techniques have

been proposed for generic multi-document summarization. In recent years, researchers have become more interested in

query-focused (i.e. topic-biased) summarization. The leading systems in the DUC13 and TAC14 tracks focus on the complex

question answering task through multi-document summarization.

Other notable extraction-based summarization systems are as follows. Nastase (2008) expands a query by using the

encyclopedic knowledge in Wikipedia and introduce a graph to generate the summary. Daumé III and Marcu (2006) pre-

sent BAYESUM (‘‘Bayesian summarization’’), a sentence extraction model for query-focused summarization. On the other

hand, Wan, Yang, and Xiao (2007b) propose a manifold-ranking method to make uniform use of sentence-to-sentence

and sentence-to-topic relationships whereas the use of multi-modality manifold-ranking algorithm is shown in Wan

et al. (2009). Other than these, topic-focused multi-document summarization using an approximate oracle score has

been proposed in Conroy, Schlesinger, and O’Leary (2006) based on the probability distribution of unigrams in human

summaries. In our proposed approach, we represent each sentence of a document as a vector of feature-values. We

incorporate query-related information into our model by measuring the similarity between each sentence and the user

query (i.e. the given complex question). We exploit some features such as title match, length, cue word match, named

entity match, and sentence position to measure the importance of a sentence. We use a number of features to measure

the query-relatedness of a sentence considering n–gram overlap, LCS, WLCS, skip-bigram, exact-word, synonym, hyper-

nym/hyponym, gloss and Basic Element (BE) overlap, and syntactic information (See details in Section 6). These features

have been adopted from several related works in the problem domain (Chali, Joty, et al., 2009; Edmundson, 1969; Litvak,

Last, & Friedman, 2010; Schilder & Kondadadi, 2008; Sekine & Nobata, 2001). We also considered a dynamic feature to

lower the redundancy in the extract summary using the Maximal Marginal Relevance (MMR) model (Carbonell &

Goldstein, 1998). This feature helps the learner to understand which document sentence is less similar to the sentences

that are already present in the candidate answer space (i.e. the current summary pool). We use the relevant novelty

metric that was previously shown in Goldstein, Mittal, Carbonell, and Kantrowitz (2000). This metric measures relevance

13 http://duc.nist.gov/pubs.html.
14 http://www.nist.gov/tac/publications/index.html.



and novelty independently and provides a linear combination of them. A document sentence has a higher chance to be

selected if it is both relevant to the given query and useful for a summary, while having minimal similarity to the pre-

viously selected sentences.

In the field of natural language processing, reinforcement learning has been extensively applied to the problem of

dialogue management where the systems converse with a human user by taking actions that emit natural language

utterances (Litman, Kearns, Singh, & Walker, 2000; Roy, Pineau, & Thrun, 2000; Scheffler & Young, 2002; Singh,

Kearns, Litman, & Walker, 1999). The state space defined in these systems encodes information about the goals of

the user and what they say at each time step. The learning problem is to find an optimal policy that maps states to

actions through a trial-and-error process of repeated interaction with the user. Branavan et al. (2009) presented a rein-

forcement learning approach for mapping natural language instructions to sequences of executable actions. Recently, a

related problem of automatic text summarization has been modeled using a reinforcement learning framework by Ryang

and Abekawa (2012). Our approach is significantly different from their approach in a number of ways. Their formulation

is only applicable to generic summarization while our system considers a problem that is a kind of query-focused multi-

document summarization. Moreover, the reward function of their model is not designed to take user feedback into

account whereas the reward function of our reinforcement learning framework is specially designed for considering user

feedback as the principle way of improving the search policy in real time. A more recent work has explored alternate

reinforcement learning algorithms, reward functions and feature sets to show promising results for the multi-document

summarization task (Rioux, Hasan, & Chali, 2014).

As noted before, in our first experiment, we do not directly interact with a user making the cost of interaction lower. How-

ever, experiments in the complex interactive Question Answering (ciQA) task15 at TREC-2007 demonstrate the significance of

user interaction in this domain. The technique of user modeling in an interactive QA system is not new (Hickl & Harabagiu,

2006; Webb & Strzalkowski, 2006). An adaptive, open-domain, personalized, interactive QA system called YourQA16 is an exam-

ple of a deployed system where a QA module interacts with a user model and a dialogue interface (Quarteroni & Manandhar,

2009). Motivated by the effect of user interaction shown in the previous studies (Harabagiu, Hickl, Lehmann, & Moldovan, 2005;

Lin, Madnani, & Dorr, 2010; Sakai & Masuyama, 2004; Wang, Huber, Papudesi, & Cook, 2003; Wu, Scholer, & Turpin, 2008; Yan,

Nie, & Li, 2011), we propose an extension to our reinforcement learning model by incorporating user interaction into the learner

and argue that the user interaction component can provide a positive impact in the candidate summary sentence selection pro-

cess (Chali et al., 2012).

We compare our system with a SVM-based model. In the field of natural language processing, SVMs are applied to text

categorization and syntactic dependency structure analysis. These approaches are reported to have achieved higher accu-

racy than previous approaches (Joachims, 1998). SVMs were also successfully applied to part–of–speech tagging (Giménez

& Màrquez, 2003). Single document summarization systems using SVMs demonstrated good performance for both Japane-

se (Hirao, Isozaki, Maeda, & Matsumoto, 2002) and English documents (Hirao, Sasaki, Isozaki, & Maeda, 2002). Hirao,

Suzuki, Isozaki, and Maeda (2003) showed effectiveness of their multiple document summarization system employing

SVMs for sentence extraction. A fast query-based multi-document summarizer called FastSum used SVM regression17 to

rank the summary sentences where the goal was to estimate the score of a sentence based on a given feature set

(Schilder & Kondadadi, 2008). However, our SVM model treats the task as a classification problem where the classifier is

trained on data pairs, defined by feature vectors and corresponding class labels. The need for a large amount of data to train

a SVM-based system often makes it harder to use in practice. For this reason, we use an unsupervised summarization model

to evaluate our proposed reinforcement system. A k-means clustering algorithm is used to build the unsupervised system

(Chali, Joty, et al., 2009).

3. Problem formulation

We formulate the complex question answering problem by estimating an action-value function (Sutton & Barto, 1998).

We define the value of taking action a in state s under a policy p (denoted Qpðs; aÞ) as the expected return starting from s,

taking the action a, and thereafter following policy p:

Qpðs; aÞ ¼ Ep Rt jst ¼ s; at ¼ af g ¼ Ep
X1

k¼0

ckrtþkþ1jst ¼ s; at ¼ a

( )
ð1Þ

Here, Ep denotes the expected value given that the agent follows policy p;Rt is the expected return that is defined as a

function of the reward sequence, rtþ1; rtþ2; . . ., where rt is the numerical reward that the agent receives at time step, t. We

call Qp the action-value function for policy p. c stands for the discount factor that determines the importance of future

rewards. We try to find out the optimal policy through policy iteration. Once we get the optimal policy (p�) the agent

chooses the actions using the Maximum Expected Utility Principle (Russel & Norvig, 2003). We show our reinforcement

15 http://www.umiacs.umd.edu/j~immylin/ciqa/.
16 http://www.cs.york.ac.uk/aig/projects/yourqa/.
17 Regression tasks tend to estimate the functional dependence of a dependent variable on a set of independent variables.



learning framework in Fig. 1. The figure demonstrates that the agent can choose an action from its action space and per-

forms that action at a certain time. This causes the current state of the agent to change. On the other hand, the agent

receives an immediate reward for choosing the action which in turn contributes in updating its policy for determining

the next action.

3.1. Environment, state & actions

Given a complex question q and a collection of relevant documents D ¼ d1; d2; d3; . . . ; dnf g, the task is to find an answer

(extract summary). The state is defined by the current status of the answer pool, which represents the sentences that are

currently residing in the answer space. Note that, the current state depends on a particular action that is chosen to include

a sentence into the answer pool based on a set of features described in Section 6. Initially, there is no sentence in the answer

pool, i.e., the initial state s0 is empty. In each iteration, a sentence from the given document collection is selected and added

to the answer pool that in turn changes the current state. The environment is described by the state space. In each state, there

is a possible set of actions that could be operated on the environment where a certain action denotes selecting a particular

sentence (using the policy function of Eq. (1)) from the remaining document sentences that are not yet included in the answer

pool (i.e. candidate extract summary).

3.2. Reward function

In the training stage of the reinforcement learning framework, for each complex question we are given a relevant docu-

ment collection along with a set of human generated abstract summaries (see details in Section 7.2) as answers to the ques-

tion. We consider these summaries (i.e. answers) as the gold-standard and assume that the users are satisfied with them. We

utilize these summaries to calculate the immediate rewards. In a certain state, after taking an action a (i.e. selecting a sen-

tence), we compute the immediate reward, r using the following formula:

r ¼ w� relevanceðaÞ ÿ 1ÿwð Þ � redundancyðaÞ ð2Þ

where relevanceðaÞ is the textual similarity measure between the selected sentence and the abstract summaries,

redundancyðaÞ is the similarity measure between the selected sentence and the current state (that includes the already cho-

sen set of sentences) of the answer pool, and w is the weight parameter that denotes the importance of relevance and redun-

dancy. By including redundancy in the immediate reward calculation we discourage redundancy in the final extract

summary. In our experiments, the value of w is kept to 0.5 to provide equal importance to both relevance and redundancy.

We measure the textual similarity using ROUGE (Recall-Oriented Understudy for Gisting Evaluation) (Lin, 2004).

Fig. 1. Reinforcement learning framework.



3.3. Function approximation

In many tasks such as the one to which we apply reinforcement learning, most of the states encountered will never have

been experienced before. This occurs when the state or action space is very large. As in our case the number of states and

actions are infinite, the approximate action-value function is represented as a parameterized functional form with parameter

vector, ~ht . Our approximate action-value function is a linear function of the parameter vector, ~ht . Corresponding to every

state-action pair ðs; aÞ, there is a column vector of features, ~us ¼ ðusð1Þ;usð2Þ; . . . ;usðnÞÞ
T with the same number of compo-

nents as ~ht . The approximate action-value function is given by:

Q tðs; aÞ ¼~hTt ~us ¼
Xn

i¼1

htðiÞusðiÞ ð3Þ

3.4. Markov Decision Process (MDP)

Our environment has the Markov property, that is, given the current state and action we can predict the next state and

expected reward. For our problem formulation, given the current state s if we take an action a, the next state will be

s0 ¼ sþ a, since our action is to choose a sentence from the given document collection and adding it into the extract summary

pool. Given any state and action, s and a, the transition model is defined by:

qa
ss0 ¼ Pr stþ1 ¼ s0jst ¼ s; at ¼ af g ð4Þ

qa
ss0 will be 1 when s0 ¼ sþ a. For all other states, the transition probability will be 0. Similarly, given any current state and

action, s and a, together with any next state, s0, the expected value of the next reward is:

Ra
ss0 ¼ E rtþ1jst ¼ s; at ¼ a; stþ1 ¼ s0f g ð5Þ

4. Reinforcement learning

We consider our task as an infinite horizon discounted18 sequential decision making problem that finds a parameter vector
~h to maximize Qðb; aÞ from Eq. (3). Policy gradient algorithms tend to estimate the parameters h by performing a stochastic gra-

dient ascent. The gradient is approximated by interacting with the environment, and the resulting reward is used to update the

estimate of h. Policy gradient algorithms optimize a non-convex objective and are only guaranteed to find a local optimum

(Branavan et al., 2009). We use a modified linear, gradient-descent version of Watkins’ QðkÞ algorithm with �-greedy policy

to determine the best possible action i.e. to select the most important sentences. We use the �-greedy policy (meaning that most

of the time this policy chooses an action that has maximal estimated action value, but with probability � an action is selected at

random) to balance between exploration and exploitation during the training phase. We empirically set the value of � ¼ 0:1

during our experiments. We note that, 90% of the time our algorithm chooses an action with the best action-value and 10%

of the time it chooses an action randomly.

The steps of our reinforcement learning algorithm are shown in Algorithm 1. Here, u is a vector of feature-values (See

details in Section 6) that is used to represent each document sentence and~h is the vector of weights for the feature vector

that the system will learn. c is the discount factor that is used to calculate the reward of a state-action pair. The discount

factor determines the importance of future rewards. We kept the initial value of c as 0.1. The value of c decreases by a factor

of iteration counts. As long as the initial policy selects greedy actions, the algorithm keeps learning the action-value function

for the greedy policy. However, when an exploratory action is selected by the behavior policy, the eligibility traces19 for all

state-action pairs are set to zero. The eligibility traces are updated in two steps. In the first step, if an exploratory action is taken,

they are set to 0 for all state-action pairs. Otherwise, the eligibility traces for all state-action pairs are decayed by ck. In the sec-

ond step, the eligibility trace value for the current state-action pair is incremented by 1 while accumulating traces. The original

version of the Watkins’ QðkÞ algorithm uses a linear, gradient-descent function approximation with binary features. However,

since we deal with a mixture of real-valued and boolean features (See Section 6), we modified the algorithm to induce a differ-

ent update for the eligibility traces. In the second step of eligibility trace update, we increment the value by the corresponding

feature score. The addition of a random jump step avoids the local maximums in our algorithm. The parameter k defines how

much credit we give to the earlier states. a is the step size parameter for the gradient descent method that is reduced by a factor

of 0.99 as learning converges towards the goal.

To the best of our knowledge, the proposed formulation with the modified version of the Watkins’ QðkÞ algorithm is

unique in how it represents the complex question answering task in the reinforcement learning framework.

18 Although fundamentally the summarization task is a finite horizon problem, we consider an approximation by formulating our task as having an infinite

horizon.
19 An eligibility trace is a temporary record of the occurrence of an event, such as the visiting of a state or the taking of an action (Sutton & Barto, 1998).



Algorithm 1. Modified Watkins’ QðkÞ algorithm

5. Modeling user interaction

In the basic reinforcement learning model for answering complex questions (discussed in the previous section), we have a

set of possible actions in each state. Note that state refers to the current status (content) of the answer space while action

refers to choosing a candidate sentence. Initially, there is no sentence in the answer pool. So, the initial state is empty. In each

iteration, a new sentence is selected based on the learned Q function from the document collection and added to the answer

pool that in turn changes the state. We propose an extension to this model and add user interaction in the reinforcement

learning loop in order to facilitate the candidate selection process. For a certain number of iterations during the training

stage, the user is presented with the top five candidate sentences based on the learned Q function. The user can also see

the complex question being considered and the current status (content) of the answer space (i.e. state). The task of the user

at this point is to select the best candidate among the five to be added to the answer space. In the basic reinforcement learn-

ing model, the first candidate was selected to be added automatically as it was having the highest similarity score. In this



way, there was a chance that a potentially unimportant sentence could be chosen that is not of user’s interest. However, in

the extended reinforcement learning model, the user interaction component enables us to incorporate the human viewpoint

and thus, the judgment for the best candidate sentence is supposed to be perfect. Extensive experiments on DUC-2006

benchmark datasets support this claim. In Fig. 2, we show an example of how exactly the user interaction component works.

The values at the top of the figure represent the set of initial weights for the considered features. The outcome of the rein-

forcement learner is a set of weights that are updated through several iterations until the algorithm converges. The currently

considered topic is shown next, followed by the complex question, current summary (i.e. answer) and the top five candidate

sentences. At this point, the user selects a sentence to add to the answer space and the feature weights are updated based on

this response. This process runs for three iterations for each topic during training. In the remaining iterations, the algorithm

selects the sentences automatically and continues updating the weights accordingly.

6. Feature space

We represent each sentence of a document as a vector of feature-values. We divide the features into two major cate-

gories: static and dynamic. Static features include two types of features, where one declares the importance of a sentence

in a document and the other measures the similarity between each sentence and the user query. We use one dynamic feature

that measures the similarity of already selected candidate with each remaining sentences. The dynamic feature is used to

ensure that there is no redundant information present in the final summary.

6.1. Static features: importance

6.1.1. Position of sentences

Sentences that reside at the start and at the end of a document often tend to include the most valuable information. We

manually inspected the given document collection and found that the first and the last 3 sentences of a document often qua-

lify to be considered for this feature. We assign the score 1 to them and 0 to the rest.

6.1.2. Length of sentences

Longer sentences contain more words and have a greater probability of containing valuable information. Therefore, a

longer sentence has a better chance of inclusion in a summary. We give the score 1 to a longer sentence and assign the score

0 otherwise. We manually investigated the document collection and set a threshold that a longer sentence should contain at

least 11 words. The empirical evidence to support the choice of this threshold is based on the direct observation of our

datasets.

Fig. 2. User interaction in reinforcement learning.



6.1.3. Title match

If we find a match such as exact word overlap, synonym overlap or hyponym overlap between the title and a sentence, we

give it the score 1, otherwise 0. The overlaps are measured by following the same procedure as described in Sections 6.2.5,

6.2.6, and 6.2.7, respectively. We use the WordNet20 (Fellbaum, 1998) database for the purpose of accessing synonyms and

hyponyms.

6.1.4. Named Entity (NE)

The score 1 is given to a sentence that contains a Named Entity class among: PERSON, LOCATION, ORGANIZATION, GPE

(Geo-Political Entity), FACILITY, DATE, MONEY, PERCENT, TIME. We believe that the presence of a Named Entity increases the

importance of a sentence. We use the OAK System (Sekine, 2002), from New York University for Named Entity recognition.21

The accuracy of the NE tagger used in the OAK system was reported to be of 72% recall and 80% precision (Sekine & Nobata,

2004).

6.1.5. Cue word match

The probable relevance of a sentence is affected by the presence of pragmatic words such as ‘‘significant’’, ‘‘impossible’’,

‘‘in conclusion’’, ‘‘finally’’ etc. We use a cue word list22 of 228 words. We give the score 1 to a sentence having any of the cue

words and 0 otherwise.

6.2. Static features: query-related

6.2.1. n–gram Overlap

n–gram overlap measures the overlapping word sequences between the candidate document sentence and the query sen-

tence where n stands for the length of the n-gram ðn ¼ 1;2;3;4Þ. We measured the recall based n–gram scores for a sentence

S and a query Q using the following formula (Chali, Joty, et al., 2009):

NgramScoreðS;QÞ ¼
P

gramn2SCountmatch gramnð Þ
P

gramn2SCount gramnð Þ

where n stands for the length of the n-gram ðn ¼ 1;2;3;4Þ and Countmatch gramnð Þ is the number of n-grams co-occurring in

the query and the candidate sentence.

6.2.2. LCS

Given two sequences S1 and S2, the longest common subsequence (LCS) of S1 and S2 is a common subsequence with max-

imum length. We use this feature to calculate the longest common subsequence between a candidate sentence and the

query. We used the LCS-based F-measure to estimate the similarity between a document sentence S of length m and a query

sentence Q of length n as follows (Lin, 2004):

RlcsðS;QÞ ¼ LCSðS;QÞ
m

ð6Þ

PlcsðS;QÞ ¼ LCSðS;QÞ
n

ð7Þ

F lcsðS;QÞ ¼ ð1ÿ aÞ � PlcsðS;QÞ þ a� RlcsðS;QÞ ð8Þ

where LCSðS;QÞ is the length of a longest common subsequence of S and Q and a is a constant that determines the impor-

tance of precision and recall. We set the value of a to 0.5 to give equal importance to precision and recall.

6.2.3. WLCS

Weighted Longest Common Subsequence (WLCS) improves the basic LCS method by remembering the length of con-

secutive matches encountered so far. Given two sentences X and Y, the WLCS score of X and Y can be computed using

the similar dynamic programming procedure as stated in Lin (2004). The WLCS-based F-measure between a query and a sen-

tence can be calculated similarly as described in Section 6.2.2.

6.2.4. Skip-bigram

Skip-bigram measures the overlap of skip-bigrams between a candidate sentence and a query sentence. Skip-bigram

counts all in-order matching word pairs while LCS only counts one longest common subsequence. The skip bi-gram score

between the document sentence S of length m and the query sentence Q of length n can be computed as follows (Chali,

Joty, et al., 2009):

20 WordNet (http://wordnet.princeton.edu/) is a widely used semantic lexicon for the English language. It groups English words (i.e. nouns, verbs, adjectives

and adverbs) into sets of synonyms called synsets, provides short, general definitions (i.e. gloss definition), and records the various semantic relations between

these synonym sets. We utilize the first-sense synsets. We use the WordNet version 3.0 in this research.
21 We do not consider coreference resolution in this work.
22 We constructed the cue word list from a list of transition words available at http://www.smart-words.org/transition-words.html.



Rskip2 ðS;QÞ ¼ SKIP2ðS;QÞ
Cðm;2Þ ð9Þ

Pskip2 ðS;QÞ ¼ SKIP2ðS;QÞ
Cðn;2Þ ð10Þ

Fskip2 ðS;QÞ ¼ ð1ÿ aÞ � Pskip2 ðS;QÞ þ a� Rskip2 ðS;QÞ ð11Þ

where SKIP2ðS;QÞ is the number of skip bi-gram matches between S and Q and a is a constant that determines the impor-

tance of precision and recall. We set the value of a as 0.5 to state equal importance to precision and recall. C is the combi-

nation function. We call the Eq. (11) skip bigram-based F-measure.

6.2.5. Exact-word overlap

This is a measure that counts the number of words matching exactly between the candidate sentence and the query sen-

tence. Exact-word overlap can be computed as follows:

Exact word overlap score ¼
P

w12WordSetCountmatch w1ð Þ
P

w12WordSetCount w1ð Þ ð12Þ

where WordSet is the set of important23 words in the sentence and Countmatch is the number of matches between the WordSet

and the important query words.

6.2.6. Synonym overlap

This is the overlap between the list of synonyms of the important words extracted from the candidate sentence and the

query related24 words. We use the WordNet (Fellbaum, 1998) database for this purpose (Chali, Joty, et al., 2009). Synonym over-

lap can be computed as follows:

Synonym overlap score ¼
P

w12SynSetCountmatch w1ð Þ
P

w12SynSetCount w1ð Þ ð13Þ

where SynSet is the synonym set of the important words in the sentence and Countmatch is the number of matches between

the SynSet and query related words.

6.2.7. Hypernym/hyponym overlap

This is the overlap between the list of hypernyms and hyponyms (up to level 2 in WordNet) of the nouns extracted from

the sentence and the query related words. This can be computed as follows:

Hypernym=hyponym overlap score ¼
P

h12HypSetCountmatch h1ð Þ
P

h12HypSetCount h1ð Þ ð14Þ

where HypSet is the hyponym/hyponym set of the nouns in the sentence and Countmatch is the number of matches between

the HypSet and query related words.

6.2.8. Gloss overlap

Our systems extract the glosses for the proper nouns from WordNet. Gloss overlap is the overlap between the list of

important words that are extracted from the glossary definition of the nouns in the candidate sentence and the query related

words. This can be computed as follows:

Gloss overlap score ¼
P

g12GlossSetCountmatch g1ð Þ
P

g12GlossSetCount g1ð Þ ð15Þ

Where GlossSet is the set of important words (i.e. nouns, verbs and adjectives) taken from the gloss definition of the nouns in

the sentence and Countmatch is the number of matches between the GlossSet and query related words.

6.2.9. Syntactic feature

The first step to calculate the syntactic similarity between the query and the sentence is to parse them into syntactic trees

using a syntactic parser (Chali, Joty, et al., 2009). We use the Charniak parser25 (Charniak, 1999) for this purpose. Once we

build the syntactic trees, our next task is to measure the similarity between the trees. For this, every tree T is represented

by an m dimensional vector vðTÞ ¼ v1ðTÞ;v2ðTÞ; . . . ; vmðTÞð Þ, where the i-th element v iðTÞ is the number of occurrences of

the i-th tree fragment in tree T. The tree fragments of a tree are all of its sub-trees which include at least one production with

the restriction that no production rules can be broken into incomplete parts. The similarity between two syntactic trees can be

computed using the tree kernel function (Collins & Duffy, 2001). The TK (tree kernel) function gives the similarity score between

23 Henceforth important words are the nouns, verbs, adverbs and adjectives.
24 To establish the query related words, we took a query and created a set of related queries by replacing its important words by their first-sense synonyms

using WordNet.
25 Available at ftp://ftp.cs.brown.edu/pub/nlparser/.



the query and the document sentence based on their syntactic structures. The tree kernel of the two syntactic trees, T1 and T2 is

actually the inner product of the two m-dimensional vectors, vðT1Þ and vðT2Þ (Moschitti & Basili, 2006; Moschitti, Quarteroni,

Basili, & Manandhar, 2007; Zhang & Lee, 2003):

TKðT1; T2Þ ¼ vðT1Þ � vðT2Þ

6.2.10. Basic Element (BE) overlap

Basic Elements are defined as follows (Hovy, Lin, Zhou, & Fukumoto, 2006):

� the head of a major syntactic constituent (noun, verb, adjective or adverbial phrases), expressed as a single item, or

� a relation between a head-BE and a single dependent, expressed as a triple: (headjmodifierj relation).

We extract BEs for the sentences (or query) by using the BE package distributed by ISI.26 We compute the Likelihood Ratio

(LR) for each BE following Hovy, Lin, and Zhou (2005). We sort the BEs based on LR scores to produce a BE-ranked list. The

ranked list contains important BEs at the top which may or may not be relevant to the complex question. We filter out the

BEs that are not related to the query and get the BE overlap score (Hovy et al., 2005).

6.3. Dynamic feature

For each sentence that is selected for the summary pool, we measure its similarity with the remaining non-selected sen-

tences using ROUGE. The similarity value is encoded into the feature space of the non-selected sentences as the dynamic

feature. The purpose of this feature is to ensure that the next sentence to be chosen into the summary is significantly dif-

ferent from the sentence that is already there. In other words, from the dynamic feature of a sentence we can understand

whether the sentence can add any new information into the summary or not. The dynamic feature is updated each time

a new sentence is added to the summary. We use the Maximal Marginal Relevance (MMR)27 method (Carbonell &

Goldstein, 1998) to balance this feature with query relevance. We give equal importance to query relevance and redundancy

reduction such that the selected sentence can add some valuable as well as new information to the summary. The concept

of dynamic similarity feature has been successfully utilized in other relevant applications such as pattern recognition (Liu,

Yan, Lu, & Ma, 2006).

7. Evaluation framework and results

7.1. Task overview

Over the past few years, complex questions have been the focus of much attention in both the automatic question–

answering and Multi Document Summarization (MDS) communities. Typically, current complex QA evaluations including

the 2004 AQUAINT Relationship QA Pilot, the 2005 Text Retrieval Conference (TREC) Relationship QA Task, and the TREC

definition (and others) require systems to return unstructured lists of candidate answers in response to a complex question.

However, MDS evaluations (including the 2005, 2006 and 2007 Document Understanding Conference (DUC)) have tasked

systems with returning paragraph-length answers to complex questions that are responsive, relevant, and coherent. The

DUC conference series is run by the National Institute of Standards and Technology (NIST) since 2001 whose aim is to further

progress in summarization and enable researchers to participate in large-scale experiments. This paper deals with the

query-focused multi-document summarization task as defined in the Document Understanding Conference, DUC-2007.

The task is as follows:

‘‘Given a complex question (topic description) and a collection of relevant documents, the task is to synthesize a fluent,

well-organized 250-word summary of the documents that answers the question(s) in the topic’’.

For example, given the topic description (from DUC 2007):

<topic>

<num>D0703A</num>

<title> steps toward introduction of the Euro </title>

<narr>

Describe steps taken and worldwide reaction prior to the introduction of the Euro on January

1, 1999.

Include predictions and expectations reported in the press.

</narr>

</topic>

26 BE website:http://www.isi.edu/cyl/BE.
27 A sentence has high marginal relevance if it is both relevant to the query and contains minimal similarity to previously selected sentences.



and a collection of relevant documents, the task of the summarizer is to build a summary that answers the question(s) in the

topic description. We consider this task28 and apply a reinforcement approach to generate topic-oriented 250-word extract

summaries.

7.2. Corpus for training and testing

The DUC-2006 and DUC-2007 document sets came from the AQUAINT corpus, which is comprised of newswire29 articles

from the Associated Press and New York Times (1998–2000) and Xinhua News Agency (1996–2000). In Table 1, we present the

description of the datasets used in our experiments. We use the DUC-2006 data to learn a weight for each of the features

(described in Section 6) and then use these weights to produce extract summaries for the document clusters of DUC-2007.

We also use the given abstract summaries for each topic as the training data. In DUC-2006, each topic (including a complex

question) and its document cluster were given to 4 different NIST assessors, including the developer of the topic. Each assessor

created a 250-word summary of the document cluster that satisfies the information need expressed in the topic. These multiple

reference summaries were used in the training stage to calculate the numeric rewards.

7.3. Systems for comparisons

7.3.1. Baseline system

We report the evaluation scores of one baseline system (used in DUC-2007) in each of the tables in order to show the level

of improvement our system achieved. The baseline system generates summaries by returning all the leading sentences (up to

250 words) in the hTEXTi field of the most recent document(s).

7.3.2. SVM settings

We compare the performance of our reinforcement learning approach with a SVM-based technique to answer complex

questions. A support vector based approach requires a huge amount of training data during the learning stage. Here, typical-

ly, the training data includes a collection of sentences where each sentence is represented as a combination of a feature vec-

tor and corresponding class label (þ1 or ÿ1). We use the same corpus (Section 7.2) for training and testing during the SVM

experiments. We generate a training data set by automatically annotating (using ROUGE similarity measures) 50% of the sen-

tences of each document cluster as positive and the rest as negative. The choice of 50% is based on the fact that SVM can learn

well from a balanced (equal proportion of positives and negatives) set of examples (Chali & Hasan, 2012). The annotation

follows a similar procedure to Chali, Hasan, and Joty (2009). The same feature set (Section 6) is used to represent the docu-

ment sentences as feature vectors except the dynamic feature. The dynamic feature seemed to be inappropriate for the SVM

setting. However, to reduce the redundancy in the system-generated summaries, we use the MMR-approach during the sum-

mary generation process.

During the training step, we used the third-order polynomial kernel with the default value of C.30 We used the SVMlight31

(Joachims, 1999) package. We performed the SVM training experiments using WestGrid32 to mitigate computation time. We

used the Cortex cluster which is comprised of shared-memory computers for large serial jobs or demanding parallel jobs.

In the multi-document summarization task at DUC-2007, the required summary length was 250 words. In our SVM setup,

we used g xð Þ, the normalized distance from the hyperplane to x to rank the sentences (Chali, Hasan, et al., 2009). Then, we

chose the top N sentences as the candidate summary sentences. Initially, the top-ranked sentence is added to the summary

and then we perform an MMR-based computation to select the next sentence that is equally valuable as well as new (bal-

ancing the query relevance and redundancy factor). We continue this task until the summary length of 250-words is reached.

7.3.3. K-means clustering

The k-means algorithm follows a simple way to cluster a given data set through a pre-specified number of clusters

k. There are several approaches (such as ‘‘iK-Means’’ by Mirkin (2005), Hartigan’s method (Hartigan & Wong, 1979)

etc.) to estimate the number of clusters. These methods may also give incorrect number of clusters. However, in

our task, we simply assume that we have two clusters: 1. Query-relevant cluster that contains the sentences which

are relevant to the user-questions, and 2. Query-irrelevant cluster that contains the sentences that are not relevant

to the user-questions.

The k-means algorithm defines clusters by the center of mass of their members (Manning & Schutze, 2000). According to

Chali, Joty, et al. (2009), we start with a set of initial cluster centers that are chosen randomly and go through several itera-

tions of assigning each object to the cluster whose center is the closest. After all objects have been assigned, we recompute

28 For simplicity, our system does not attempt to address fluency in this research.
29 Although we perform experiments on the newswire articles, we speculate that our feature space is also capable to take other types of datasets like Yahoo!

Answers into consideration.
30 C is the trade-off parameter of SVM. We experimented with different kernels and found that the third-order polynomial kernel with the default value of C

performs best.
31 http://svmlight.joachims.org/.
32 http://westgrid.ca/.



the center of each cluster as the centroid or mean (l) of its members. We use the squared Euclidean distance as the distance

function. Once we have learned the means of the clusters using the K-means algorithm, our next task is to rank the sentences

according to a probability model. A Bayesian model is used for this purpose:

Pðqkjx;HÞ ¼ pðxjqk;HÞPðqkjHÞ
pðxjHÞ ¼ pðxjqk;HÞPðqkjHÞ

PK
k¼1pðxjqk;HÞpðqkjHÞ

ð16Þ

where qk is a cluster, x is a feature vector representing a sentence and H is the parameter set of all class models. We set the

weights of the clusters as equiprobable (i.e. Pðqk j HÞ ¼ 1=K). We calculated pðx j qk;HÞ using the gaussian probability distri-

bution. The gaussian probability density function (pdf) for the d-dimensional random variable x is given by:

pðl;RÞðxÞ ¼
e
ÿ1
2

xÿlð ÞTRÿ1
xÿlð Þ

ffiffiffiffiffiffiffi
2p

p d ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRÞ

p ð17Þ

where l, the mean vector and R, the covariance matrix are the parameters of the gaussian distribution. We get the means (l)

from the K-means algorithm and calculate the covariance matrix using the unbiased covariance estimation procedure (Chali,

Joty, et al., 2009):

cRj ¼
1

N ÿ 1

XN

i¼1

ðxi ÿ ljÞðxi ÿ ljÞ
T ð18Þ

7.4. Evaluation and analysis

7.4.1. Automatic evaluation: ROUGE

Similar to DUC-2006, in DUC-2007, each of the four assessors created a 250-word summary of the document cluster that

satisfies the information need expressed in the topic statement. These multiple ‘‘reference summaries’’ were used in the

evaluation of our system-generated summary33 content. We considered the widely used evaluation measures Precision (P),

Recall (R) and F-measure for our evaluation task. Recall is defined as the ratio of the number of units (sentences/words) of

the system-generated summaries in common with the reference summaries to the total number of units in the reference sum-

mary while precision is the ratio of the number of units of system-generated summaries in common with the reference sum-

maries to the total number of units in the system-generated summaries. F-measure combines precision and recall into a

single measure to compute the overall performance. We evaluate the system generated summaries using the automatic eval-

uation toolkit ROUGE (Lin, 2004) which has been widely adopted by DUC. ROUGE parameters were set as that of DUC-2007 eval-

uation setup. We report the scores of the two official ROUGE metrics of DUC, ROUGE-2 (bigram) and ROUGE-SU (skip bigram).

All the ROUGE measures are calculated by running ROUGE-1.5.5 with stemming but no removal of stopwords.

ROUGE run-time parameters:

ROUGE-1.5.5.pl -2 -1 -u -r 1000 -t 0 -n 4 -w 1.2 -m -l 250 -a

Tables 2 and 3 show the ROUGE precision and recall scores of the reinforcement system, the supervised SVM system, and

the unsupervised k-means system. In Table 4, we compare the ROUGE-F scores of the baseline system, SVM system, k-means

system, and reinforcement system. From here, we find that the reinforcement system improves the ROUGE-2 and ROUGE-

SU scores over the baseline system by 32.9% and 21.1%, respectively. On the other hand, the reinforcement system outper-

forms the supervised SVM system demonstrating improvements to the ROUGE-2 and ROUGE-SU scores by 28.4% and 2.7%,

respectively besides performing very closely to the unsupervised k-means system.

Statistical significance: An approximate result to identify which differences in the competing systems’ scores are sig-

nificant can be achieved by comparing the 95% confidence intervals for each mean. In Table 4, we show the 95% confidence

intervals of all the systems to report significance for doing meaningful comparison. ROUGE uses a randomized method

named bootstrap resampling to compute the confidence intervals. Bootstrap resampling has a long tradition in the field

of statistics (Efron & Tibshirani, 1994). We use 1000 sampling points in the bootstrap resampling.

Discussion: The performance gain of the reinforcement learning method was achieved from the reinforcement learning

algorithm as its major goal was to learn the optimal policy of selecting the best possible action from the available action space

such that the machine generated summary has the closest match with the given gold standard summaries. Two systems can

Table 1

Description of the datasets.

Characteristics Training data Testing data

Conference DUC-2006 DUC-2007

Number of clusters 50 25

Number of topics with associated complex questions 50 25

Number of documents per clusters 25 25

33 The summaries are truncated to 250 words by ROUGE if the summary length reaches over the 250 word limit due to the inclusion of a complete sentence.



be judged as significantly different if one of the two criteria becomes true: (1) their confidence intervals for the estimates of

the means do not overlap at all, or (2) the two intervals overlap but neither contains the best estimate for the mean of the

other (Schenker & Gentleman, 2001). Analyzing the reported confidence intervals of different systems from Table 4, we see

that the reinforcement system significantly outperforms the baseline system according to the first criterion.We also see that

the confidence intervals of the SVM, reinforcement and k-means systems do overlap. However, according to the second cri-

terion, we find that the reinforcement system is significantly better than the SVM system in terms of ROUGE-2 scores. On the

other hand, there is no significant difference between the reinforcement system and the k-means system if we interpret the

confidence intervals by considering the both criteria. Moreover, the inclusion of the dynamic similarity feature into the fea-

ture space contributed in minimizing the redundancy of the automatically generated summaries which also provided a posi-

tive impact on the system performance. We claim that the performance of the proposed system would further improve if the

reward function could consider syntactic and semantic similarities between a selected summary sentence and the abstract

summaries. In our experiments, the use of human interaction with the considered SVM and K-means setup was not seemed

appropriate. However, the SVMmodel implicitly receives a kind of feedback from the users as we use an automatic annotation

strategy to build the training data set by calculating the textual similarities of the document sentences with the given human

generated summaries. Details of this approach are available at Chali and Hasan (2012).

7.4.2. Manual evaluation

It might be possible to get state-of-the-art ROUGE scores although the generated summaries are bad (Sjöbergh, 2007).

Therefore, we conduct an extensive manual evaluation in order to analyze the effectiveness of our approach. Two university

graduate students judged the summaries for linguistic quality and overall responsiveness according to the DUC-2007 eval-

uation guidelines. ‘‘The given score is an integer between 1 (very poor) and 5 (very good) and is guided by consideration of

the following factors: 1. Grammaticality, 2. Non-redundancy, 3. Referential clarity, 4. Focus, and 5. Structure and Coherence.

They also assigned a content responsiveness score to each of the automatic summaries. The content score is an integer

between 1 (very poor) and 5 (very good) and is based on the amount of information in the summary that helps to satisfy

the information need expressed in the topic narrative.’’34

Table 5 presents the average linguistic quality and overall responsive scores of all the systems. From these results, we can

see that the reinforcement system does not perform well compared to the baseline system in terms of linguistic quality. This

fact is understandable since our approach did not consider any post-processing and sentence-ordering algorithms to fine-

tune the system-generated summaries by ignoring the fluency component of the system task. However, in terms of overall

content responsiveness, the reinforcement system outperformed all other systems indicating a better accuracy in meeting

the user-requested information need. The differences between the systems were computed to be statistically significant35

at p < 0:05 except for the difference between the k-means and the reinforcement system in terms of linguistic quality.

Table 2

ROUGE measures: precision.

Systems ROUGE-2 ROUGE-SU

SVM 0.0707 0.1477

K-means 0.1072 0.1742

Reinforcement 0.0878 0.1417

Table 3

ROUGE measures: recall.

Systems ROUGE-2 ROUGE-SU

SVM 0.0641 0.1209

K-means 0.0779 0.1348

Reinforcement 0.0849 0.1319

Table 4

Performance comparison: F-score with confidence intervals.

Systems ROUGE-2 Confidence intervals ROUGE-SU Confidence intervals

Baseline 0.0649 0.0608–0.0688 0.1127 0.1084–0.1167

SVM 0.0672 0.0570–0.0787 0.1329 0.1218–0.1444

K-means 0.0902 0.0662–0.0953 0.1520 0.1241–0.1594

Reinforcement 0.0863 0.0740–0.0968 0.1365 0.1236–0.1478

34 http://www-nlpir.nist.gov/projects/duc/duc2007/quality-questions.txt.
35 We tested statistical significance using Student’s t-test and a p value less than 0.05 was considered significant.



7.4.3. Most effective features for reinforcement learning

After the training phase, we get the final updated weights corresponding to each feature. The smallest weight value indi-

cates that the associated feature can be eliminated because it does not contribute any relevant information for action selec-

tion. From this viewpoint we can infer that — weights reflect the effectiveness of a certain feature. Table 6 shows the top ten

final feature weights (ranked by higher effectiveness) for this problem domain that we find after the training experiment.

The table shows that the Basic Element overlap feature is the most effective feature followed by the syntactic feature and

the sentence length feature. On the other hand, 1–gram overlap has the lowest weight value denoting the fact that this fea-

ture has little impact on the reinforcement learner.

7.4.4. Experiments with user interaction

System Description. The major objective of this experiment is to study the impact of the user interaction component in the

reinforcement learning framework. To accomplish this purpose, we use the first 30 topics at most36 from the DUC-2006 data

to learn the weights respective to each feature and then use these weights to produce extract summaries for the next 15 topics

(test data).

We follow six different ways of learning the feature weights by varying the amount of user interaction incorporated and

the size of the training data: (1) SYS_0_20, (2) SYS_10_20, (3) SYS_20_0, (4) SYS_20_10, (5) SYS_30_0, and (6) SYS_30_30.

The numbers in the system titles indicate how many user-interaction and non-user-interaction topics each system included

during training, respectively. For example, the first system is trained with 20 topics of the DUC-2006 data without user inter-

action. Among these systems, the sixth system is different as it is trained with the first 30 topics of the DUC-2006 data with-

out user interaction. The learned weights that are found from the SYS_30_0 experiment are used as the initial weights of this

system. This means that the SYS_30_30 system is trained with 60 topics in a pseudo-manner (30 topics with interaction from

SYS_30_0 and 30 topics without interaction).

The outcomes of these systems are sets of learned feature weights that are used to generate extract summaries (i.e.

answers) for the last 15 topics (test data) of the DUC-2006 data set. After the six learning experiments, we get six sets of

learned feature weights which are used to generate six different sets of summaries for the test data (15 topics). We evaluate

these six versions of summaries for the same topics and analyze the effect of user interaction in the reinforcement learning

framework.

Evaluation.We report the two official ROUGE metrics of DUC-2006 in the results: ROUGE-2 (bigram) and ROUGE-SU (skip

bigram). In Table 7, we compare the ROUGE-F scores of all the systems. In our experiments, the only two systems that were

trained with 20 topics are SYS_0_20 and SYS_20_0 (the one has 20 unsupervised, the other has 20 supervised). From the

results, we see that the SYS_20_0 system improves the ROUGE-2 and ROUGE-SU scores over the SYS_0_20 system by

0.57%, and 0.47%, respectively. Again, we see that the SYS_20_10 system improves the ROUGE-2 and ROUGE-SU scores over

the SYS_10_20 system (both systems had 30 topics but where SYS_20_10 had more human-supervised topics) by 0.96%, and

8.56%, respectively. We also find that the SYS_30_0 system improves the ROUGE-2 and ROUGE-SU scores over the SYS_20_10

system (both systems had 30 topics with SYS_30_0 having more human supervision) by 0.25%, and 0.80%, respectively. The

Table 5

Average linguistic quality and overall responsiveness scores for all systems.

Systems Linguistic quality Overall responsiveness

Baseline 4.24 1.86

SVM 3.48 3.20

K-means 3.30 3.45

Reinforcement 3.32 3.80

Table 6

Effective features.

Final weight Associated feature

0.012837 Basic element overlap

0.007994 Syntactic feature

0.007572 Length of sentences

0.006483 Cue word match

0.005235 Named entity match

0.002201 2–gram overlap

0.002182 Title match

0.001867 Skip–bigram

0.001354 WLCS

0.001282 1–gram overlap

36 We build several reinforcement systems by varying the training data size.



results show a clear trend of improvement when human interaction is incorporated. We can also see that the SYS_30_30

system is performing the best since it starts learning from the learned weights that are generated from the outcome of

the SYS_30_0 setting. This denotes that the user interaction component has a positive impact on the reinforcement learning

framework that further controls the automatic learning process efficiently (after a certain amount of interaction has been

incorporated). In Table 8, we report the 95% confidence intervals for ROUGE-2 and ROUGE-SU to show the significance of

our results.

We also conduct an extensive manual evaluation of the systems. Two university graduate students judged the summaries

for linguistic quality and overall responsiveness according to the DUC-2007 evaluation guidelines. Table 9 presents the aver-

age linguistic quality and overall responsive scores of all the systems. Analyzing these results, we can clearly see the positive

impact of the user interaction component in the reinforcement learning framework. The improvements in the results are sta-

tistically significant (p < 0:05).

Discussion. The main goal of the reinforcement learning phase is to learn the appropriate feature weights that can be used

in the testing phase. When the agent is in learning mode, in each iteration the weights get updated depending on the imme-

diate reward it receives after selecting an action. To illustrate, when a user is interacting with the system (according to Sec-

tion 5), in each iteration one sentence is chosen to be included into the summary space. The top five candidates vary based on

the previously selected action. For each considered topic, the user provides feedback for three consecutive iterations while

automatic learning continues in the remaining iterations. When the summary length reaches to 250 words, we obtain the

weights learned from one topic. These weights become the initial weights for the next topic. The user again interacts with

the system for three iterations and the process continues for a certain number of topics. Then, the agent starts automatic

learning for the remaining topics.

The effect of the presence or absence of user feedback on the feature weights can be shown using the graphs in Fig. 3

(SYS_20_0 experiment) and Fig. 4 (SYS_0_20 experiment). To understand the feature weight change over iterations, we also

present the weights from different stages of the SYS_20_0 experiment in Fig. 5. Note that the SYS_20_0 system is trained

with 20 topics of the DUC-2006 data with user interaction. We draw this graph using the gnuplot37 graphing utility. To con-

nect all data points smoothly, we used the ‘‘smooth csplines’’ option. The labels in the Y-axis of all the figures refer to the fea-

tures38 in the following order: (1) 1-gram overlap, (2) 2-gram overlap, (3) LCS, (4) WLCS, (5) exact word overlap, (6) synonym

overlap, (7) hypernym/hyponym overlap, (8) sentence length, (9) title match, (10) named entity match, (11) cue word match,

(12) syntactic feature, and (13) BE overlap. We also show the weights from different stages of the SYS_0_20 experiment in Fig. 6.

Note that the SYS_0_20 system is trained with 20 topics of the DUC-2006 data without user interaction. This graph shows how

automatic learning affects the weights during the same stages as shown in the previous graph. If we compare the corresponding

graphs (with or without user interaction), we find that both the graphs show a similar kind of trend, i.e., at the end of the learn-

ing phase (end of topic-20), all the feature weights converge to zero except for 2-gram overlap and BE overlap. However, the

main point to notice here is how quickly they converged. From the figures, we can see that the SYS_20_0 system converged

quickly for the important two features (2-gram overlap and BE overlap) by immediately lowering the values in iteration-2.

We can also see that the hypernym/hyponym overlap feature gets an abrupt increase in its value during iteration-8 while

Table 7

Performance comparison: F-scores.

Systems ROUGE-2 ROUGE-SU

SYS_0_20 0.052252 0.118643

SYS_10_20 0.059835 0.114611

SYS_20_0 0.052551 0.119201

SYS_20_10 0.060409 0.124420

SYS_30_0 0.060560 0.125417

SYS_30_30 0.060599 0.125729

Table 8

95% confidence intervals for different systems.

Systems ROUGE-2 ROUGE-SU

SYS_0_20 0.040795–0.063238 0.110603–0.126898

SYS_10_20 0.046216–0.073412 0.114425–0.134460

SYS_20_0 0.041366–0.063316 0.111324–0.127472

SYS_20_10 0.046718–0.073785 0.114423–0.134463

SYS_30_0 0.046364–0.074779 0.114820–0.134460

SYS_30_30 0.050021–0.075493 0.117726–0.134321

37 http://www.gnuplot.info/.
38 We include those features that have at least one non-zero weight value in any of the considered stages.



Table 9

Linguistic quality and responsiveness scores.

Systems Linguistic quality Overall responsiveness

SYS_0_20 2.92 3.20

SYS_10_20 3.45 3.40

SYS_20_0 3.12 3.39

SYS_20_10 3.50 3.72

SYS_30_0 3.68 3.84

SYS_30_30 3.96 4.10

Fig. 3. Effect of user feedback on feature weights.

Fig. 4. Effect of fully automatic learning on feature weights.



the value is lowered later. This phenomenon indicates that the reinforcement system is responsive to the user interests and

actions. On the other hand, from Figs. 4 and 6 we understand that the SYS_0_20 system converges slowly by following a fixed

pattern. From this investigation, we can conclude that our reinforcement system can learn quickly and effectively from the pro-

vided user feedback. In this experiment, we interacted with the system for three iterations for each topic. We claim that the

learning performance will improve significantly if more user interaction is provided during the learning phase. The evaluations

shown in Section 7.4.4 also support this claim.

8. Conclusion and future work

The main contribution of this paper is a reinforcement learning formulation of the complex question answering problem.

We proposed a modified version of the Watkins’ QðkÞ algorithm to represent the complex question answering task in the

reinforcement learning framework. The main motivation of applying a reinforcement approach in this domain was to

enhance real-time learning by treating the task as an interactive problem where user feedback can be added as a reward.

Initially, we simplified this assumption by not interacting with the users directly. We employed the human-generated

abstract summaries to provide a small amount of supervision using reward scores through textual similarity measurement.

Fig. 5. Feature weight change over iterations (with user interaction).

Fig. 6. Feature weight change over iterations (without user interaction).



Later, we extended our model by incorporating a user interaction component to guide the candidate sentence selection pro-

cess during the reinforcement learning phase.

We compared our reinforcement systemwith a baseline, a supervised (SVM) system, and an unsupervised (K-means) sys-

tem. Extensive evaluations on the DUC benchmark data sets showed the effectiveness of our approach. The performance gain

of the reinforcement learning method was achieved from the reinforcement learning algorithm as its major goal was to learn

the optimal policy of selecting the best possible action from the available action space such that the machine generated sum-

mary has the closest match with the given gold standard summaries. We claim that the performance of the proposed system

would further improve if the reward function could consider syntactic and semantic similarities between a selected summa-

ry sentence and the abstract summaries. The inclusion of the dynamic similarity feature into the feature space contributed in

minimizing the redundancy of the automatically generated summaries which also provided a positive impact on the system

performance. Furthermore, our experiments with the user interaction component revealed that the systems trained with

user interaction can perform better. The evaluations also showed that the reinforcement system is able to learn automatical-

ly (i.e. without interaction) and effectively after a sufficient amount of user interaction is provided as the guide to candidate

answer sentence selection.

The implications of our approach for interactive systems can be observed by the user modeling component as it helps the

reinforcement framework to refine the answers based on user feedback. Another scenario of adding user interaction could be

as follows: a user submits a question to the QA system and receives an extract summary for a list of relevant documents

(obtained by a Web search engine) as the answer to the question. The user will then be asked to give a rating about his sat-

isfaction which will be encoded as a reward in the reinforcement learning approach. The current answer to the complex

question will be refined accordingly and the same process will be followed until the satisfaction level reaches to the max-

imum. This process is definitely time consuming, however, once the system receives a considerable amount of feedback

about several complex questions, a reinforcement learning system could learn about the user’s interests, choices etc. from

this data. The learned model can be used to answer unseen complex questions efficiently. We plan to accomplish this goal

in the future.

In this research, we kept the value of � static through out the weight learning phase to denote a fixed probability of explo-

ration. In future work, we will experiment on tuning the value of � where we will start with a high value to ensure a greater

amount of exploration and less exploitation while gradually decreasing � to reduce exploration as time passes. In this work,

we used ROUGE as a reward function to provide feedback to each chosen action. We plan to extend this research by using

different textual similarity measurement techniques such as Basic Element (BE) overlap (Hovy et al., 2006), syntactic simi-

larity measure (Moschitti & Basili, 2006), semantic similarity measure (Moschitti et al., 2007), and Extended String Subse-

quence Kernel (ESSK) (Hirao et al., 2003) as the reward functions.
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