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The paper presents designs that allow detection of mixed effects when performing preliminary screen-
ing of the inputs of a scalar function of d input factors, in the spirit of Morris’ Elementary Effects
approach. We introduce the class of (d, c)-cycle equitable designs as those that enable computation
of exactly c second order effects on all possible pairs of input factors. Using these designs, we propose
a fast Mixed Effects screening method, that enables efficient identification of the interaction graph
of the input variables. Design definition is formally supported on the establishment of an isometry
between sub-graphs of the unit cube Qd equipped of the Manhattan metric, and a set of polynomials
in (X1, . . . , Xd) on which a convenient inner product is defined. In the paper we present systems of
equations that recursively define these (d, c)-cycle equitable designs for generic values of c ≥ 1, from
which direct algorithmic implementations are derived. Application cases are presented, illustrating
the application of the proposed designs to the estimation of the interaction graph of specific functions.
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1. Introduction

In this paper we present designs that support an extension of the Morris’ method [1] that
enables the estimation of the graph of interactions between pairs of input factors of a
function. Being based on empirical statistics of mixed effects, much in the same manner
as Morris’ method is based on empirical statistics of elementary effects, our method
inherits its appealing numerical complexity. Moreover, the interaction graph built by our
method is more informative than the previously proposed FANOVA graph [12], possibly
leading to simpler models, as our numerical examples show.

1.1 Sensitivity analysis

In sensitivity analysis, one wishes to characterise the dependency of an unknown function
f : A ⊂ Rd → R on each of its d input factors. In general, we know nothing about the
function f(·), but can evaluate it at chosen locations ξ ∈ A. Most commonly interest is
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on partitioning the factors of f(·) into those that have no impact on the function value
(class C0), those that have a linear effect (class C1) and those that are non-linear or have
interactions with other input factors (class C2). As noted in [9], fast screening is often
done in the context of factor fixing, with the goal of restricting subsequent analysis of
f(·) to the smaller set C2. This is the context we address.

1.2 Elementary Effects method

Morris scheme for One At a Time (OAT) designs for sensitivity analysis [1] is widely
used for rapid identification of the groups of important (further classified into linear or
mixed/non-linear) and unimportant inputs of a multivariate function f(x), x ∈ A ⊂ Rd,
and is particularly relevant for models whose execution is computationally expensive and
time consuming [2]. Although Morris’ elementary effects do not have the nice theoretical
properties of Sobol indexes, the fact that they can be efficiently computed makes them
a valuable tool for preliminary sensitivity analysis, as some comparative studies (see e.g.
[9]) as well as their wide adoption confirm.

Morris method [1] implements statistical tests over a set of finite differences along
each principal direction i of a function’s input space, di(ξ), computed at a set of points
{ξin}rn=1 of the input domain:

di(ξ) =
1

∆
[f(ξ + ∆ei)− f(ξ)] , ξ ∈ A, i = 1, . . . , d , (1)

where ∆ > 0 is an increment, and ei is the vector with components eij = δij , j = 1, . . . , d.

Let (µi, σ
2
i ) be empirical estimates of the mean di and variance s2

i of di obtained from
the set {di(ξin)}rn=1.

Input factors are classified as (C0) negligible, (C1) linear, or (C2) non-linear/interaction
if: (C0) their mean and variance are both close to zero, (C1) the mean is non-zero, but
variance is small, or (C2) variance is large. The revised version of Morris method in [3]
replaces µi by µ?i , the empirical mean of |di(ξ)|, improving the robustness for oscillating
functions, with derivatives of alternating sign.

If points {ξin}
r,d
n=1,i=1 are chosen completely at random, the sensitivity analysis of a

function of d variables requires a total of 2dr evaluations of f(·). The basic Morris scheme
is a One-At-a-Time (OAT) method that increases efficiency with respect to random
sampling by using most evaluations of f(·) twice. It relies on empirical moment estimates
using r samples of {di(·)}di=1 computed along r randomly oriented paths Td+1 along which
each one of the d coordinates is changed at a time, see Figure 1. The total number of
evaluations of f(·) is r(d + 1), linear in the number of input factors, irrespective of the
number of levels that each input factor can assume.

Morris clustered designs, see Section 5 in [1], improve on the efficiency of these OAT
designs by using each value of f in the computation of more than two elementary differ-
ences. The simple paths Td+1 are replaced by denser graphs that enable determination
of m ≥ 1 elementary differences along each direction. Surprisingly, they seem to have
attracted much less interest than the standard (m = 1) version, possibly partially justi-
fied by the lack of a constructive method for finding them, and also, presumably, due to
concerns about the impact of the induced residual correlation amongst the resulting set
of elementary effects, see [4, 8]. The former difficulty has been addressed in [8], where
we introduced the concept of edge equitable designs and presented procedures for their
recursive construction for arbitrary values of k and m ≤ 2d−1, while a thorough study of
the latter issue has not yet been, as far as we know, published in the literature.
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Figure 1. OAT method: a complete set of d elementary effects is computed along a trajectory contained in a

scaled and translated version of Qd.

1.3 The New Morris Method

In [6] the authors extend Morris’ original method, which was restricted to analysis of
first-order partial derivatives, presentig designs that enable efficient computation of two-
factor interaction effects, of the form XiXj . Their detection of terms in the product of
two input factors Xi and Xj is based on a numerical approximation of the second-order

cross derivatives at points ξ ∈ {ξijn }rn=1 by the mixed effects ddij(ξ):

∂f(ξ)

∂Xi∂Xj
' ddij(ξ) =

f(ξ + ei∆ + ej∆)− f(ξ + ei∆)− f(ξ + ej∆) + f(ξ)

∆2
. (2)

where for the sake of simplicity a regular grid spacing ∆ has been assumed. For a design
to enable assessment of all d(d−1)/2 possible interactions, it is necessary that it contains
the corresponding 4-tuples {ξ, ξ + ei∆, ξ + ej∆, ξ + ei∆ + ej∆}. We remark that these
4-tuples define a 4-cycle in ξ + ∆Qd, where Qd is the unit-cube of dimension d.

The designs used by the New Morris Method are a slight modification of block designs
on graphs, i.e., decompositions of a given graph G into copies of a basic graph S (blocks)
where each edge of G appears in the same number of blocks. Rephrasing the problem of
finding designs that can compute all the

(
d
2

)
second-order cross derivatives in this graph

theoretical framework, corresponds to taking G = Kd, the completely connected graph
of size d, each node i ∈ {1, . . . , d} representing the presence of and edge oriented along

3
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Xi. By constraining their designs to be “multiple trajectories”, which are composition of
several OAT (Morris’ type) trajectories, the authors rephrase their problem as a graph
decomposition problem: OAT trajectories are easily seen to correspond to identifying S
with the graph of simple paths, and thus the overall goal is to decompose Kd into the
smallest possible number of edge-disjoint paths. The problem is recognised as a particular
instance of the handcuffed designs problem where each edge appears only once and the
length of the paths is equal to d, and the authors rely on existing results from graph
theory to establish existence of the multiple trajectories required to compute the complete
set of second order differences, and provide rules for their construction.

Since the block design guarantees only the existence of consecutive edges aligned over
all pairs of directions (i, j), of the generic form {x, x+ei∆, x, x+ei∆+ej∆}, and second-
order differences require the existence of the complete 4-cycles in the unit hyper-cube Qd,
points (x+ej∆) must be added to the block design to enable computation of the total set
of first order differences required around each point. With an analysis based on a folded
representation of the hypercube (in fact only edge orientation is explicitly represented,
edges implicitly indicating paths of length 2), the overall topological properties of the
resulting design in Qd cannot be properly observed or controlled. In particular, the actual
set of edges of the resulting subgraph of Qd is difficult to describe.

1.4 FANOVA graph

Recently, some authors [12] have proposed the use of pair-wise total variation indexes
to build a graph describing the pair-wise interactions (the FANOVA graph) of the input
factors of a function. The authors show that subsequent modelling benefits by exploita-
tion of the structure of this graph. In particular, the FANOVA graph is intended as a
tool supporting structural kernel design in the context of non-parametric modelling us-
ing Gaussian processes (kriging), whose complexity and performance can improve if the
kernel’s structure closely reflects the clique structure of the FANOVA graph. Being based
on Sobol indices, the set of total variation indices which the FANOVA graph describes
are computed by Monte Carlo techniques, and thus they inherit the complexity of Sobol
indices.

1.5 Our contributions

We present generic families of graphs that allow computation of exactly c ≥ 1 mixed
effects in all pairs of directions of Rd, in the vicinity of a given point of Rd, allowing the
extension of Morris method to the analysis of cross second-order derivatives, and thus
the detection of mixed terms, of the form XiXj , in the function f : Rd → R under
analysis. We call the graphs that possess this property (d, c)-cycle equitables.

Figure 2 presents an illustration of this class of graphs, showing an example of a (5, 1)-
cycle equitable graph, i.e., that has exactly one cycle of size 4 involving all 10 possible
pairs of the 5 input factors. In this Figure, as in the rest of the paper, subgraphs of Qd
are represented using edge labels/colours to indicate the direction along which they are
aligned (there will be d different labels/colours in subgraphs of Qd).

In Section 3, Theorems 3.2, 3.3/3.4 and 3.6, we give recursive definitions of families of
cycle-equitable designs for c = 1, c = 2 and c ≥ 3, respectively. To our knowledge, this
is the first time that a constructive and generic procedure to generate cycle-equitable
graphs is presented in the literature.

The work is based on the polynomial representation of subgraphs of the hypercube and
an associated algebra introduced in Section 2. As in [8], our construction is recursive,
(d, c)-cycle equitable graphs Hd

c being defined as composition of a (d−1, c)-cycle equitable

4
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Figure 2. A (5, 1)-cycle equitable subgraph of Q5.

graph with a “lifted” version of a subgraph Gd−1
c of Hd−1

c , which in terms of their
polynomial representations is written as

Hd
c = Hd−1

c +XdG
d−1
c , Gd−1

c ⊂ Hd−1
c .

The basic idea is illustrated in Figure 3, for d = 4 and c = 1. From this generic recursion,
necessary and sufficient conditions for cycle-equitability of Hd

c are derived, supporting
the proposed algorithms for design definition.

H3
1

G3
1

Figure 3. Recursive construction of a (4, 1)-cycle equitable subgraph by composition of a (3, 1)-cycle equitable
graph (H3

1 ) and a lifted version of G3
3 ⊂ H3

1 . The dashed edges are along X4.

Our designs are related to those supporting the “New Morris method” presented in
[6, 7]. The work proposed here improves the work of these references in several directions:
(i) our solution is more general, since we handle values of c ≥ 1, that is, we define designs

that enable computation of more than one mixed effect for all the
(
d
2

)
pairs of input

factors; (ii) our solution is more efficient: even if the authors’ solution is optimal – in terms
of design size– inside the constrained class of “multiple trajectories”, restriction to this
class compromises the attainable efficiency, and the (d, 1)-cycle equitable designs defined
in Theorem 3.2 are smaller; (iii) equitability: our designs are provably edge and cycle
equitable, which is not the case of the designs in [6, 7]; (iv) recursivity: even if we do not
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present here these results, the fact that our designs are recursively defined in d, enables
analytical determination of the sets of points that contribute to each elementary or mixed
effects, while such expressions do not seem to be easy to obtain for the handcuffed designs
of [6].

As shown in Section 5, this extended Morris method enables the estimation of an
annotated interaction graph, that characterizes the interactions of all possible pairs of
input factors, being an efficient alternative to the FANOVA graphs defined in [12]. In fact,
as the examples presented in Section 5 show, exploitation of the additional information
in our interaction graphs can lead to simpler and potentially better models (as well as
more efficiently identified) for the function under study.

2. Polynomial graph representation and algebra

2.1 Polynomial representation of subgraphs of Qd

Definition 2.1 Subgraphs of the unit hypercube Qd = {0, 1}d, are graphs whose vertices
belong to Qd, two elements being joined by an edge if and only if they differ in exactly
one coordinate. �

Note that with the definition above a subgraph of Qd is uniquely defined by its node
set. For example, the graph corresponding to the node set S = {(0, 0), (1, 1)} has an
empty edge set, while the graph T = {(0, 0), (0, 1)} has a single edge. We will adhere
to the definition usual in graph theory, the size of a graph being equal to its number of
nodes.

Definition 2.2 Edge coloring of Qd. We define an edge-coloring of Qd by saying that the
edge joining nodes s and s′ has color i when they differ in the i-th coordinate (si 6= s′i).
�

Note that from the definition of subgraphs of Qd, the two nodes linked by an edge of
color i have sj = s′j for all j 6= i. The graph T in the example above has a single edge of
color 2, as the second coordinate changes.

We associate to each s ∈ Qd a monomial Ps in the ring R[X1, . . . , Xd] of the polynomials
over the variables X1, . . . , Xd:

s = {s1, . . . , sd} −→ Ps(X1, . . . , Xd) = Xs1
1 . . . Xsd

d .

Definition 2.3 Polynomial associated with a subgraph of Qd.
The subgraph induced by a set S ⊂ Qd is the polynomial PS =

∑
s∈S Ps. The empty

set is represented by the zero polynomial. �

For instance, the graph (a) in Figure 4 has polynomial representation 1 +X1 +X2 +
X1X2 + X2X3 + X1X3 (the origin of Q3 is indicated by the large red node, and the
following colour code is used for the edges: red ↔ X1; blue ↔ X2 and green ↔ X3.

The set of the polynomials representing simple subgraphs of Qd will be denoted by
Kd, and corresponds to the polynomials of degree at most 1 (square-free polynomials) in
each variable having coefficients in {0, 1}.

6
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(a) Graph A, (3, 2) edge-
equitable.

(b) Graph B, not edge-
equitable.

(c) Graph C, not edge-
equitable.

Figure 4. Origin is indicated by the large red nodes. Edge colours indicate their direction: red↔ X1, blue↔ X2,
green ↔ X3. Graph C is the reflection of graph B along X1.

2.2 Scalar product in Kd

The set Kd can be embedded in the algebra R[X1, . . . , Xd]/{X2
i =1, i = 1 . . . d} of the

quotient polynomial ring induced by the ideal generated by the set {X2
i − 1}di=1. This

algebra is a vector space for which the set of monomials can be taken as a natural basis.
By defining a scalar product such that this basis is orthogonal, we endow Kd with a
structure that has several interesting properties in term of the underlying subgraphs of
Qd.

Definition 2.4 We define the scalar product between monomials Ps,Ps′ ∈ Kd as1

〈Ps,Ps′〉 = 1s=s′ ,

and extend it naturally to the entire Kd by bilinearity

〈PS ,PS′〉 =
∑

s∈S,s∈S′
〈Ps,Ps′〉 , PS ,PS′ ∈ Kd .

�

Addition coincides with the usual polynomial addition, corresponding to union of the
corresponding graphs. Note that this may yield graphs that are not simple (multiple
nodes). If G and H are two subgraphs of Qd having polynomial representations PG and
PH respectively, then PG⊕PH = PG∪H . Remark that ⊕ is the usual sum of polynomials
using the binary or operation as addition in the field of coefficients.

Multiplication, however, must be defined under the identification X2
i = 1, i = 1, . . . , d,

such that the resulting polynomials correspond to subgraphs of Qd.
The following lemmas can be easily demonstrated.

Lemma 2.5 The scalar product of two subgraphs of Qd, S1 and S2, is equal to the size
of their intersection: 〈PS1

,PS2
〉 = |S1 ∩ S2|. In particular, 〈PS ,PS〉 = |S|. �

1Notation 1a denotes the Kroenecker symbol, begin equal to one if proposition a is true and zero otherwise.

7
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Lemma 2.6 Let s ∈ Qd and S ⊂ Qd. The subgraph S′ defined by PS′ = PsPS is the
reflection of S along the directions present in s. In particular, XiPS corresponds to the
mirror of S along direction i. �

Lemma 2.7 The scalar product is invariant with respect to multiplication by a polyno-
mial: for all s ∈ Qd, S, S′ ⊂ Qd < PsPS ,PsPS′ >=< PS ,PS′ > . �

Using Lemmas 2.6 and 2.5 the following is immediate.

Lemma 2.8 The number mi of edges of S ⊂ Qd having color i satisfies

〈PS , XiPS〉 = 2mi, i ∈ {1, . . . , d} . (3)

�

In [8] we defined the class of (d,m)-edge equitable designs, see Definition 2.9 below.
These graphs correspond to the clustered designs introduced in [1] and allow the com-
putation of m elementary effects (1) along each of the directions of the input space.

Definition 2.9 Let G ⊂ Qd. We say that G is a (d,m)-edge equitable graph if and only
if G has exactly m edges in every coordinate i ∈ {1, . . . , d}. �

The graphs in Figure 4 illustrate the Lemmas above and Definition 2.9. Graph A is
identified with the polynomial PA = 1 + X1 + X2 + X1X2 + X1X3 + X2X3. It is a
(3, 2)-edge equitable graph since

〈PA, X1PA〉 = 〈PA, X2PA〉 = 〈PA, X3PA〉 = 4 .

Graphs B and C are the reflection of each other along the red (X1) direction, since
PC = 1 +X1 +X2 +X1X3 +X1X2X3 = X1PB, (modX2

i = 1). Note that the number of
edges of each colour is the same for these two graphs. They are not edge-equitable since

〈PB, XiPB〉 = 〈PC , XiPC〉 = 2, i = 1, 3, 〈PB, X2PB〉 = 〈PC , X2PC〉 = 4 .

Using the polynomial representation introduced in this section, we presented in [8]
algorithms for recursive construction of edge equitable designs for arbitrary values of d
and m and studied their complexity.

3. Cycle-equitable graphs

As seen in section 1.3, the computation of a mixed effect along directions (i, j) requires
that the design graph contains a 4-cycle, as in the diagram

8



December 10, 2014 Journal of Statistical Computation and Simulation SCSpaperFedou˙revision

x

x+ ∆ei

x+ ∆ei + ∆ej

x+ ∆ej

In the previous section we remembered the definition of (d,m)-edge equitable graphs,
that allow the computation of a given number m of all d elementary effects. In this
section we address the problem of finding subgraphs of Qd that have exactly c 4-cycles
in all pairs of input factors, allowing the computation of exactly c ≥ 1 mixed effects (2).

Definition 3.1 Let G ⊂ Qd. We say that G is a (d, c)-cycle equitable graph if and only
if G has exactly c 4-cycles in every pair of coordinates (i, j) ∈ {1, . . . , d}2, i 6= j.

We reserve the notation Hd
c for (d, c)-cycle equitable graphs. Using the polynomial

algebra introduced above, we can rephrase the previous definition by saying that G is
(d, c)-cycle equitable if and only if

|PG ∩XiPG ∩XjPG ∩XiXjPG| = 4c, i 6= j ∈ {1, 2, . . . , d}2 .

To simplify the presentation we sometimes will, as in the equation above, identify a subset
S of Qd and its corresponding polynomial PS , using for instance expressions such as XiG
where G is a graph, as a shorthand notation for XiPG. Naturally, all operations should be
understood with respect to the representation for which they are defined: products and
sums will always involve the corresponding polynomials, while unions and intersections
are meant to be applied to sets and induced hypercube subgraphs.

Our construction of cycle-equitable graphs is recursive. Starting with a suitable initial-
isation (for a value of d that depends on c, as we will see below), we set

Hd+1
c = Hd

c +Xd+1G
d
c , where Gdc ⊂ Hd

c . (4)

Figure 5 illustrates the recursion for c = 1 and d = 2, . . . , 5.
For Hd+1

c defined by (4) to be a (d+ 1, c)-cycle equitable graph whenever Hd
c is (d, c)-

cycle equitable, Gdc must satisfy the following conditions:

Cond0. Gdc ⊂ Hd
c . This condition is already explicit in (4). Its assumption is justified

by the desire to maintain the size of the graphs small (requiring the addition of
a minimal number of nodes). It is repeated here to emphasise that it is assumed
to hold in the discussion of the two conditions below.

Cond1. Gdc must be (d, c)-edge equitable, i.e. have exactly c edges along each Xj , j ∈
{1, . . . , d}. Together with Gdc ⊂ Hd

c this implies that c new 4-cycles in all pairs
(Xd+1, Xj), j ∈ {1, . . . , d} will be induced by composition (4). In terms of the
polynomial representation this condition is expressed as〈

PGd
c
, XiPGd

c

〉
= 2c, ∀i ∈ {1, . . . , d} . (5)

Cond2 Gdc must have no 4-cycles, otherwise Hd+1
c would have more than c cycles in

some pairs of coordinates, and thus would no longer be a (d+1, c)-cycle equitable
subgraph.

9



December 10, 2014 Journal of Statistical Computation and Simulation SCSpaperFedou˙revision

In the following subsections we provide expressions for graphs Gdc that satisfy these
conditions, considering separately the cases of c ≤ 2 and c ≥ 3. Before, we introduce the
following compact notations that will help us simplifying our presentation.

• Xj
i =

∏
i∈I Xi, where I = {min(i, j), · · · ,max(i, j)}.

• Let Pji =
∑j

k=iX
k
i . Note that Pj0 is well defined if we make the convention X0 = 1.

• If π = (π(1) · · ·π(d)) is a permutation of {1, 2, . . . , d}, the polynomial Pπ associated
to π is defined by

Pπ = Pπ(X1, . . . , Xd) =

d−1∑
i=0

Xπ(1) · · ·Xπ(i) .

• For a permutation σ of {1, . . . , d} we denote by σ(k) the permutation of {1, . . . , k}
corresponding to the subsequence of σ obtained by eliminating all components strictly
greater than k. For instance, if σ = (2, 5, 1, 4, 6, 3), then σ(4) = (2, 1, 4, 3).

3.1 Complete families, c ≤ 2

3.1.1 c = 1

Theorem 3.2 Let d ≥ 2. The graphs Hd
c with polynomials recursively defined by (4)

initialised with H2
1 = Q2, and

Gd1 = Pd0 = 1 +

d∑
i=1

Xi
1 (6)

are (d, 1)-cycle equitable and (d, d)-edge equitable subgraphs of Qd. �

Proof
We only prove cycle-equitability, edge-equitability being easily established directly using
equation (3).
We need to verify that (Cond0) Gd1 is a subgraph of Hd

1 , that (Cond1) it a single edge
along each direction and (Cond2) it has no 4-cycles. The proof is by induction. H2

1 is
trivially (2, 1)-cycle equitable, consisting of a single 4-cycle in (X1, X2). Note that (4)
implies that

Hd
1 ⊃ XdG

d−1
1 , and d > d′ ⇒ Hd

1 ⊃ Hd′

1 , (7)

and that by (6) the graphs Gd1 satisfy the recurrence:

Gd1 = Gd−1
1 +XdX

d−1
1 .

Assume that Gd−1
1 ⊂ Hd−1

1 . Then

Gd1 = Gd−1
1 +XdX

d−1
1

(a)
⊂ Hd−1

1 ∪XdX
d−1
1

(b)
⊂ Hd

1 ∪XdX
d−1
1

(c)
= Hd

1 ,

concluding the proof of Cond0. Above, (a) follows from the assumption, in (b) we used
(7), and (c) follows from (7) and the fact that Xd−1

1 ∈ Gd−1
1 .

10
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Figure 5. GenerationX of (d, 1)-cycle equitable graphs, d = 2, 3, 4, 5.

Cond1 is easily verified by using Lemma 3 and checking that

〈
Gd1, XkG

d
1

〉
= 2 ,
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which follows directly from noting that

Xk

d∑
j=1

Xj
1 =

k−2∑
j=1

Xj
1Xk +Xk−1

1 Xk +Xk
1Xk +

d∑
j=k+1

Xk−1
1 Xd

j

=

k−2∑
j=1

Xj
1Xk +Xk

1 +Xk−1
1 +

d∑
j=k+1

Xk−1
1 Xd

j ,

which has only two terms of Gd1. Since a cycle must contain at least two edges along the
same direction, Cond2 is also verified (Gd1 has no 4-cycles). �

Figure 5 illustrates the recursive construction of Hd
1 . We can see that at each step d one

cycle in the new coordinate (Xd) and each of the “old” ones (X1, . . . , Xd−1) is created
by adding one edge of each colour parallel to edges already in Hd−1

1 (this set of edges,

Gd−1
1 , is a (d− 1) OAT trajectory in Hd−1

1 ).
We remark that similarly to the work in [6] our construction for c = 1 is based on

the linear graphs that are actually OAT paths in a set of coordinates. However, the two
constructions are remarkably different: while the designs of the New Morris Method are
directly defined as the composition of a set of paths of length d + 1 in a given set of
coordinates (d/2 paths in all d factors if d is pair) to which an extra set of nodes must be
added to guarantee the existence of complete 4-cycles, our construction recursively adds
a OAT path of increasing size (the graphs Xd+1G

d
1) to smaller cycle-equitable graphs,

and the target number of 4-cycles are directly enforced by the recursive construction.
Moreover, the graphs Hd

1 are also (d, d)-edge-equitable, which cannot be guaranteed for
the construction in [6].

3.1.2 c = 2

Theorem 3.3 Let d ≥ 3. The designs Hd
2 with polynomials recursively generated by

equation (4) initialised with H3
2 = Q3 and with

Gd2 = Ped ⊕ P(d,d−1,...,1) . (8)

are (d, 2)-cycle equitable and (d, 2(d− 1))-edge equitable subgraphs of Qd. �

We do not detail the proof of this Theorem, that is a special case of Theorem 3.4 given
below.

Consider a target dimension d?. A more flexible construction of Hd?
2 than the one above

is provided by Theorem 3.4 below. Before presenting it, we introduce some notation.
Denote by ed? = (1, 2, . . . , d?) the identity permutation and let σ(∗21) be a permutation

of size d? such that σ(∗21)(d
?) = 1 and σ(∗21)(d

? − 1) = 2. As defined before, let σ
(d)
(∗21),

with d < d?, be the permutation obtained by eliminating all entries of σ(∗21) that are
greater than d.

Theorem 3.4 Let d ≥ 3 and σ(∗21) a permutation of {1, . . . , d?} as above. The graphs

Hd?
2 with polynomials recursively generated by equation (4) initialised with H3

2 = Q3 and
with

Gd2 = Ped + Pσ(d)

(∗21)
, d < d? , (9)

are (d, 2)-cycle equitable and (d, 2(d− 1))-edge equitable subgraphs of Qd. �

12
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Proof
Again, we need to check conditions Cond0—Cond2.
Cond0 Demonstration is again by induction.
For d? = 3, the only possible permutation is σ(∗21) = (3, 2, 1). It can easily be verified

that Gd2 = Ped ⊕ P
(d)
σ(∗21) = Ped−1

⊕ P(d)
σ(∗21) , since the term Xd

1 is also in Pσ. We know

that Ped−1
⊂ Gd−1

2 ⊂ Hd−1
2 ⊂ Hd

2 . It remains to show that P(d)
σ(∗21) ⊂ Hd

2 . Consider all

monomials s ∈ P(d)
σ(∗21) .

• If s does not contain Xd, then by construction s ∈ Pσ(k) for some k < d and thus
s ∈ Gk ⊂ Hk

2 ⊂ Hd
2

• If s contains Xd, then s ∈ XdPσ(d−1) ⊂ Hd
2 .

We can thus conclude that P(d)
σ(∗21) ⊂ Hd

2 , and thus that Gd2 ⊂ Hd
2 .

Cond1 Gd2 contains at least two edges along each direction, one belonging to Ped ,
and another to Pσ. It can be easily checked that polynomials Ped and Pσ have only
two common monomials which are 1 and Xd

1 . If a monomial s ∈ Ped would create an
additional edge along Xi with a monomial s′ ∈ Pσ, then s and s′ should differ only in
Xi, and in particular, s and s′ should both contain X1X2, which can only happen if
s = s′ = Xd

1 , since σ(d) = 1 and σ(d− 1) = 2. We can thus conclude that no extra edges
are created, and thus that Gd2 is a edge-equitable graph.

Cond2 This property is a consequence of the previous one. Indeed, the edges of Gd2 are
exactly the union of those of Ped and those of Pσ, and not more. Gd2 is a simple cycle of
length 2d that contains no smaller cycles. �

3.2 Incomplete families, c ≥ 3

For c ≥ 3 we only have a construction for d ≥ c + 1. We start by stating a lemma that
provides the initialisation of our recursive construction.

Lemma 3.5 The graph with polynomial defined by

Hc+1
c = 1 +

c+1∑
i=1

Xi +

c+1∑
i,j=1,j>i

XiXj +

c+1∑
i,j,k=1,k>j>i

XiXjXk

has exactly c 4-cycles in every pair of the c+ 1 coordinates. �

Proof
Every cycle in coordinates (Xi, Xj) corresponds to the presence in Hc+1

c of four terms
of the form q (1 +Xi +Xj +XiXj)), for some q ∈ Hc+1

c . We must show that we can
find these four terms for c distinct monomials q not containing Xi and Xj . Given the
complete symmetry of Hc+1

c , we consider i = 1 and j = 2. Since Hc+1
c contains all 1st,

2nd and 3rd order monomials, we can make the following c choices:

q = 1, and q = Xj , j = 3, . . . , c+ 1 .

Note that no other choices are possible, since there are only c− 1 3rd order terms. This
concludes the proof that there are indeed c cycles in all pairs of coordinates (Xi, Xj) in
Hc+1
c . �

13
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Theorem 3.6 Let c ≥ 3 and d ≥ c+ 1. The graphs Hd
c with polynomials defined by (4)

initialised with Hc+1
c given in Lemma 3.5 and with

Gdc = 1 +

(
c∑
i=1

Xi

)(
1 +Xc+1 + · · ·+Xi

c+1 + · · ·+Xd
c+1

)
+Xd

c+1

c∑
i,j=1,j 6=i

XiXj , (10)

are (d, c)-cycle and (d, d+ c)-edge equitable. �

Proof
The two lemmas below state that the three conditions on Gdc for Hd

c to be (d, c)-cycle
equitable are verified. �

Lemma 3.7 For d ≥ c+ 1, the polynomial Gdc given by (10) has exactly c edges of each
colour (Cond1), and no 4-cycles (Cond2). �

Proof
Decompose

Gdc = Sd + T d ,

where

Sd = 1 +

(
c∑
i=1

Xi

)1 +

d∑
j=c+1

Xj
c+1

 , T d = Xd
c+1

c∑
i,j=1,j 6=i

XiXj .

Remark that Sd can be written as

Sd =

c∑
i=1

Sdi , Sdi = 1 +XiP(c+1···d) ,

and thus it has a single edge along coordinates X1, . . . , Xc, and exactly c edges along
coordinates Xc+1, . . . , Xd.

Consider s = Xd
c+1XiXj ∈ T d. Monomial s has only two neighbours in Sd: si =

XiX
d
c+1 ∈ Sdi and sj = XjX

d
c+1 ∈ Sdj , inducing edges along coordinates Xj and Xi,

respectively.
Since for each i there are c− 1 distinct values of j ∈ {1, . . . , c} \ {i}, we can conclude

that the number of edges along direction Xi linking Sd to T d is c − 1, proving that Gdc
has exactly c edges along all directions.

The proof that Hd
c has no 4-cycles is immediate from the fact that all polynomials Sdi

have d− c+ 1 > 2 terms for d > c+ 1 and thus the cycles completed with the nodes of
T d cannot have length smaller than 4+2=6.

Lemma 3.8 For d > c+ 1, Gdc ⊂ Hd
c (Cond0). �

First note that Gc+1
c ⊂ Hc+1

c by construction, since Hc+1
c has all monomials up to

14
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order 3, and Gc+1
c has no monomials of order greater than 3. Since we can write

Sd = Sd−1 +Xd

c∑
i=1

XiX
d−1
c+1 , T d = XdT

d−1 ,

multiplication by Xd in composition (4) creates all terms in Gdc that were not in Gd−1
c ,

and the lemma is demonstrated.

4. Size of designs

To take into account the number of mixed effects computed by a design, the definition
of economy presented in [1] must be slightly modified.

Definition 4.1 Let Hd
c be a (d, c)-cycle equitable and (d,m)-edge equitable design. Its

economy is

χ =
|{elementary effects} ∪ {mixed effects}|

|Hd
c |

=
md+ c

(
d
2

)
|Hd

c |

Explicit formulas for the designs sizes follow easily from their recursive definition:

|Hd
1 | = |Hd−1

1 |+ d, d > 2, |H2
1 | = 4 ;

|Hd
2 | = |Hd−1

2 |+ 2d+ 1, d > 3, |H3
2 | = 8 ;

|Hd
c | = |Hd−1

c |+ 1

6
(6 + 5d+ d3), d ≥ c+ 1, |Hc+1

c | = 1 + c+

(
d

2

)
+

(
d

3

)
, c ≥ 3 ,

yielding

|Hd
1 | = 1 +

1

2
d(d+ 1) ∼ d2

2
; (11)

|Hd
2 | = 2 + d(d− 1) ∼ d2 ; (12)

|Hd
c | =

1

6

(
6− c+ c3 + 6d− 3c2d+ 3cd2

)
∼ cd2

2
, c ≥ 3, d > c+ 1 . (13)

The complexity of our designs is |Hd
c | ∼ cd2

2 , for all values of c. Remark the increased
efficiency of our designs compared to [6], whose size is of order d2 for c = 1, for which
our designs are twice as small.

5. Annotated interaction graph

We present in this section application of the cycle-equitable designs of Section 3 to
screening analysis of a function f : A ⊂ Rd → R. We assume a modelling framework,
i.e., where the ultimate goal is to produce a model of f from a finite set of carefully
chosen evaluations of f .

As we recalled in section 1.2, the elementary effects method partitions the d input
factors X1, . . . , Xd into three classes, C0, C1 and C2, of negligible, linear and non/linear

15
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Figure 6. Interaction graph resulting of Morris method. Note the completely connected graph KC2
connecting

nodes in C2= {1, 3, 4, 5, 7}.

mixed input factors, respectively. Once this partitioning is known, f can be modelled
as the sum of a parametric (linear) and a non-parametric component:

f(X1, . . . , Xd) '
∑
Xi∈C1

aiXi + h
(
{Xi}Xi∈C2

)
,

where h(·) is some non-parametric function to be determined. We can expect that |C2| �
d, resulting in a considerable reduction of the complexity of subsequent non-parametric
model identification when compared to direct non-parametric modelling on all d input
factors.

Morris method can be used to build a first interaction graph, where all negligible and
linear factors are isolated nodes, while a completely connected graph KC2 links the nodes

in C2. An example is given in Figure 6. In the representation, bold square nodes are linear
nodes (class C1) identified by the Morris method, and thin squares indicate negligible
inputs, i.e., in class C0, while the elements of C2 are circles.

Using the cycle-equitable designs presented in this paper we can implement a second
screening step, restricted to the set of inputs in classe C2, that will further refine the
structure of KC2 .

While the original Morris method enables classification of the input factors Xi, i =
1, . . . , d, the second screening step that we propose will enable classification of the edges
EC2 of KC2 :

EC2 = E0 ∪ E1 ∪ E2 .

Classification of an edge (Xi, Xj) ∈ EC2 in one of the classes is done by using the empirical

mean and variance of a set of mixed effects {ddij(ξn), ξn ∈ A}, i 6= j, see equation (2):

If µij ' 0, and Var(ddij) ' 0 ⇒ no interaction between (i, j) ⇔ (Xi, Xj) ∈ E0
If µij > 0, and Var(ddij) ' 0 ⇒ bilinear interaction between (i, j)⇔ (Xi, Xj) ∈ E1

If Var(ddij) > 0 ⇒ more complex dependencies ⇔ (Xi, Xj) ∈ E2

Above, µij and Var(ddij) are the empirical mean and variance of the mixed effects ddij .
A new graph Ka

C2
can be defined using this classification by (i) removing all edges in

class E0, and (ii) annotating the remaining edges either as either E1 or E2. Remark that
if (Xi, Xj) ∈E0, ∀j 6= i, then Xi is an isolated node of Ka

C2
, indicating a non-interacting
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6linear
2 linear (negligible)

5

4 3

1

7

non linear
non linear

bilinear

Figure 7. Annotated interaction graph Ka
C2

built using the mixed effects. E1: black edges, E2: red edges.

non-linear term. The annotated graph Ka
C2

will in general no longer be completely con-

nected, revealing a model structure that can be identified more efficiently.
We present the concept using a slightly modified version of example b in [12], that we

designate by MRCK function:

f(X1, . . . , X7) =αX6 + exp(−νX7) + (δ0 + δ3X3 + δ4X4)2

+ cos (β0 + β1X1 + β3X3) + sin (γ0 + γ4X4 + γ5X5) . (14)

Morris method will identify input X2 as negligible (C0), input X6 as linear (C1), all
others being assigned to C2, resulting in the graph in Figure 6.

By analysis of the mixed effects in C2 a number of edges can be removed, resulting in
the identification of the isolated non-linear input factor X7. Moreover, it will show that
there is no interaction between X1 and {X4, X5} and between X3 and X5. Additionally,
the classification of the remaining edges indicates that the interaction between X3 and
X4 is bilinear. The resulting graph is shown in Figure 7, where bilinear edges (class E1)
are shown in black and non-linear/higher-order interactions (class E2) are shown in red.

Graph Ka
C2

can be considered as an annotated version of the FANOVA graph G =

(V,E) defined in [12], that enables direct visualisation of the structure of interaction
between input variables of a function. The vertex set coincides with the set of input
factors: V = {X1, . . . , Xd} and the set of edges E = {eij = (Xi, Xj), Xi, Xj ∈ V }
indicates presence of interaction (any form of interaction) between the corresponding
input variables. Past work on the identification of the FANOVA graph and on its use for
modelling has stressed the role of its maximal cliques, which enable, in the context of
ordinary Kriging modelling, the use of additive kernels defined over lower dimensional
subspaces of the function’s domain, significantly decreasing the complexity of model
building while improving at the same time the prediction accuracy of the derived models
[12].

Figure 8 shows the FANOVA graph as defined in [12] for the example under
study. For this example the set of maximal cliques of the original FANOVA graph is
{{X2}, {X6}, {X7},{X1, X3, X4, X5}} leading to a model of the form

f(X1, . . . , X7) ' h1(X2) + h2(X6) + h3(X7) + h4(X1, X3, X4, X5)

' h2(X6) + h3(X7) + h4(X1, X3, X4, X5) .

The models hi(·), i = 1, . . . , 4 in the expression above can be identified by kriging. Using
the information in the annotated interaction graph in Figure 7, we can further infer
the presence of a series of parametric terms, and the set of maximal cliques over which
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Figure 8. FANOVA graph.

non-parametric models must be defined needs only to cover edges of class E2, yielding:

f(X1, . . . , X6) ' aX6 + bX3X4 + h′1(X1, X3) + h′2(X4, X5) + h′3(X7) .

Again, functions h′i(·) can be built using kriging. The final model is the superposition
of two parametric components (on {X3, X4} and on {X6}) and three non-parametric
components (on {X1, X3}, {X4, X5} and {X7}). The reduced dimension of each of the
non-parametric models, which are now always smaller than 2, significantly decreases
the complexity of the subsequent model identification step with respect to the structure
implied by the original FANOVA graph, which requires model identification in a space
of dimension 4.

Analysis of the mixed effects can, as in this example, lead to a finer characterisation
of the dependency on different input factors. Note, however, that without observation
of the second-order derivatives ∂2f/∂X2

i we cannot rule out the presence of non-linear
terms in each isolated input factor in C2. The non-parametric components must thus
cover all nodes of Ka

C2
, as it is the case in the example shown above.

5.1 Morris function

We consider now the function used in the original Morris’ paper [1]:

f(x) = β0 +

20∑
i=1

βiwi +

20∑
i<j

βijwiwj +

5∑
i<j<l

βijlwiwjwl +

4∑
i<j<l<s

βijlswiwjwlws ,

where wi = 2Xi− 1, i ∈ {1, 2, 4, 6, 8, . . . , 20}, wi = 2.2Xi/(Xi + 0.1)− 1, i ∈ {3, 5, 7}, and
the following values are used for the important terms:

βi = 20, i ∈ {1, . . . , 10}, βij = −15, i, j ∈ {1, . . . , 6}

βijl = −10, i, j, l ∈ {1, . . . , 5}, βijls = 5, i, j, l, s ∈ {1, . . . , 4}.

The remaining 1st and 2nd order coefficients are independent realisations of a standard
normal distribution, βi ∼ N (0, 1), i 6∈ {1, . . . , 10}, βij ∼ N (0, 1), i, j 6∈ {1, . . . , 6}. The
relevant classes of input factors are

C0 = {11, . . . , 20}, C1 = {8, 9, 10}, C2 = {1, . . . , 7} .
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Figure 9. Morris statistics (m = 4) for Xi, i = 1, . . . , 20. Position of the label i indicates the observed (µ?i , σi).
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Figure 10. Mixed effects for Morris function, c = 4, r = 3.

Note that X7 is a purely non-linear term, while X6 interacts bilinearly with input factors
{X1, X2, X4}.

We performed factor screening using r = 3 instantiations of the (20, 4)-edge equitable
designs presented in [8], yielding a total number of derivatives per direction equal to 12.
The values of {(µi, σi)}20

i=1 obtained are shown in Figure 9.
Analysis of this Figure reveals that the factors are correctly assigned to classes. We thus

concentrated on study of the mixed effects for elements of the class C2. The mean and
variance of the set of mixed effects computed using r = 30 random replications of (7, 3)-
cycle equitable designs inside the domain of f is shown in Figure 10. Random variants
of the designs were obtained by considering random permutations of the coordinates. A
zoom of the region around the origin is shown in the inset of Figure 10.

We can see that the method correctly detects X7 as non-linear input factor (all interac-
tions with other factors being negligible) as well as the bilinear terms XiX6, i ∈ {1, 2, 4},
who appear super-imposed in the plot since their variance is close to zero. The resulting
annotated interaction graph is shown in Figure 11.

The maximal cliques are {1, 2, 3, 4, 5}, {3, 5, 6}, {7}, leading to a model with the struc-
ture

f(X1, . . . , X20) '
∑

i∈{8,9,10}

αiXi +
∑

i∈{1,2,4}

βiXiX6

+ ε1(X3, X5, X6) + ε2(X1, X2, X3, X4, X5) + ε3(X7) .
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Figure 11. Annotated interaction graph of non-linear factors of Morris function (red edges indicate nonlinear

interaction).

Note that the FANOVA graph proposed in [12], with no information on the bilinear terms
involving X6, would have maximal cliques {1, 2, 3, 4, 5, 6}, {7}, implying a subsequent
modelisation step of higher complexity.

Finally, we remark that the method in [12], that resorts to Monte Carlo techniques to

compute the total interaction indices relative to all
(
d
2

)
pairs of input variables, requires

a much larger number of evaluations of f than the 1140 that were used to compute the
graph in Figure 11 using our mixed effects method, showing that the method proposed
in this paper, based on use of our cycle-equitable designs, is an efficient alternative to
the analysis proposed in [12].

5.2 Moon high-dimensional function

The function considered next is a particular realisation of the stochastic polynomials
model used in [10] and documented in [11]. It is a nonlinear function defined in x ∈ [0, 1]20

with many terms, including linear, quadratic and mixed terms, with only four active
effects, which all appear through mixed or quadratic (non-linear) effects:

f(x) = [xT 1]A

[
x
1

]
,

where matrix A is given in [11], and the dependency on the four active inputs X1, X7, X12

and X19 is

f(x) = −19.71X1X18 + 23.72X1X19 − 13.34X2
19 + 28.99X7X12 . (15)

The presence of 3 bilinear terms makes this function a good candidate to illustrate the
ability of our designs to screen purely non-linear (X2

19) and bilinear terms. Figure 5.2
displays the elementary effects, computed using 30 replications of (20, 4)-edge equitable
designs as presented in [8].

The set of non-linear/mixed input factors has been correctly identified as C2=
{1, 7, 12, 18, 19}. The analysis of the mixed effects (30 randomised versions of (6, 3)-cycle
equitable graphs were used) displayed in Figure 13, shows that all variances are very
small, indicating that no mixed terms or non-linear transformations of the input factors
seem to be present, i.e. E2= ∅, and leads to the annotated interaction graph shown in
Figure 14. There are only three interaction (bilinear, class E1) terms, to which must be
added a set of non-linear components along each input factor in C2:

f(X1, X7, X12, X18, X19) ' a1X1X18 + a2X1X19 + a3X7X12 +
∑

Xi∈C2
εi(Xi) .
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Figure 12. Elementary effects of Moon function, eq. (15).
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Figure 14. Annotated interaction graph of non-linear factors of Moon’s function (black edges indicate bilinear

dependency).

This function reveals the impact that observation of second-order derivatives may have.
Would we have the ability to efficiently detect quadratic variation in isolated input fac-
tors, we would easily conclude that a simple parametric model is sufficient to express the
main variability of this function.

21



December 10, 2014 Journal of Statistical Computation and Simulation SCSpaperFedou˙revision

��

��

��
��

��

��

��

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Figure 15. Elementary effects of MRCK function, eq. (14).

5.3 MRCK function [12]

We present here the results of the numerical study of the function defined in the intro-
duction of this section in eq. (14), with the following values of the parameters:

f(X1, . . . X7) = X6 + exp (−4X7) + (0.5 + 0.35X3 − 0.6X4)2

+ cos (0.8 + 1.1X1 −X3)− sin (0.5− 0.9X4 −X5) .

Figure 15 shows the elementary effects from which input factors have been classified
as negligible (C0= {X2}), linear (C1= {X6}) or “other” (C2= {X1, X3, X4, X5, X7}).
The elementary effects have been computed using 30 replications of (7, 2)-edge equitable
designs, see [8] for construction of these designs. The mean and variance of the set of
mixed effects computed using 30 (5, 3)-cycle equitable designs along the coordinates in
C2 are shown in Figure 16, leading to the annotated interaction graph shown in Figure
7. Note that since all other mixed effects cluster near the origin, we omitted their labels
in Figure 16. We remark that not only our annotated interaction graph has the same
topology as the FANOVA graph, but detailed comparison of the means of the mixed
effects also shows that derived input / interaction ranking is consistent with the one
obtained in [12]. That similar conclusions can be drawn from a much smaller number of
evaluations (a total of 1140) of f (the method in [12] resorts to Monte Carlo methods
to estimate “projected” Sobol indexes), clearly indicates the potential of the analysis
proposed here.

6. Conclusions

The paper proposes an extension of Morris’ screening method that enables the determi-
nation of an annotated interaction graph – similar to the FANOVA graph proposed in [12]
– of an unknown multi-variate function, with a limited number of function evaluations
(quadratic on the number of non-linear/interaction input factors). The work presented
here concentrates on identifying designs that can efficiently support evaluation of the
mixed effects on which the method is based. The class of cycle equitable subgraphs of
the hypercube, parameterized by the number of mixed effects that are computed for each
pair of input variables, is introduced as a formalisation of the properties that these designs
should present, and algorithms are given for computation of the associated graphs. As far
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Figure 16. Mixed effects of MRCK function, eq. (14).

as we know, this is the first time this class of subgraphs of the hypercube is formally de-
fined and studied. The algorithms are recursive, incrementally building graphs on higher
dimensional hypercubes, and their derivation is based on a polynomial representation of
subgraphs of the unit hypercube equipped of a convenient scalar product.

The work presented here is motivated by the desire to extend Morris Elementary Ef-
fects screening method [1] to the study of the interactions between the input factors of
a function, and improves on previously published contributions in this direction [6] by
proposing more generic and efficient designs. We illustrate the use of the cycle-equitable
graphs proposed in a series of examples, demonstrating that this extension of Morris’
method enables estimation of an annotated interaction graph of a function with a com-
plexity much lower than related proposed approaches [12]. In fact, our method inherits
the computational advantages of the Morris method, but extends its exploitation beyond
isolated classification of each input factor, to the analysis of their interaction. We believe
it can be an efficient preliminary analysis tool in the context of model building, whenever
function evaluations are expensive: not only it indicates the relevant factors and inter-
actions, but, and probably more importantly, the ability to explicitly indicate the edges
of the interaction graph that can be modelled as simple bilinear (and thus parametric)
terms. This can contribute to significantly decrease the complexity and improve the sta-
bility [12] of subsequent non-parametric (most commonly kriging) modelling steps, which
can be confined to lower dimensional subspaces of the input space.

We expect to continue the work presented here by addressing a number of questions
that remain open. Some concern the class of cycle-equitable graphs itself. What are
the minimal elements of the cycle-equitable class we defined? How far are our recursive
solutions from optimality? Subgraphs of the hypercube have been extensively studied,
and a number of interesting classes have been defined (median graphs, mesh graphs,
regular partial cubes, etc.). What is the relation of the graphs studied in this paper to
these other classes, if any?

Other issues concern improvements of the work presented here: can we complete the
spectrum of values of input dimension d and cycle multiplicity c, and define a solution
for d ≤ c when c ≥ 3? (We remark that this issue is more of a formal than practical
importance, since in practice one would rarely use values of c ≥ 5.) One extension that
seems to us particularly interesting concerns the definition of equitable graphs on finite
lattices, {0, 1, . . . , k}d rather than on the hypercube {0, 1}d, i.e., of designs that could be
used to observe the behaviour of higher order derivatives (e.g., computation of ∂2f/∂X2

i
requires three points aligned along input Xi).
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We concentrated here on the definition of the designs for computation of the mixed
effects, once Morris’ elementary effects method has signalled the input factors entering
non-linearly and/or in interaction with other variables. In particular, we did not assess
how to constraint the two designs (the one used for Morris’ method and the one used
for studying mixed effects) such that the evaluations of f in the first step are a subset
of those indicated by the cycle-equitable design. Since our cycle-equitable designs are
also edge-equitable, we are sure that we can chose the former as a subset of the latter,
and only complete (or create) the cycles along the variables indicated as relevant by the
analysis of the elementary effects. This question will be addressed in a future paper.
Previous studies have suggested that the discrimination of the original Morris test on
the first and second moments of the set of sampled mixed effects may be affected when
clustered designs are used, affecting the ability to correctly classify the input factors.
In our opinion, assessment of this issue requires a precise formulation of the decision
problem underlying Morris method (what exactly means that a factor is “approximately
linear” or “approximately negligible”?), and it is our intention to address it in a future
publication.
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