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Model-free spatial Interpolation and error prediction for survey data acquired by mobile platforms Maria-João Rendas Laboratoire I3S, CNRS Sophia Antipolis, FRANCE Email: {rendas}@unice.fr Abstract-The paper proposes a new randomised Cross Validation (CV) criterion specially designed for use with data acquired over non-uniformly scattered designs, like the linear transect surveys typical in environmental observation. Numerical results illustrate the impact of randomised cross-validation in real environmental datasets showing that it leads to interpolated fields with smaller error at a much lower computational load. Randomised CV enables a robust parameterisation of interpolation algorithms, in a manner completely driven by the data and free of any modelling assumptions. The new method proposed here resorts to tools and concepts from Computational Geometry, in particular the Yao graph determined by the set of sampled sites. The method randomly chooses the hold-out sets such that they reflect, statistically, the geometry of the design with respect to the unobserved points of the area where the observations are to be extrapolated, minimising biases due to the particular geometry of the designs.

I. MOTIVATION

In environmental sciences, as in monitoring, there is often the need to supplement global earth observation data with on-site observations. The acquired measures should allow a reliable reconstruction of the values of the observed field over the entire region of study (interpolation), and, in many situations, an indication of the uncertainty that affects the reconstructed field is also important (error prediction).

The current trend is to have in situ observations collected by sensors carried by mobile platforms, either executing a predefined trajectory -often a series of parallel transects covering the region of interest -or implementing reactive data-driven behaviours that concentrate samples in the most interesting spatial regions, according to some user-defined criterion. In both cases, the set of sampled positions is a discrete subset of the uni-dimensional curve along which the platform traveled (its trajectory).

The trajectory followed by a surface boat during observation of a lake in Belgium shown in Figure 1 1 is a representative example. Sensor acquisition rate and carrier speed, along with limitations in power and time, result in a much higher sampling rate along the trajectory of the carrier than the average point density over A. This apparent in Figure 1, that actually plots (color coded) the individual sampled values.

If not explicitly taken into account, this distinctive unidimensional characteristic of the datasets acquired by mobile sensors may induce a poor performance of commonly used 1 Courtesy of VITO. methods for automatic tuning of interpolators, that may result in a strong degradation of both the quality of the interpolated maps as well as of the associated predicted accuracy. This paper addresses this problem, proposing a model-free Cross Validation technique that performs robustly when applied to datasets collected by mobile sensors.

As the numerical results presented below show, application of common Cross Validation (CV) approaches [START_REF] Stone | Cross-validatory Choice and Assessment of Statistical Prediction[END_REF] to unidimensional datasets may lead to very poor reconstruction of the measured field, since the underlying assumptions on which the (CV) criterion is based, valid when the sampled sites are well distributed over the region of interest, no longer hold. We proposed in [START_REF] Li | Tuning interpolation methods for environmental uni-dimensional (transect) surveys[END_REF] a randomised CV method (rsCV) that leads to significantly robustness and improved quality of the interpolated maps. Our numerical results show that use of simple model-free local interpolator -like Local Weigthed Regression, [START_REF] Cleveland | Locally-Weighted Regression: An Approach to Regression Analysis by Local Fitting[END_REF] -tuned by rsCV is more stable able to outperform complex model-based interpolators like Kriging [START_REF] Rassmussen | Gaussian processes for machine learning[END_REF], whenever -as it is the case with the majority of real environmental fields -the mathematical assumptions behind Kriging do not hold.

Although providing an efficient tuning of interpolation algorithms, rsCV as proposed in [START_REF] Li | Tuning interpolation methods for environmental uni-dimensional (transect) surveys[END_REF] is a biased estimator of the prediction error of the reconstructed maps, having the tendency to under-estimate the error for linear transect surveys, i.e. its indication is a lower bound of the estimation error. This paper proposes an more complex version of rCV, randomised shape Cross Validation, rsCV, that estimates an upper-bound of the prediction error. Use of both criteria establishes thus a confidence interval for the prediction error, giving a more realistic indication to the final users about the quality of the reconstructed map. The price payed by this improved information is numerical complexity: while rCV outperforms standard Cross Validation by using hold-out sets whose sizes mimic the distances between points of the region and the sampled sites, rsCV improves on rsCV by considering the shape of the empty (sample-free) regions around each point determined by the design.

The paper summarises the basic principle behind rCV and presents the new Cross Validation criterion rsCV, resorting to tools and concepts from Computational Geometry, in particular the Yao graph determined by the set of sampled sites. The results are illustrated in real environmental datasets II. PROBLEM FORMULATION Let Y (K) denote the complete set of measures acquired during a one-dimensional survey done along path p(•) ⊂ A

Y (K) = {y k = f (p( k )) , k = 1, . . . , K}
Let Ξ be the design, i.e., the set of points at which observations are made

Ξ = {p( k ), k = 1, . . . , K} ,
and denote by ξ k = p( k ) a generic point of Ξ.

Let F denote the interpolation operator, depending on some set of user-defined parameters ρ:

f (s|Y (K) ; ρ) = F s, Y (K) ; ρ , s ∈ A .
Choice of ρ is particularly important when Ξ does not sample A densely. Ideally, one would choose ρ such that the some functional C(•) of the reconstruction error is minimal: ρ (Y (K) ) = arg min ρ C ise (ρ; Y (K) ). Several criteria can be used. We illustrate the method using the Integrated Square Error (ISE):

C ise (ρ; Y (K) ) = 1 |A| A e 2 ρ (s; Y (K) ) ds, (1) 
e ρ (s; Y (K) ) = f (s) -f (s|Y (K) ; ρ) .
Obviously, C ise cannot be computed and only estimates of C ise based on the data Y (K) can be used to chose ρ. Modelbased estimators of C ise are sensitive to the correctness of the assumed models, as our numerical results below show. A method widely used by practitioners to chose algorithm's parameters is based on Cross Validation (CV) estimation of the prediction error. CV origins go at least as far as the 1930's, see the interesting discussion in [START_REF] Stone | Cross-validatory Choice and Assessment of Statistical Prediction[END_REF]. It works well in the geostatistical context when the data points are "space filling", i.e., uniformly scattered in A, as in Figure 2, which is clearly not the case for the in Figure 1. 

III. CROSS VALIDATION

Several variants of CV exist [START_REF] Arlot | A Survey of Cross Validation Procedures for Model Selection[END_REF], but the simple description below is sufficient for the purpose of this paper.

Let ξ i denote a generic point of Ξ, Ξ (-i) a subset of Ξ that does not contain ξ i and Y -(i) the corresponding measures. A realisation of the interpolation error for algorithm F with parameters ρ is obtained by using Y (-i) to estimate the field at ξ i :

ρ (ξ i ; Y (-i) ) = y i -f (ξ i |Y (-i) ; ρ), ξ i ∈ Ξ .
Averaging these residuals over

ξ i ∈ Ξ yields a CV estimate of C ise C CV (ρ|Y (K) ) = C ise (ρ|Y (K) ) = 1 |Ξ| ξi∈Ξ 2 ρ (ξ i ; Y (-i) ) , (2) 
that can be used to select ρ by ρ = arg min ρ C CV (ρ|Y (K) ). Different choices for the sets Y (-i) give rise to different variants of CV, the most common being "leave-one-out," where Y (-i) = Y (K) \ {y i }.

A necessary condition for C CV (ρ|Y (K) ) to be a sensible estimate of C use is that the set of "cross-validation residuals" ρ (ξ i ; Y (-i) ) be a representative sample of the prediction error process at unobserved points of A. As we showed in [START_REF] Li | Tuning interpolation methods for environmental uni-dimensional (transect) surveys[END_REF] for uni-dimensional surveys this is never the case for standard CV methods, which led us to propose rCV, that we summarise in the next section.

IV. RANDOMISED CROSS VALIDATION (RCV)

In a first order approximation the reconstruction error at a point s ∈ A is highly (positively) correlated to the distance of s to its closest point in Ξ, see [START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF]. rCV is fundamentally based on the statistical distribution of these distances (induced by the uniform measure in A).

Let d(s, Ξ) be the distance between a generic region point s ∈ A and the design Ξ:

d(s, Ξ) = min ξ∈Ξ s -ξ ,
Let π Ξ (d) the probability distribution of d(s, Ξ) when s ∼ U(A), i.e., when s is uniformly distributed in A. For any s ∈ A and r ≥ 0 let B r (s) be the ball of radius r centred at s, and denote by Ξ -(s,r) be the sets 2

Ξ -(s,r) = Ξ ∩ B r (s) c , (3) 
and denote by Y -(s,r) the corresponding measures. Figure 3 illustrates the definition of the sets Y -(s,r) , the hold-out sets used in our randomised CV.

Randomised CV criterion

The randomised CV criterion for the prediction error over A using data Y (K) and design Ξ is

C rCV (ρ|Y (K) ) = E r,ξ y(ξ) -F ξ, Y -(ξ,r) , ρ 2 . (4)
Above, the average is computed using distributions r ∼ π Ξ and ξ ∼ U(Ξ), and the hold-out sets Y -(ξ,r) are given by (3). Obviously, numerical computation of C rCV resorts to stochastic simulation the expected value in (4) being approximated by the corresponding empirical average. Note that C rCV uses randomly chosen hold-out sets that statistically reflect the imbedding of Ξ in region A, and puts CV in the actual conditions under which extrapolation will be done. The price payed for the robustness of C rCV is its higher numerical complexity, when compared to standard CV techniques, that rely on "homogenous" hold-out sets. However, it 2 Notation B c denotes the complement of set B in A.

can leads to an efficiently and stable tuning of simple interpolators, which may, as the examples below show, significantly outperform more complex interpolators like Krigin at a much lower global (tuning and interpolation) computational cost.

Even if rCV provides a preferable alternative to common self-tuning techniques, for uni-dimensional designs rCV is a biased estimator of C ise , predicting an interpolation error lower than the true error. This behaviour can be explained by a close analysis of the shapes of the cells of the Voronoi diagram centred an arbitrary point s ∈ A (for the set of points Ξ ∪ {s} obtained by completing Ξ with s) and those corresponding to Ξ alone. The method rsCV proposed in the paper overcomes this deficiency by explicitly addressing the geometry of these cells.

Before presenting it, we demonstrate the impact of rCV with a numerical study on real datasets.

V. NUMERICAL RESULTS

Kriging with range estimated by variogram is presently considered as the preferred interpolation technique in geostatistics. This interpolator is based on strong assumptions about the observed field necessary to be able to estimate the parameters of the model for which Kriging is the optimal predictor. This good performance comes at a significant computational price, as well as complex implementation issues, since the method should ideally simultaneously process the entire observations, which makes it problematic for large environmental datasets.

When Ξ is dense in A, this interpolator produces very good results, and, as importantly, is able to indicate the uncertainty of the estimated map. Unfortunately, the distributional and stationarity assumptions on which it is based are seldom satisfied by real environmental fields, which can lead to very poor behaviour for poor designs. We present below comparison of three estimates: (a) Ordinary Kriging (OK) with variogram tuning; (b) Locally Weighted Linear Regression (LWLR) with leave-one-out CV; and (c ) LWLR with rCV tuning.

Five different parameters (depth, temperature, CHl α , turbidity and Ph) were recorded for this survey. Due to space reasons we concentrate on Clh α and Ph. Figures 4 and5 show the interpolated Ph. We can see that the map produced by OK is strongly over-smoothed, while the local methods are able to retain the information in the dataset, rCV being smoother than LOO-CV while still retaining detailed variation information.

Figures 6 and7 sow the opposite situation: Kriging produces a good interpolation of the dataset, comparable to the result of rCV.

The results above clearly show the robustness of simple local imterpolars combined with rCV. We stress that for the 5 parameters in the processed real dataset the behaviour illustrated above was consistent: rCV is more stable than OK, producing results of similar quality when OK works well while the total computation load was 6-7 times smaller. It always outperforms LOO-CV as it should be expected.

As we said before, rCV produces a negatively biased estimate of the interpolation error C ise (a lower bound). We outline below a modified version of rCV that leads to an upper bound of C ise .

VI. RANDOMISED SHAPE CROSS-VALIDATION

The modified rhCV criterion has the same generic expression as rCV:

rhCV (ρ) = E s E i y i -ŷ(ξ i |Ξ ξ,πs ) 2 .
As rCV, it can only be computed by Monte Carlo computation of the corresponding excepted values. The main difference resides in the geometry of the hold-out sets. While for rCV the hold-out sets have all the same geometry, independently of the point s drawn, depending only on the distance between s and the point in Ξ closest to it. The new rsCV draws on a more complex characterisation of the "free space around s.

More precisely, we rely on the notion of Yao graph of a set of points X []. This graph relies on a partition of the space around each point s ∈ X in a fixed number (n) of cones centered at s. The graph is obtained by creating an edge between s and its n nearest neighbours in each cone. Figure 8 illustrate the concept and the hold-out sets used by rsCV. The green dots are the design points, and the black starts two points s randomly drawn in A \ Ξ. The polygons around these points connect the Yao-neighbours of s (elements of Ξ). The redencircled green dots are the hold-out sets for the two points s shown. Note that this method is able to replicate the error residuals at the boundaries of A.

VII. CONCLUSION This paper proposes a new Cross Validation Criterion intended to be used on datasets acquired along linear/transect surveys, a common practice in environmental observation. The new criterion is an improved version of a randomised version of standard CV, where the hold-out sets are randomly chosen in order to statistical replicate the local geometry of the free space around each point in the target interpolation region. We illustrated the advantage of randomised with respect to standard CV techniques (and even parametric moment-matching techniques like use of variogram in the context of kriging) real data. On-going work concerns improvement of the numerical efficiency of the method, which requires the computation of nearest neighbours in several directions.
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In the framework of this project the authors institution implemented an interpolation web service that integrates, amongst other, the cross-validation techniques and interpolators use in the paper. This service is open to interested users outside of the project by request to the authors. Fig. 8. Hold-out sets based on the Yao graph.