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Abstract—The paper proposes a new randomised Cross Val-
idation (CV) criterion specially designed for use with data
acquired over non-uniformly scattered designs, like the linear
transect surveys typical in environmental observation. Numerical
results illustrate the impact of randomised cross-validation in real
environmental datasets showing that it leads to interpolated fields
with smaller error at a much lower computational load. Ran-
domised CV enables a robust parameterisation of interpolation
algorithms, in a manner completely driven by the data and free
of any modelling assumptions. The new method proposed here
resorts to tools and concepts from Computational Geometry, in
particular the Yao graph determined by the set of sampled sites.
The method randomly chooses the hold-out sets such that they
reflect, statistically, the geometry of the design with respect to the
unobserved points of the area where the observations are to be
extrapolated, minimising biases due to the particular geometry
of the designs.

I. MOTIVATION

In environmental sciences, as in monitoring, there is often
the need to supplement global earth observation data with
on-site observations. The acquired measures should allow a
reliable reconstruction of the values of the observed field
over the entire region of study (interpolation), and, in many
situations, an indication of the uncertainty that affects the
reconstructed field is also important (error prediction).

The current trend is to have in sifu observations collected
by sensors carried by mobile platforms, either executing a pre-
defined trajectory — often a series of parallel transects covering
the region of interest — or implementing reactive data-driven
behaviours that concentrate samples in the most interesting
spatial regions, according to some user-defined criterion. In
both cases, the set of sampled positions is a discrete subset of
the uni-dimensional curve along which the platform traveled
(its trajectory).

The trajectory followed by a surface boat during observation
of a lake in Belgium shown in Figure 1' is a representative
example. Sensor acquisition rate and carrier speed, along with
limitations in power and time, result in a much higher sampling
rate along the trajectory of the carrier than the average point
density over A. This apparent in Figure 1, that actually plots
(color coded) the individual sampled values.

If not explicitly taken into account, this distinctive uni-
dimensional characteristic of the datasets acquired by mobile
sensors may induce a poor performance of commonly used

ICourtesy of VITO.

Fig. 1. Design used for a lake observation (courtesy of VITO).

methods for automatic tuning of interpolators, that may result
in a strong degradation of both the quality of the interpolated
maps as well as of the associated predicted accuracy. This
paper addresses this problem, proposing a model-free Cross
Validation technique that performs robustly when applied to
datasets collected by mobile sensors.

As the numerical results presented below show, application
of common Cross Validation (CV) approaches [1] to uni-
dimensional datasets may lead to very poor reconstruction
of the measured field, since the underlying assumptions on
which the (CV) criterion is based, valid when the sampled
sites are well distributed over the region of interest, no longer
hold. We proposed in [2] a randomised CV method (rsCV)
that leads to significantly robustness and improved quality of
the interpolated maps. Our numerical results show that use of
simple model-free local interpolator — like Local Weigthed
Regression, [5] — tuned by rsCV is more stable able to
outperform complex model-based interpolators like Kriging
[6], whenever — as it is the case with the majority of real
environmental fields — the mathematical assumptions behind
Kriging do not hold.

Although providing an efficient tuning of interpolation
algorithms, rsCV as proposed in [2] is a biased estimator
of the prediction error of the reconstructed maps, having the
tendency to under-estimate the error for linear transect surveys,
i.e. its indication is a lower bound of the estimation error. This
paper proposes an more complex version of rCV, randomised



shape Cross Validation, rsCV, that estimates an upper-bound
of the prediction error. Use of both criteria establishes thus
a confidence interval for the prediction error, giving a more
realistic indication to the final users about the quality of
the reconstructed map. The price payed by this improved
information is numerical complexity: while rCV outperforms
standard Cross Validation by using hold-out sets whose sizes
mimic the distances between points of the region and the
sampled sites, rsCV improves on rsCV by considering the
shape of the empty (sample-free) regions around each point
determined by the design.

The paper summarises the basic principle behind rCV and
presents the new Cross Validation criterion rsCV, resorting to
tools and concepts from Computational Geometry, in particular
the Yao graph determined by the set of sampled sites. The
results are illustrated in real environmental datasets

II. PROBLEM FORMULATION

Let Y5) denote the complete set of measures acquired
during a one-dimensional survey done along path p(-) C A
YU = {yp = f(p(ty) k= 1,..., K}
Let = be the design, i.e., the set of points at which observations
are made

E:{p(gk)’k:17"'7K}7

and denote by &, = p(¢x) a generic point of E.

Let F denote the interpolation operator, depending on some

set of user-defined parameters p:
f(s|Y(K);p):F(s,Y(K);p), seA .
Choice of p is particularly important when = does not sample

A densely.

Ideally, one would choose p such that the some functional
C(-) of the reconstruction error is minimal: p*(Y(9)) =
argmin,, Cjs (p; Y (K)). Several criteria can be used. We
illustrate the method using the Integrated Square Error (ISE):

IfilJ/

ep(s: Y1) = f(s)

Obviously, C;s. cannot be computed and only estimates of
Cse based on the data Y ) can be used to chose p. Model-
based estimators of C;,. are sensitive to the correctness of
the assumed models, as our numerical results below show.
A method widely used by practitioners to chose algorithm’s
parameters is based on Cross Validation (CV) estimation of the
prediction error. CV origins go at least as far as the 1930’s,
see the interesting discussion in [1]. It works well in the geo-
statistical context when the data points are “space filling”, i.e.,
uniformly scattered in .4, as in Figure 2, which is clearly not
the case for the in Figure 1.

Cise(p; YHO) = 5 Y)Y d (1)

F(sly s p)
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Fig. 2. Space filling design.

III. CROSS VALIDATION

Several variants of CV exist [3], but the simple description
below is sufficient for the purpose of this paper.

Let &; denote a generic point of =, Z(~%) a subset of Z that
does not contain & and Y~ the corresponding measures.
A realisation of the interpolation error for algorithm F with
parameters p is obtained by using Y (=% to estimate the field

at &;:
(&Y T)) =y —

Averaging these residuals over & € = yields a CV estimate
of Cise

fE&ytop),  ge=.

=

Cov (plY ") = Crae(plY 10 = &Y )

2)
that can be used to select p by p* = argmin, Ccoy (p|Y ().
Different choices for the sets Y (=9 give rise to different
variants of CV, the most common being “leave-one-out,” where
Y = YO fy,

A necessary condition for Coy (p|Y %)) to be a sensible
estimate of C,. is that the set of “cross-validation residuals”
ep(&is Y(_i)) be a representative sample of the prediction error
process at unobserved points of A. As we showed in [2] for
uni-dimensional surveys this is never the case for standard CV
methods, which led us to propose rCV, that we summarise in
the next section.
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IV. RANDOMISED CROSS VALIDATION (RCV)

In a first order approximation the reconstruction error at a
point s € A is highly (positively) correlated to the distance
of s to its closest point in =, see [4]. rCV is fundamentally
based on the statistical distribution of these distances (induced
by the uniform measure in A).

Let d(s,Z) be the distance between a generic region point
s € A and the design =:

d(s,Z) = min s = ¢ .
Let m=(d) the probability distribution of d(s,Z) when s ~
U(A), i.e., when s is uniformly distributed in A.



hold-out distance 0.222302
T T T

hold-out distance 0.187633

Fig. 3. Example of block-out sets Y ~(5:7)

For any s € A and r > 0 let B,.(s) be the ball of radius r
centred at s, and denote by ==(57) be the sets?

=" =EnB,(s)° , 3)

and denote by Y ~(*7) the corresponding measures. Figure 3
illustrates the definition of the sets Y ~(*:7), the hold-out sets
used in our randomised CV.

Randomised CV criterion
The randomised CV criterion for the prediction error over A
using data Y5) and design = is

Crov (oY 5) =B (3(6) - F (€Y 7€7,0)) . @

Above, the average is computed using distributions r ~ 7=
and ¢ ~ U(Z), and the hold-out sets Y ~(&7) are given by
(3). Obviously, numerical computation of C,.cy resorts to
stochastic simulation the expected value in (4) being approxi-
mated by the corresponding empirical average. Note that C..cy
uses randomly chosen hold-out sets that statistically reflect
the imbedding of E in region A, and puts CV in the actual
conditions under which extrapolation will be done.

The price payed for the robustness of C,.cy is its higher
numerical complexity, when compared to standard CV tech-
niques, that rely on “homogenous” hold-out sets. However, it

2Notation B® denotes the complement of set B in A.

can leads to an efficiently and stable tuning of simple interpo-
lators, which may, as the examples below show, significantly
outperform more complex interpolators like Krigin at a much
lower global (tuning and interpolation) computational cost.

Even if rCV provides a preferable alternative to common
self-tuning techniques, for uni-dimensional designs rCV is
a biased estimator of Cj4., predicting an interpolation error
lower than the true error. This behaviour can be explained by a
close analysis of the shapes of the cells of the Voronoi diagram
centred an arbitrary point s € A (for the set of points ZU {s}
obtained by completing = with s) and those corresponding to
= alone. The method rsCV proposed in the paper overcomes
this deficiency by explicitly addressing the geometry of these
cells.

Before presenting it, we demonstrate the impact of rCV
with a numerical study on real datasets.

V. NUMERICAL RESULTS

Kriging with range estimated by variogram is presently
considered as the preferred interpolation technique in geo-
statistics. This interpolator is based on strong assumptions
about the observed field necessary to be able to estimate the
parameters of the model for which Kriging is the optimal
predictor. This good performance comes at a significant com-
putational price, as well as complex implementation issues,
since the method should ideally simultaneously process the
entire observations, which makes it problematic for large
environmental datasets.

When = is dense in A, this interpolator produces very good
results, and, as importantly, is able to indicate the uncertainty
of the estimated map. Unfortunately, the distributional and
stationarity assumptions on which it is based are seldom
satisfied by real environmental fields, which can lead to very
poor behaviour for poor designs. We present below comparison
of three estimates: (a) Ordinary Kriging (OK) with variogram
tuning; (b) Locally Weighted Linear Regression (LWLR) with
leave-one-out CV; and (¢ ) LWLR with rCV tuning.

Five different parameters (depth, temperature, CHl,,, turbid-
ity and Ph) were recorded for this survey. Due to space reasons
we concentrate on Clh, and Ph. Figures 4 and 5 show the
interpolated Ph. We can see that the map produced by OK is
strongly over-smoothed, while the local methods are able to
retain the information in the dataset, rCV being smoother than
LOO-CV while still retaining detailed variation information.

Figures 6 and 7 sow the opposite situation: Kriging produces
a good interpolation of the dataset, comparable to the result
of rCV.

The results above clearly show the robustness of simple
local imterpolars combined with rCV. We stress that for
the 5 parameters in the processed real dataset the behaviour
illustrated above was consistent: rCV is more stable than OK,
producing results of similar quality when OK works well while
the total computation load was 6-7 times smaller. It always
outperforms LOO-CV as it should be expected.

As we said before, rCV produces a negatively biased
estimate of the interpolation error C;s. (a lower bound). We
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outline below a modified version of rCV that leads to an upper
bound of Cj,.

VI. RANDOMISED SHAPE CROSS-VALIDATION

The modified thCV criterion has the same generic expres-
sion as rCV:

rhOV (p) = B (yi — 9(&]257))?

As rCV, it can only be computed by Monte Carlo computation
of the corresponding excepted values. The main difference
resides in the geometry of the hold-out sets. While for rCV
the hold-out sets have all the same geometry, independently
of the point s drawn, depending only on the distance between
s and the point in = closest to it. The new rsCV draws on
a more complex characterisation of the “free space around s.
More precisely, we rely on the notion of Yao graph of a set of
points X []. This graph relies on a partition of the space around
each point s € X in a fixed number (n) of cones centered
at s. The graph is obtained by creating an edge between s
and its n nearest neighbours in each cone. Figure 8 illustrate
the concept and the hold-out sets used by rsCV. The green
dots are the design points, and the black starts two points s
randomly drawn in A \ E. The polygons around these points
connect the Yao-neighbours of s (elements of Z). The red-
encircled green dots are the hold-out sets for the two points
s shown. Note that this method is able to replicate the error
residuals at the boundaries of A.

VII. CONCLUSION

This paper proposes a new Cross Validation Criterion in-
tended to be used on datasets acquired along linear/transect
surveys, a common practice in environmental observation. The
new criterion is an improved version of a randomised version
of standard CV, where the hold-out sets are randomly chosen
in order to statistical replicate the local geometry of the free
space around each point in the target interpolation region. We
illustrated the advantage of randomised with respect to stan-
dard CV techniques (and even parametric moment-matching
techniques like use of variogram in the context of kriging) real
data. On-going work concerns improvement of the numerical
efficiency of the method, which requires the computation of
nearest neighbours in several directions.
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Fig. 8. Hold-out sets based on the Yao graph.
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