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Abstract

Delineation of organs at risk (OARs) is a crucial step in surgical and treatment
planning in brain cancer, where precise OARs volume delineation is required.
However, this task is still often manually performed, which is time-consuming
and prone to observer variability. To tackle these issues a deep learning approach
based on stacking denoising auto-encoders has been proposed to segment the
brainstem on magnetic resonance images in brain cancer context. Addition-
ally to classical features used in machine learning to segment brain structures,
two new features are suggested. Four experts participated in this study by
segmenting the brainstem on 9 patients who underwent radiosurgery. Analysis
of variance on shape and volume similarity metrics indicated that there were
significant differences (p<0.05) between the groups of manual annotations and
automatic segmentations. Experimental evaluation also showed an overlapping
higher than 90% with respect to the ground truth. These results are compara-
ble, and often higher, to those of the state of the art segmentation methods but
with a considerably reduction of the segmentation time.

Keywords: Deep learning, MRI segmentation, brain cancer, machine learning.

1. Introduction

Cancer is a leading cause of death and disability worldwide, accounting for
14.1 million of new cancer cases and 8.2 million deaths in 2012 [1]. Among
available techniques to treat brain tumors, radiotherapy and radio surgery have
often become the selected treatment, especially when others techniques such5

as surgery or chemotherapy might not be applicable. To constrain the risk
of severe toxicity of critical brain structures, i.e. the organs at risk (OARs),
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the volume measurements and the localization of these structures are required.
Among available image modalities, magnetic resonance imaging (MRI) images
are extensively used to segment most of the OARs, which is performed mostly10

manually nowadays.
However, manual delineation of large brain structures, such as the brainstem,

could be prohibitively time-consuming, and could never be reproducible during
clinical routines [2, 3], leading to substantial inconsistency in the segmentation.
Particularly, in the case of the brainstem, variability on delineation is especially15

notorious in the area where the brainstem meets with the cerebellum in the
lower pons, and where no significant contrast boundary is present. Thus, image
segmentation has become a central part in the radiation treatment planning
(RTP), being often a limiting step of it. Therefore, automatic or semi-automatic
segmentation algorithms are highly recommended in order to surmount such20

disadvantages.
Segmentation of brain structures have been mainly approached by using

atlas-based methods [4, 5]. Although good performance has been reported,
evaluation of these methods has been made on control and on several mental
disorders patients, such as Schizophrenia or Alzheimer. However, in brain can-25

cer context, the presence of tumors may deform other structures and appear
together with edema that changes intensity properties of the nearby region,
making the segmentation more challenging. To evaluate the performance of
atlas-based approaches to segment the brainstem, among other structures, in
such situations, some work have been recently presented in the context of brain30

cancer treatment [2, 3, 6]. In [2], a large study that engaged 8 experts and in-
cluded 20 patients reported mean Dice similarity coefficient (DSC) respect to the
ground truth generated of nearly 0.85. Euclidean average maximum distances
ranged from - to + 5.4 mm (inside and outside). Similar to this work, in [3], an
atlas-based segmentation was evaluated on 6 patients and compared to 7 expert35

delineations. Comparison between experts and automatic results showed that
brainstem segmentation volume generated by the automatic approach lay in 5
out of 6 cases between the variations of the experts, with a volume underesti-
mation ranging from -14% to -2% in these patients. In the work of Isambert et
al. [6], brainstem automatic contours were accepted for clinical routine with a40

volume underestimation of -15% with respect to the manual segmentation and
mean DSC of 0.85 ranging from 0.8 to 0.88. Although the brainstem has been
often successfully segmented, with DSC values typically greater than 0.8, seg-
mentation time reported has been always above several minutes. In addition
to time constraints derived from the registration step, atlas-based methods re-45

quire large variation on the atlases to capture anatomical variability in target
patients.

To overcome difficulties of atlas-based approaches, we considered the use of
denoising auto-encoders in the presented work. Deep learning has already been
used to segment some tissue or organs in the medical domain others than the50

brainstem [7, 8]. In these approaches, two or three-dimensional image patches
are commonly fed into the deep network, which unsupervisedly learns the best
features representation of the given patches. Computed neurons’ weights are
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then re-fined during a second supervised step. However, valuable information
inherited from classical machine learning approaches to segment brain structures55

is not included in these input vectors. This knowledge may come in the form of
likelihood voxel values or voxel location, for example, which is greatly useful to
segment structures that share similar intensity properties.

In the present work, we propose a deep neural network formed by stacking de-
noising auto-encoders (SDAE) as alternative to atlas-based methods to segment60

the brainstem. Additionally, we compare the results with a well-known ma-
chine learning classifier, support vector machines (SVM). Furthermore, instead
of using patches from single or multi-modality MR images, we use hand-crafted
features as input of the network. Lastly, as extension to features typically em-
ployed in machine learning approaches to segment brain structures [9, 10, 11],65

we propose the inclusion of two new features in the features vector of the classi-
fier when segmenting the brainstem. Our main contribution is, therefore, a new
and practical application of SDAE, which recently produced outstanding results
in solving some medical image problems, such as classification or segmentation.

2. Methods and materials70

2.1. Features used in the classification

The most influencing factor in realizing a classifier with high generalization
ability is the set of features used. A poor selection of the features to be used
in the classifier may lead to unsatisfactory results. Intensity based approaches
have been largely employed to segment objects of interest in the medical field.75

Nevertheless, image intensity information solely is not good enough for distin-
guishing different subcortical structures since most of them share similar inten-
sity patterns in MRI. To address such problem, in learning based segmentation
methods, more discriminative features are often extracted from MRI [9, 10, 11].

In addition to image intensity values (IIV) of the neighboring voxels, spatial80

and probabilistic information is often used in the creation of a classifier. Texture
information, i.e. IIV related information, can be captured in many ways. For
instance, Powell et al. [9] captured texture information by using 8 IIV along
the largest gradient, including the voxel under examination. Additionally, a
probabilistic map, IIVs along each of the three orthogonal axes and the prob-85

ability of being part of a particular structure were used as features for each
sample. In [10], a slightly modified input vector was adapted to increase the
performance of a learning-based scheme. In their work, a modified spatial loca-
tion of the spherical coordinates of the voxel v and a neighborhood connection
based on gradient descent were used. While the former aided to reflect sym-90

metry of brain, the latter was used for directional consistency. More recently,
in [11], different IIVs configurations were compared to segment the brainstem,
in addition to probability values and spherical coordinates of the voxel under
examination. Configurations proposed in this work included cubic patches of
different sizes, orthogonal crosses and, as in [9], voxels along the direction of95

maximum gradient.
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2.1.1. Geodesic transform map.

To encourage spatial regularization and contrast-sensitivity, geodesic dis-
tance transform map (GDTM) of the input image is used as additional feature.
The addition of GDTM in the features vector used by the classifier exploits the100

ability of seed-expansion to fill contiguous, coherent regions without regard to
boundary length. As explained in the work of Criminisi et al. [12], given an
image I defined on a 2D domain ψ, a binary mask M (with M (x) ∈ {0,1} ∀x)
and an ”object” region Ω with x ∈ Ω ⇐⇒ M (x) = 0, the unsigned geodesic
distance of each pixel x from Ω is defined as:105

D(x;M,∇I) = min
{x′|M(x′)=0}

d(x, x′), with (1)

d(a, b) = min
Γ∈Pa,b

∫ 1

0

√
‖Γ′(s)‖2 + γ2(∇I · u)2 ds (2)

with Pa,b the set of all paths between the points a and b, and Γ(s) : < →
<2 indicating one such path, which is parametrized by s ∈ [0,1]. The term u
represents the unit tangent vector, which is defined as u = Γ′(s) / |Γ(s)‖. Fig. 1
shows an example of how to compute the GTDM of an image given a binary
mask.110

Figure 1: Geodesic distance transform map: a) axial MR view of the brainstem, b)
mask obtained from the probability brainstem map (in white) over the MRI axial slice,
c) binary mask used to obtain the GDTM, and d) computed GDTM.

2.1.2. Local binary pattern.

In order to catch neighborhood appearance of the voxel under examination
with the fewest number of features, Local Binary Patterns (LBP) are investi-
gated. The idea of LBP is to give a pattern code to each voxel. Particularly,
an extended version of 3D-LBP presented by [13] is proposed. In their work,115

classical LBP were adapted by selecting the 6 nearest voxels and ordering them
to create the encoding patterns. By encoding patterns in that manner, 26 = 64
possible patterns would be created. However, those 64 possible combinations
were merged in 10 different groups according to geometrical similarities (Fig-
ure 2). In accordance with this classification, each group is filled with patterns120

that have the same number of neighbor voxels with a gray level higher than the
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central voxel c. Thus, rotation invariance in each group is kept. These groups
are defined with (Figure 2,b):

card(c) =

P−1∑
i=0

s(gi − gc), with s(x) =

{
1 if x ≥ 0

0 else
(3)

where P = 6 is the number of neighboring voxels and R=1 or R=2 the
distance between central voxel c and its neighbors i. By using R =1,2 micro125

and macrostructure appearance of the texture are captured in the 3D-LBP. In
equation 3, card(c) gives the number of neighbors with a higher gray level than
the central voxel c.

(a) (b)

Figure 2: (a). Merging the 64 possible patterns into 10 groups. Number of different
patterns for each group is indicated in brackets.(b).Definition of the 10 groups of
patterns[13].

In addition to the encoded value for the 3D patch structure proposed by [13],
an additional texture value is included. Let ghigh the gray values that are higher
than the gray value of the center voxel c in the 3D-LPB (Figure 2). Similarly,
let’s denote glow to the gray values that are lower than the gray value of the
center voxel c in the 3D-LPB. Then, the texture value added to the encoded
structure value is defined as:

Textureval = mean

m∑
i=0

ghigh(i)−mean

n∑
i=0

glow(i) (4)

where m and n are the number of neighboring voxels with higher and lower
values than the center voxel c, respectively. Thus, the introduction of the 3D-130

LBP in the features vector will lead to 4 new features: 3D-LBP and Textureval
for R = 1 and 2.

2.1.3. Composition of the input features vector.

Different combinations of intensity values of the neighborhood of a given
voxel and its effect on the segmentation was already investigated in [11]. In135

that work, the intensity value of the voxel under investigation and the intensity
values of the 8 voxel along the direction of maximum gradient reported the best
trade-off in terms of segmentation similarity and computational cost. Therefore,
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this configuration is used in the present work to capture intensity information
from the MRI image. Additionally, to better understand the pattern of each140

voxel with respect to its neighborhood, while feeding the minimum amount of
information into the features vector, the 3D-LPB introduced in section 2.1.2 is
used. Its use leads to 2 values, one for the pattern and one for the texture, at
each of the two radius used (R=1,2). To complete the features vector, the value
at the voxel location of the probability map, geodesic distance transform map145

and image gradient are used, as well as the spherical coordinates at its location
(Figure 3). Thus, a vector containing a total of 19 feature values is used to
characterize each sample.

Figure 3: Features fed into the features vector for each sample (voxel). In green is
pointed out the voxel under examination.

In order to provide a robust classifier, features that compose the input array
must show discriminative power. This means that each of these features must150

be complementary to the others, providing additional information that helps
in the classification task. To visually demonstrate that features incorporated
into the features array are uncorrelated, correlations between some pairs of
features are plotted (Fig. 4). Image intensity is combined with three of the
proposed features -probability map, geodesic transform map and image gradient-.155
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Thus, we investigate whether they bring valuable information to the knowledge
provided by intensity values to perform the classification. Analysis conducted
on each pair of features showed that including them, in addition to intensity
information, helps for distinguishing between classes.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Probability Map value

In
te

ns
ity

 v
al

ue

Intensity value vs. Probability Map value

 

 

Brainstem
Not Brainstem

a

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Geodesic Distance Map value

In
te

ns
ity

 v
al

ue

Intensity value vs. Geodesic Distance Map value

 

 

Brainstem
Not Brainstem

b

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Gradient value

In
te

ns
ity

 v
al

ue

Intensity value vs. Gradient value

 

 

Brainstem
Not Brainstem

c

Figure 4: Decision boundary plots for two classes by using solely intensity information
and : a) probability map values, b) geodesic distances map values and c) gradient
values.

2.2. Support vector machines160

Support vector machines (SVM), often called kernel-based methods, have
been extensively studied and applied to several pattern classification and func-
tion approximation problems. Basically, the main idea behind SVM is to find
the largest margin hyperplane that separates two classes. The minimal distance
from the separating hyperplane to the closest training example is called mar-165

gin. Thus, the optimal hyperplane is the one providing the maximal margin,
which represents the largest separation between the classes. This will be the
line such that the distances from the closest point in each of the two groups will
be farthest away. The training samples that lie on the margin are referred as
support vectors, and conceptually are the most difficult data points to classify.170

Therefore, support vectors define the location of the separating hyperplane, be-
ing located at the boundary of their respective classes. By employing kernel
transformations to map the objects from their original space into a higher di-
mensional feature space [14], SVM can separate objects which are not linearly
separable (Figure 5). Their good generalization ability and their capability to175

successfully classify non-linearly separable data have led to a growing interest
on them for classification problems.

2.3. Deep Learning based classification scheme

Classification problem is solved in this work by using deep learning. This
technique learns hierarchical correlations between feature representations in a180

given dataset through a semi-supervised learning approach [15]. Hence, the
proposed approach follows a hybrid architecture which unsupervisedly learns
the features’ representation of the hand-crafted features followed by a supervised
fine tuning of the parameters of the deep network.
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Figure 5: SVM and hyperplane. Mapping features into a higher dimensionality may
make the classification simpler.

The deep network used in the proposed classification scheme is formed by185

stacking DAEs (Fig. 6). Weights between layers of the network are initially
learned via the unsupervised pre-training step (Sec. 2.3.1). Once all the weights
of the network are unsupervisedly computed, a supervised refinement is carried
out by using the labeled classes, and final values of the network’ weights are
updated (Sec. 2.3.2).190

2.3.1. Unsupervised pre-training of DAEs

Classical auto-encoders (AE) have been recently developed in the deep learn-
ing literature in different forms [16]. In its simplest representation, an AE is
formed by two components: an encoder h(·) that maps the input x ∈ Rd to
some hidden representation h(x) ∈ Rdh , and a decoder g(·), which maps the195

hidden representation back to a reconstructed version of the input x, so that
g(h(x)) ≈ x. Therefore, an AE is trained to minimize the discrepancy between
the data and its reconstruction. This discrepancy represents the difference be-
tween the actual output vector and the expected output vector that is the same
as the input vector. As a result, AEs offer a method to automatically learn200

features from unlabeled data, allowing for unsupervised learning.

One serious potential issue when working with AE is that if there is no
other constraint besides minimizing the reconstruction error, then an AE with
n inputs and an encoding of dimension at least n could potentially just learn the
identity function, for which many encodings would be useless, leading to just205

copy the input. That means that an AE would not differentiate test examples
from other input configurations. There are different ways that an AE with more
hidden units than inputs could be prevented from learning the identity, and still
capture some valuable information about the input in its hidden representation.
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Figure 6: Deep network architecture constructred by stacking denoising autoencoders
in the proposed approach.

Adding randomness in the transformation from input to reconstruction is one210

option, which is exploited in Denoising Auto-Encoders (DAEs) [16, 17].
The denoising auto-encoder (DAE) is typically implemented as a one-hidden-

layer neural network which is trained to reconstruct a data point x ∈ < D from
its corrupted version x̃ [17]. This leads to a partially destroyed version x̃ by
means of a stochastic mapping x̃ ∼ qD(x̃|x). Therefore, to convert an AE class215

into a DAE class, only adding a stochastic corruption step that modifies the
input is required, which can be done in many ways. For example, in [17], the
stochastic corruption process consists in randomly setting some of the inputs
to zero. Several DAEs can be stacked to form a deep network by feeding the
hidden representation of the DAE found on the layer below as input to the220

current layer [16]. The unsupervised pre-training of such architecture is done
greedily, i.e. one layer at a time. Each layer is trained as a DAE by minimizing
the reconstruction of its input. Once the first k layers are trained, the (k+1)th

layer can be trained because the latent representation from the layer below can
be then computed.225

In our network, DAEs are stacked to form the intermediate layers of the
deep network (See Figure 6). More specifically, 2 hidden layers composed by
100 and 19 units, respectively, are used. During the unsupervised pre-training,
the weights vectors {W1,W2} are initially learned. Denoising corruption level
for the DAEs is set to 0.5, since a value of 50% of noise level has already been230

proved to perform well in other problems [16].

2.3.2. Supervised fine-tuning of the deep network

Afterwards, when all layers have been pre-trained, the network goes through
a second stage of training called fine-tuning, where prediction error is minimized
on a supervised task. Weights vectors {W1,W2} are already known from the235
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previous step. The weights {W3} are now randomly initialized and convergence
of the deep network is achieved via supervised learning, using the target class.
During this process, weights {W1,W2} are updated to tune the entire network.
The hope is that the unsupervised initialization in a greedy layer-wise fashion
has put the parameters of all the layers in a region of parameter space from240

which a good local optimum can be reached by local descent.

Following the same architecture than in the unsupervised pre-training, two
hidden layers of DAEs are used, with the same number of units than before. At
the end of the last layer of DAEs a softmax regression layer is used as output
with the sigmoid function as activation function. Mini-batch learning is followed245

during both unsupervised pre-training of DAEs and supervised fine-tuning of
the entire network.

2.4. Study design and experiment set-up

2.4.1. Dataset

Image segmentation in the medical domain lacks from a universal known250

ground truth. Therefore, to validate segmentation approaches in clinical con-
text, a number of observers and target patients that provide a good statistical
analysis is required. Accordingly, this study has been designed to quantify vari-
ation among clinicians in delineating the brainstem and to assess our proposed
classification scheme in this context. MRI data from 9 patients who under-255

went Leksell Gamma Knife Radiosurgery were used for training and leave one
out cross validation. Pathologies in this dataset included trigeminal neuralgia,
metastases, and brainstem cavernoma (See figure 7 for some visual examples).
For each patient, the brainstem was manually delineated by four observers:
two neurosurgeons, one physician and one medical physicist. All of them were260

trained and qualified for radiosurgery delineation. Protocol for delineation was
described before contouring session. The brainstem was delineated from cerebel-
lar peduncle to occipital hole including the aqueduct of Sylvius. From manual
segmentations of each patient a ground truth was generated by using majority
voting rule with a threshold fixed at 75% of experts agreement. This ground265

truth was used to analyze deviations between the observers delineations, as well
as the performance of the presented automatic approach. Properties of brain-
stem appearance across the 9 patients is shown in Table 1. Artiview R©3.0
(Aquilab) was used after a training session to achieve Dicom RT contouring
structures. Average time of manual contouring was 20.2 min (SD: 10.8 min).270

Two different MRI facilities were used to acquire images according to the ra-
diosurgery planning protocol (Table 2). Particularly, MR T1 sequences were
employed in this work.

In the proposed approach, and as in [9], before any process, MRI T1 images
were spatially aligned such that the anterior commissure and posterior commis-275

sure (AC−PC) line was horizontally oriented in the sagittal plane, and the inter
hemispheric fissure was aligned on the two other axes.
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Figure 7: Some examples of images contained in the database employed in this work.
While in some cases the tumor is inside the brainstem and may change the shape and
intensity properties of the brainstem (top-row), in other brain cancer cases, tumors do
not affect the brainstem properties.

2.4.2. Evaluation

Evaluation methods have lacked consensus as to comparison metrics. Since
each metric yields different information, their choice is important and must be280

considered in the appropriate context. Although volume-based metrics, such
as DSC [18], have been broadly used to compare volume similarities, they are
fairly insensitive to edge differences when those differences have a small impact
on the overall volume. Therefore, two segmentations with high degree of spa-
tial overlapping may exhibit clinically relevant differences at the edges. As a285

consequence, volume-based −i.e. DSC and percentage volume difference− and
distance-based −i.e. Hausdorff distance− metrics are used to evaluate the seg-
mentation results. Within-subjects analysis of variance (ANOVA), also referred

11
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Brainstem characteristics
Intensity Volume

Mean Standard deviation Max Min cm3
Pat001 1,017.26 170.36 3,426.00 119.00 26.866
Pat002 221.91 28.23 326.00 32.00 22.894
Pat003 205.89 33.49 493.00 10.00 24.338
Pat004 168.05 29.72 456.00 14.00 27.241
Pat005 206.02 21.46 370.00 58.00 24.949
Pat006 173.14 19.12 326.00 33.00 21.114
Pat007 170.50 28.31 693.00 14.00 26.541
Pat008 209.77 23.15 351.00 35.00 27.437
Pat009 153.07 23.18 270.000 14.00 30.809

Table 1: Properties of the brainstem across the patients of the dataset employed in
this study.

MRI System TE(ms) TR(ms)
Echo

number
Matrix size Seq. Name

Voxel Size
(mm3)

Philips Achieva
1.5T

4.602 25 1 256x256 T1 3D FFE 1x1x1

GEHC Optima
MR450w 1.5T

2.412 5.9 1 256x256 FSPGR 1x1x1.2

Table 2: Acquisition parameters on the 2 MRI devices.

to as repeated measures, on shape and volume similarity metrics followed by
post-hoc comparisons (Bonferroni, p<0.05) were used to determine statistical290

differences between the groups.

Our method was compared with Support vector machines (SVM) [14] using
the features vector detailed in Figure 3 for each sample. This SVM configuration
is referred as SVM2. To investigate the effect of the proposed features, the best
IIV configuration suggested by [11] to segment the brainstem by using SVM was295

used as second set of features, referred to as SVM1. This second set includes
the features shown in Figure 3, with exception of the GDTM, image gradient
and 3D-LBP related values. The reason to use SVM is that it represents one
of the state-of-the-art machine learning methods for classification. Lastly, the
deep learning-based classifier based on SDAE will be known simply as SDAE300

and it will use the same features vector than SVM2. Once all the features to
be used are extracted, and before training or testing, they are normalized to
[−1, 1]. These features vectors represent the input of both the SVM and deep
learning schemes.

All the implementation was done in MATLAB. To perform the SVM clas-305

sification the library libsvm [19] was used. To map the features into higher-
dimensionality spaces, a radial basis function (RBF) kernel was employed. To
tune the other SVM parameters, as in the work of Dolz et al. [11], a grid search
strategy was employed. Thus, values for SVM parameters -C and γ- were 7.5
and 3, respectively. Additionally, the implementation provided by Palm [20]310

was used for the deep learning classification scheme. A workstation with 8GB
RAM and Intel Xeon processor at 3.06 was employed.
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3. Results

3.1. Shape similarity

The Dice similarity coefficient (DSC) was calculated for the four manual315

annotations and the three automatic methods. Mean DSC values for the four
observers ranged from 0.84 to 0.90, with minimum and maximum values of 0.78
and 0.93 respectively. Reference SVM (SVM1) provided a mean DSC of 0.88.
On the other hand, whereas mean DSC for SVM with the proposed features was
0.91, the proposed deep learning based scheme reported a mean DSC of 0.92320

(Fig. 8). The within-subjects ANOVA test conducted on the DSC of all the
groups (p<0.05) indicated that there were significative differences among them.
These differences were especially notorious on observers 1 and 4.

Obs.1 Obs.2 Obs.3 Obs.4 SVM 1 SVM 2 SDAE

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Dice Similarity Coefficients

p−value  < 0.0001
F−stat    =   10.47

Figure 8: Segmentation DSC results for the observers and the automatic approaches.

Particularly for the machine and deep learning based approaches, a second
set of ANOVAs was conducted to evaluate statistical differences between auto-325

matic methods. First, a within-subjects ANOVA (Figure 9, left) including the
three methods indicated that there were significant differences between them.
Therefore, at least one method significantly differed from the others (p<0.05).
The post-hoc analysis (Bonferroni) confirmed the statistical differences between
these three approaches (see Figure 9, right). Paired repeated measures ANOVAs330

(Table 3) pointed out that, while approaches including the proposed features
(SVM2 and SDAE) performed significantly better (p<0.05) than SVM1, no sig-
nificant differences were found between them (p = 0.0811).

SVM1 vs. SVM2 SVM1 vs. SDAE SVM2 vs. SDAE
p-value 0.0002 0.0001 0.0811

Table 3: Within-subjects ANOVA on DSC values between automatic segmentation
approaches.

Results also showed that Hausdorff distances decreased in the classification
schemes using both machine and deep learning techniques, in comparison with335

manual segmentations (Fig. 10). Additionally, the addition of the proposed
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SVM1 SVM2 SDAE

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Dice Similarity Coefficients for the machine learning methods

p−value   =   2.41e−007
F−stat     =   45.75   

0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93

SDAE

SVM2

SVM1

DSC ANOVA multi−groups comparison

Dice Similarity Coefficient

1 group (in red) has mean significantly
different from groups SVM2 and SDAE

Figure 9: Within-subjects ANOVA analysis of the Dice score coefficients provided by
the three automatic methods.

features (SVM2 and SDAE) decreased more the Hausdorff distances than the
machine learning scheme used as reference, which did not include the suggested
features (SVM1). The within-subjects ANOVA test conducted on the Hausdorff
distances values indicated that, although less significative than in the case of340

DSC, statistical differences between the groups existed. Again, these differences
came overall from observer 1 and 4. Taking into account the Hausdorff distances
measured only on the machine and deep learning based schemes, a p-value of
0.0353 was obtained. As in the case of DSC values, at least one method signif-
icantly differed from the others (p<0.05). Paired repeated measures ANOVAs345

(Table 4) indicated that method SVM1 was statistically different from methods
SVM2 and SDAE (<0.05). Nevertheless, it failed to demonstrate a statistically
significant difference between these two approaches (p = 0.7874).

Obs.1 Obs.2 Obs.3 Obs.4 SVM 1 SVM 2 SDAE

4

6

8

10

12

14

Hausdorff Distances (mm)

p−value = 0.0128
F−stat     =   3.06

Figure 10: Hausdorff distances meassured for the volume segmented by the observers
and the automatic approaches.
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SVM1 vs. SVM2 SVM1 vs. SDAE SVM2 vs. SDAE
p-value 0.0067 0.0202 0.7874

Table 4: Paired within-subjects ANOVA on Hausdorff distances between automatic
segmentation approaches.

3.2. Volume similarity

Manual contours differed from the ground truth between 18.9% (Observer 2)350

and 39.4% (Observer 4) as average (Table 5). In contrast, the three automatic
approaches presented here largely decreased these volume differences, with a
mean difference of 7.2%, 4.0% and 3.1% for SVM1, SVM2 and SDAE, respec-
tively. Individual values for volume differences (%) are shown in Table 5 for all
the patients contoured by the four observers and the three analyzed methods.355

As it can be observed, classification schemes including the proposed features
decreased the volume difference of automatic segmented volumes with respect
to the reference ones.

Patient Volume difference (%)

Obs.1 Obs.2 Obs.3 Obs.4 SVM1 SVM2 SDAE
#1 40.7% 19.3% 20.6% 28.1% 5.5% 2.2% 4.8%
#2 28.8% 34.9% 39.6% 32.4% 3.6% -1.9% 1.8%
#3 24.1% 13.7% 29.3% 49.4% 3.8% 2.0% 0.8%
#4 34.4% 19.8% 17.3% 41.6% -4.4% 5.2% 3.1%
#5 18.7% 13.9% 15.5% 51.7% -8.2% -6.6% -3.4%
#6 22.9% 19.6% 13.7% 32.6% -7.6% -3.5% -3.7%
#7 33.3% 15.8% 25.3% 33.5% -2.5% -3.6% -3.1%
#8 21.2% 15.9% 25.5% 47.6% -12.6% -5.5% 4.0%
#9 40.6% 17.3% 25.9% 38.1% -16.2% -5.0% -3.2%

Average 29.4% 18.9% 23.6% 39.4% 7.2% 4.0% 3.1%

Std. Dev 8.3% 6.4% 8.0% 8.5% 4.6% 1.7% 1.2%

Table 5: Evaluation results (Volume difference (%)) of the manual contouring for the
four observers, SVM and proposed approach with respect to the generated ground
truth. The average represents the average of the absolute of volume difference values.

A within-subjects ANOVA was performed over the volume differences values
for the four observers and the three automatic contours (Figure 11). Visual dif-360

ference between the groups of manual and automatic segmentations is confirmed
by the p-value (<0.05) obtained in the ANOVA test. Because the p-value was
less than the significance level of 0.05, the null hypothesis can be rejected and
we can conclude that some of the groups have statistically significant differences
on their mean values. The post-hoc analysis (Bonferroni) is shown Figure 11 on365

the right. It confirms that significant differences came from the groups formed
by the 4 observers in one side, and by the automatic contours in the other side.

Repeated measures ANOVA tests between volume differences and the ground
truth was conducted to individually compare the volumes. Computed p-values
for the automatic segmentation methods were greater than 0.05, particularly in370

the proposed deep learning scheme (Table 6). Thus, statistical results showed a
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Obs.1 Obs.2 Obs.3 Obs.4 SVM 1 SVM 2 SDAE
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Volume Differences (%)

p−value = 9.5e−022
F−stat   =  58.38
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SDAE

SVM1

SVM2

Obs.4

Obs.3

Obs.2

Obs.1

Volume Differences(%)

Volume Differences ANOVA multi−groups comparison

4 groups (in red) have means 
significantly different from Group SDAE

Figure 11: Results of the within-subjects ANOVA test conducted on the volume dif-
ference values for the four manual contours and the three automatic methods. On the
left, mean volume differences and deviations are shown. On the right, the ANOVA
multi-group comparison is displayed, where the automatic method SDAE is selected
as reference of the comparison.

significant similarity between automatically segmented volumes and generated
ground truth volumes, notably for the SDAE based scheme.

SVM1 vs. GroundTruth SVM2 vs. GroundTruth SDAE vs. GroundTruth
p-value 0.1175 0.1841 0.4584

Table 6: Repeated measures ANOVA on volume differences values between automatic
segmentation approaches and the ground truth.

Segmentation result on a given patient can be visually seen in Fig. 12. On
this figure, both manual and automatic contours are displayed, in addition to375

the ground truth. It can be observed that contours generated by the automatic
approach lie on the variability of the four experts.

3.3. Classification time

Regarding the segmentation time of the automatic approaches, while the
features extraction time was the same for all the approaches, classification time380

differed between the SVM and SDAE based schemes. Features extraction pro-
cess was done in around 15 seconds as average for each volume. Concerning the
segmentation, layouts based on SVM reported a mean classification time close
to 25 seconds for the whole volume. Contrary, the deep learning-based scheme
performed the task in 0.36 seconds as average.385

4. Discussion

A deep learning-based classification scheme formed by stacking denoising
auto-encoders has been proposed in this work to segment the brainstem. It has
been compared with a machine learning approach widely and successfully used
for classification, i.e. SVM. Additionally to traditional spatial and intensity390

based features used in machine learning approaches, the inclusion of geodesic
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distance transform map, and a modified version of a 3D local binary pattern
has been proposed and evaluated.

The most influencing factor in realizing a classifier with high generalization
ability is the set of features used. A poor selection of the features to be used395

in the classifier may lead to unsatisfactory results. Ideal features should bring
a high discriminative power to the classifier. Features proposed in this work
have different nature. While some of them come from pure image intensity
properties, some others provide spatial or texture knowledge. Thus, they are ’a
priori’ uncorrelated. To visually demonstrated uncorrelation between some of400

these features, classification tests were conducted by using only pairs of features
(See fig. 4). Although it was not presented, combination of all of these features
together improves the classification task, creating a classifier with higher dis-
criminative power. This improvement on classification is reflected in the results
section.405

Statistical analysis indicated that there were significant differences between
the automatic (machine and deep learning based) schemes and the manual de-
lineations made by the four experts. In addition, the ANOVA tests performed
between the machine and deep learning based approaches, suggested that dif-
ferences between them were statistically significatives on the DSC evaluation.410

These differences were particularly important in the classification schemes that
included the proposed features. Although differences were less significative in
the rest of the similarity metrics, results showed that our deep learning clas-
sification scheme performed better than the other machine learning based ap-
proaches. In terms of segmentation time, while features extraction was equal415

in all the approaches, classification time reported by the deep learning scheme
was approximately 70 times faster than SVM based scheme. Consequently, the
proposed deep learning architecture demonstrated a significant gain in the per-
formance of the brainstem segmentation on MRI, outperforming the widely used
SVM approach.420

Even though the presented work is not pioneering on the evaluation of auto-
matic segmentation of the brainstem, among others, in the context of radiation
therapy, it presents important improvements respect to the others (See Table
7). All these previous methods are atlas-based and thus registration dependent.
This makes segmentation times to be over several minutes, which might be425

clinically impractical in some situations. Our method, however, performs the
segmentation in few seconds. A noteworthy point is that features extraction
represented nearly 97.5% of the whole segmentation process. Since this stage is
composed by simple and independent image processing steps, this can be eas-
ily parallelized. By doing this, the total segmentation time may be drastically430

reduced.

Results provided in this work demonstrated that the proposed deep learning-
based classification scheme outperformed all previous works when segmenting

1These two approaches required registration steps which took 20 minutes in the first case,
and around 3 minutes for the second method.
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Reference Method DSC pVD (%) Segmentation Time
Bondiau et al.,2005 Atlas-Based - -13.11 20 min.
Isambert et al.,2008 Atlas-Based 0.85 -14.8 7-8 min. (6 OARs)

Babalola et al.,2009

Atlas-Based
Statistical-Based (PAM)
Statistical-Based (BAM)
Expectation-Minilization

0.94
0.88
0.89
0.83

3.98
6.80
7.80
21.10

120-180 min. (Set of brain structures)
1 min. + 20 min.1

5 min. + 3 min.1

30 min. (Set of brain structures)
Deeley et al.,2011 Atlas-Based 0.85 - -
Dolz et al.,2015 Support Vector Machines 0.88 7.2 (15 + 25) seconds
Proposed scheme Stacked Denoising Auto-encoders 0.91 3.08 (15 + 0.36) seconds

Table 7: Table that summarizes results of previous works which attempted to segment
the brainstem on MRI images. DSC and pVD are given as mean values.

the brainstem. Furthermore, the addition of the novel features, i.e. geodesic
distance transform map and LBP-3D, in the classifier increased the volume435

similarity at the same time that reduced Hausdorff distances. Nevertheless, it
is important to note that differences in data acquisition, as well as metrics used
to evaluate the segmentation, often compromise comparison to other works.
More important than the improvements with respect to other methods, is the
clinical validation in regard to variability between clinically adopted contours.440

When comparing the results with the manual contours, it can be observed that
they lie inside the variability of the observers. This fact, together with the
remarkably low segmentation time reported, makes this technique suitable for
being used in clinical routine. Therefore, the introduction of such technique
may help radiation oncologists to save time during the RTP, as well as reducing445

variability in OAR delineation.
One of the strengths of machine and deep learning methods relies on their

ability to transfer knowledge from human to machine. Hence, for example, when
no visible boundaries are present, the classifier uses its transferred intelligence
from doctors to perform the segmentation as they would do. As example, we450

can cite the area where the brainstem meets the cerebellum in the lower pons
(See Fig. 1, left). No contrasted and visible boundary is present in this region,
so experts use their knowledge and experience to delineate the brainstem con-
tours. Clinically speaking, the contour starts anteriorly at the basilar sulcus of
the ponds and it is extended laterally to include the middle cerebellar pedun-455

cles. The contour continues then posteriorly and medially towards the median
sulcus of the fourth ventricle. This would not be possible without the experts’
knowledge. Therefore, transferring their acquired knowledge to the deep archi-
tecture to be learned helps in assisting to the delineation task in areas where
other methods would fail.460

Extension of the proposed deep architecture approach to other organs at risk
involved in the RTP, such as the optic chiasm or the cochlea, is envisaged. In
addition to the information coming from MR-T1, intensity properties of MR-T2
may help in the segmentation process. Therefore, the impact of including inten-
sity values of MR-T2 images in the features vector will be investigated. Future465

work will also aim at validating our deep learning based scheme on a larger
dataset with the ultimate goal of gradually bringing automated segmentation

18



Pe
rs
on
al
Co
py
of
th
e
Au
th
or

tools into clinical practice.

5. Conclusion

In this paper, we have presented a deep learning classification scheme to470

segment the brainstem on brain cancer patients. Particularly, we address this
problem by stacking denoising auto-encoders in a deep network to learn the fea-
tures representation of the network input. In addition to classical features em-
ployed in machine learning-based methods to segment brain structures, two new
features were proposed. By integrating the stacked of denoising auto-encoders475

with the set of proposed features, our method showed a better performance
than a state-of-the-art classification technique, i.e. SVM. Furthermore, results
demonstrate that our method also achieved better results than other existing
works. We also evaluated the proposed learning scheme in a clinical setting,
involving the participation of four observers. Segmentations produced by our480

method lie inside the variability of observers. Additionally, segmentation times
reported for the automatic segmentations were remarkably low. All this makes
our proposed approach suitable to be employed in clinical routine.
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Figure 12: Contours for a given patient. Columns represent manual (first) and auto-
matic (second) contours, while rows display axial, sagittal and coronal planes, respec-
tively. In green is represented the generated ground truth. Manual and automatic
contours are displayed in different colors, which are indicated in the images.

22


	Introduction
	Methods and materials
	Features used in the classification
	Geodesic transform map.
	Local binary pattern.
	Composition of the input features vector.

	Support vector machines
	Deep Learning based classification scheme
	Unsupervised pre-training of DAEs
	 Supervised fine-tuning of the deep network

	Study design and experiment set-up
	Dataset
	Evaluation


	Results
	Shape similarity
	Volume similarity
	Classification time

	Discussion
	Conclusion

