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Abstract

Purpose: Accurate delineation of organs at risk (OARs) on computed tomography (CT) image

is required for radiation treatment planning (RTP). Manual delineation of OARs being time con-

suming and prone to high inter-observer variability, many (semi-) automatic methods have been20

proposed. However, most of them are specific to a particular OAR. Here, an interactive computer-

assisted system able to segment various OARs required for thoracic radiation therapy is introduced.

Methods: Segmentation information (foreground and background seeds) is interactively added

by the user in any of the three main orthogonal views of the CT volume and is subsequently prop-

agated within the whole volume. The proposed method is based on the combination of watershed25

transformation and graph-cuts algorithm, which is used as a powerful optimization technique to

minimize the energy function. The OARs considered for thoracic radiation therapy are the lungs,

spinal cord, trachea, proximal bronchus tree, heart and esophagus. The method was evaluated on

multivendor CT datasets of 30 patients. Two radiation oncologists participated in the study and

manual delineations from the original RTP were used as ground truth for evaluation.30

Results: Delineation of the OARs obtained with the minimally interactive approach was approved

to be usable for RTP in nearly 90% of the cases, excluding the esophagus, which segmentation was

mostly rejected, thus leading to a gain of time ranging from 50% to 80% in RTP. Considering exclu-

sively accepted cases, overall OARs, a Dice Similarity Coefficient higher than 0.7 and a Hausdorff

distance below 10mm with respect to the ground truth were achieved. In addition, the inter-35

observer analysis did not highlight any statistically significant difference, at the exception of the

segmentation of the heart, in term of Hausdorff distance and volume difference.

Conclusions: An interactive, accurate, fast and easy-to-use computer-assisted system able to

segment various OARs required for thoracic radiation therapy has been presented and clinically

evaluated. The introduction of the proposed system in clinical routine may offer valuable new40

option to radiation oncologists in performing RTP.

Keywords: radiotherapy; treatment planning; lung cancer; thoracic oncology; organs at risk segmentation;

auto-contouring

∗ jose.dolz.upv@gmail.com
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I. INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality in both men and women45

worldwide, causing 1.56 million deaths annually [1]. Common treatments include surgery,

chemotherapy and radiotherapy (RT). While surgery is the standard treatment for non-

small-cell lung cancer (NSCLC), small-cell lung cancer (SCLC) usually responds better to

chemotherapy and radiotherapy. However, when surgery is not an option in NSCLC cases

due to issues with patient’s health or for patient refusing surgery, stereotactic body RT50

(SBRT) becomes an alternative to treat very early stage lung cancers. Indeed, SBRT for

early stage and medically inoperable NSCLC doubled overall survival rates, as compared to

conventional radiation treatment [2].

SBRT involves the delivery of a single high dose radiation treatment or of a few frac-

tionated lower dose radiation treatments. Clinical outcome of SBRT can potentially be55

improved by maximizing target control while minimizing dose to surrounding tissue. Satis-

fying the requirements of target dose distribution is essential. However, too large irradiated

volume or too high dose to OARs must also be avoided. This requires knowledge on the

shape and location of the tumor and involved organs at risk (OARs). Although CT imag-

ing is the most widely used imaging modality for diagnosis, clinical studies and treatment60

planning, the identification and outlining of organs at risk and target volumes in CT im-

ages are among the most time-consuming steps carried out by human experts and prone to

inter-observer variation [3, 4]. This variability can directly influence on the quality of the

radiation treatment planning (RTP), and especially the dose distributed to the OARs [5].

Thereby, accurate delineation of the OARs is a key step in the RTP workflow.65

Despite the extensive number of methods proposed during the last decades to support

OARs segmentation [6–9], delineation still remains challenging. Particularly in some cancer

cases, such as NSCLC, delineation still prevails fully manual in some OARs [10]. In fact,

the constantly growing number of different objects of interest, the variations of their prop-

erties in images and the use of different medical imaging modalities prevent from using a70

general and unique solution [11]. Segmentation approaches substantially differ in terms of

sophistication and amount of required user inputs. According to the extent of user interac-

tion, segmentation techniques can be categorized into: manual, automatic or semi-automatic

methods. Manual approaches allow users to manually outline structures using some soft-
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ware package. Although they might be more accurate than the other techniques, this task75

is time-consuming and prone to observer variability. Contrary to manual approaches, fully

automatic approaches require no user participation to perform the segmentation. These

methods often employ some sort of prior knowledge from the anatomy to be segmented to

achieve the segmentation. Prior information is typically provided as anatomical atlases [12]

or statistical shape models [13]. Even though sophisticated automatic segmentation algo-80

rithms have been developed, they often fail to achieve clinically acceptable results [9] and

consequently few of them can fulfill the necessities of applications in terms of accuracy and

efficiency.

The third category of segmentation methods -referred to as being semi-automatic or

(semi-) interactive- are becoming more and more popular to solve most of the problems85

inherent to fully automatic segmentation techniques. In these approaches, the user provides

information on what has to be delineated; the rest of the image is subsequently automatically

segmented.

Interactive approaches have already been proposed to segment medical images [14–17].

Hu et al [15] presented a method to segment the liver on CT images by combining interactive90

expert user guidance through a probabilistic framework and a fast graph partition algorithm

for volumetric image segmentation. The user indicated samples of object and background

tissue by loosely drawing a few brush strokes on the image, which provided statistical input

for a Conditional Random Field (CRF) based segmentation. In the work of Hu et al [16]

an interactive contour delineation approach that used a CRF framework was proposed to95

reduce the time and effort required from the users. After an initial segmentation on a CT

slice, simple brush strokes for the target organ and non-target pixels had to be drawn. The

approach automatically calculated statistics from this information to determine the parame-

ters of an energy function containing both boundary and regional components. The method

used a CRF graphical model to define the energy function to be minimized to obtain an100

estimated optimal segmentation. More recently, Bernard et al. [17] presented a classifica-

tion scheme that was able to segment up to 23 organs or objects on 2D slices of CT images

of breast-cancer patients. A watershed filter converted the 2D CT slices into superpixels.

Then, two kind of superpixel features were computed (i.e intrinsic and extrinsic), which were

then fed into a classification model based on machine learning techniques.105

However, regardless of all these advances in medical image segmentation, nowadays in
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clinical practice, OARs delineation on medical images is still performed without or with

very few machine assistance [9]. OARs are generally manually delineated by clinicians or

Radiation Therapy Technologists (RTTs) in 2-dimensional (2D) slices using simple drawing

tools. The delineation task is therefore time-consuming and tedious, particularly for multiple110

OARs. Since availability of experts for delineation might be sometimes limited, contouring

could represent a blocking step in the flowchart of the RTP. To the best of our knowledge,

no single method allowing the segmentation of all required -and some recommended- OARs

for thoracic radiation oncology has been presented yet. Consequently, the introduction of an

interactive computer-aided system able to segment all necessary OARs may offer valuable115

new options to RTTs and radiation oncologists in performing the OARs delineation task,

and optimize RTP workflow.

The purpose of the current study is to present and evaluate an interactive framework for

OARs segmentation in thoracic oncology. The proposed method is based on the combination

of watershed transformation and graph-cuts algorithm, which is used as a powerful optimiza-120

tion technique to minimize the energy function. The main contributions of this work are: (i)

a single approach allowing the segmentation of all required- and some recommended- OARs

for thoracic radiation therapy, (ii) a simple, intuitive and fast segmentation method, (iii)

and an extensive evaluation of the proposed segmentation approach to assess its accuracy

and robustness. This work is an extension of the work of Dolz et al. [18, 19]: additional125

OARs considered for RTP in thoracic oncology are segmented, a larger number of patients

is included in the evaluation, and a more extensive quantitative and qualitative evaluation

is performed.

II. METHOD

The proposed interactive framework to segment OARs in CT images consists of two steps:130

1) manual definition of input information by the user (details given in Section II C), and 2)

subsequent automatic segmentation using input provided information. (Figure 1).
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Figure. 1. Workflow of the proposed framework to segment OARs.

A. Graph-cuts approach

Graph cuts (GC) based segmentation approaches have arisen as a powerful optimization

framework to solve segmentation problems. The success of graph cut based minimization135

algorithms in solving many low level vision problems has notably increased the popularity

of such approaches. Even for formulations where its use does not guarantee to provide the

optimal solutions, graph cuts can be used to find solutions that represent strong local min-
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ima of the energy. Thus, the image segmentation problem can be formulated in terms of

minimizing a function, which is usually called the cost or energy function. This minimiza-140

tion task is performed by using a standard minimum cut/maximum flow algorithm, where

the minimum will be the best solution found for the defined problem [20]. As the work of

Boykov et al. [20] has shown, graph cuts approach addresses segmentation in such global

optimization framework and guarantees an optimal solution for a wide class of energy func-

tions that can be, moreover, extended to N-Dimensional images. Generally, required input145

information is interactively added by the user [20, 21]. Due to the performance and the

minimal user interaction required, GC based techniques represent one of the state-of-the-art

methods in semi-automatic segmentation approaches.

In GC approaches, a graph G = 〈 V, ε 〉 is constructed from the image information, where

V represents the set of all nodes of the graph and ε is the set of all arcs or edges connecting150

adjacent nodes. Commonly, either pixels or voxels are used as nodes of the graph, and

the chosen connectivity criteria defines the way in which these nodes are connected in the

graph [20]. However, the creation of the graph is not always straightforward. With the large

images used nowadays in clinical routine, the high computational cost of applying graph cuts

directly over the entire image can be detrimental to the level of interactivity experienced by155

the user. Hence, if the graph vertices are placed at each image voxel, the number of nodes in

the graphs exponentially increases with the image size; and consequently, the computation

time to solve the problem dramatically increases. Therefore, pre-partitioning the image into

small connected regions is a way to accelerate computations.

B. Problem formulation160

1. Watershed Image Transformation

The watershed image transformation is motivated from a simple physical principle in

geography: a drop of water falling over a topographic surface follows the greatest slope until

reaching either a valley or another body of water [22]. In the watershed image transforma-

tion, an image represents a topographic surface. On this surface the different altitude values165

represent image gray levels, being the brightest pixels the highest altitudes, and the darkest

pixels representing the lowest altitudes. Hence, when a set of similar pixels falls into the
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same valley, it forms what is known as basin, which is separated from other basins by the

watershed lines. Each of these basins corresponds to the homogeneous segmented regions of

the image.170

Figure. 2. Result of applying the watershed transformation with set-up parameters that lead to

over-segmentation(b) to a CT scan (a).

The watershed algorithm applies these ideas to gray-scale image processing in a way that

it can be used to solve a variety of image segmentation problems. Its use has been already

proposed as a region-based segmentation approach in the medical domain [23, 24].

2. Graph creation

Similar to Li et al [25], an unsupervised watershed transform of the morphological gra-175

dient of the original CT image, which leads to an over-segmentation (Figure 2), is used to

build a region adjacency graph. The watershed transformation allows obtaining a partition

of an image comprising small and numerous homogeneous regions. Hence, this step will

group pixels of similar intensities in uniform labels or regions, while preserving important

contours during the segmentation. These homogeneous regions will be used as input for the180

creation of the graph in a latter step (Figure 3).

The main motivations to choose the watershed pre-segmentation as input of the graph are

that i) it improves the speed of the computation of the graph solution, while ii) it preserves

the boundaries of the objects [25]. The segmentation problem is therefore formulated as a

binary label problem, where the goal is to assign a unique label li ∈ 0,1 to each watershed185
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Figure. 3. Taking as example a region of the watershed transformation shown in Fig.2 (left) the

graph creation by using watershed regions as graph nodes is shown (right). Dark gray region

represents a node of the graph, which is connected with its adjacent regions, in brighter gray.

region xi. In this context, 0 represents background while 1 means foreground. Accordingly,

the resulted segmentation X is computed by minimizing an energy function of the type [20]:

E(X) =
∑
i∈ν

E1(xi) + λ
∑

(i,j)∈ε

E2(xi, xj) (1)

To construct the graph representing the energy E in (1), each watershed region xi is con-

sidered as a graph node, in addition to the two terminal nodes representing the foreground190

and the background. The regional term E1, also known as likelihood energy, represents the

cost of assigning the watershed region xi to be either the background or the foreground. It

is calculated by connecting each region xi to both terminal nodes with non-negative edge

weights. These weights represent the likelihood of xi of belonging to either foreground or

background. To compute the intensity models for each object, the mean intensity value,195

Ix, of each watershed region introduced as foreground or background seeds is taken into

consideration.

The second term in Equation (1), E2, comprises the boundary properties of the segmen-

tation, and represents the penalty for a discontinuity between two adjacent regions xi and

xj, which are connected to the neighborhood according to the chosen connectivity criteria.200

This value is usually large when regions xi and xj have similar intensities and close to 0

otherwise. For convenience, pairs of neighboring regions are connected by weighted edges

that are called n-links. The current implementation sets the boundary penalties between

two neighbor regions, through a n-link, as follows:
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B{i,j} ∝ exp

(
− (Ii − Ij)2

2σ2

)
· 1

dist (i, j)
(2)205

where dist is the distance between adjacent regions (usually in number of pixels or voxels)

and σ can be viewed as camera noise. Equation 2 highly penalizes for discontinuities between

regions with similar mean intensities, i.e. ‖Ii− Ij‖ < σ. Otherwise, when ‖Ii− Ij‖ > σ, the

boundary penality is small. As labels have no homogeneous and regular shapes, connectivity

criteria simply follows adjacency connectivity. This means that as long as two regions are210

adjacent, they are considered as neighbors. Additionally, the term dist(i,j) was set to 1 in this

experiment. At last, the coefficient λ in Equation (1) weights the relative importance of the

region properties term E1 versus the boundary properties term E2. A detailed explanation

of how to compute all these terms is presented in the work of Dolz et al. [18].

C. SUMMER-prototype215

The proposed prototype was developed as an independent plug-in on the MITK platform

[26], version 2013.09.0. MITK platform is a medical imaging and interaction toolkit. It is

implemented as a part of the SUMMER (Software for the Use of Multi-Modality images in

External Radiotherapy) project prototype [27]. A preliminary evaluation on the performance

of the proposed prototype has been already investigated [18, 19]. However, this previous work220

did not include a relevant set of OARs involved in the RTP, and evaluation was conducted

on a shorter dataset.

The workflow of the proposed framework to segment OARs is shown in Figure 1. As

semi-automatic method, initialization requires some sort of participation from the user’s

side. This interactive process takes the form of brushing voxels, constraining them either225

to be part of the foreground or the background. These voxels can be either contained on a

contiguous region or split into several separated spots. By employing these brush strokes,

it is typically sufficient to roughly brush just a part of the foreground and some parts of

the background (Fig. 4). Note that in this work, the term foreground refers to the OARs,

whereas the term background invokes to the rest of non-interesting regions. Once the user is230

satisfied with the information given to the prototype, the automatic process can be initiated.

During this stage, the input image is initially pre-segmented by employing the watershed

transformation (Section II B 1). To compute the watershed image transformation, a gradient
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anisotropic diffusion filter is applied on the input CT image. The idea of applying this filter

is to smooth the original CT image and then perform some sort of edge calculation based on235

gradients and curvatures. Image smoothing is achieved by employing an anisotropic diffusion

that uses the classic Perona-Malik diffusion technique [28]. One of the benefits of using this

diffusion method against other approaches is that it reduces image noise without removing

significant parts of the image content, such as edges or lines. The resulted gradient of the

anisotropic diffusion is then used as input of the watershed transformation. To control the240

result of the watershed transformation, two parameters must be tuned: level and threshold.

While level controls the depth of the watershed, threshold controls the lower thresholding

of the input image. Since the goal of this step is to achieve an over-segmentation of the

input image, level and threshold are set to 0.001% and 0.0001% of the maximum depth in

the input image, respectively. The watershed implementation found in the ITK Software245

[29] was employed in this step.

Next, watershed labels are used to create the graph (Section II B 2). At the end of the

automatic process, graph cuts approach (Section II A) is applied over the graph to compute

the segmentation. Once the segmentation is done, the user can inspect the result. If the

segmentation is unsatisfactory, foreground and/or background seeds can be modified and250

the algorithm will be run again. Modification of seeds implies adding and/or removing

total or partially these seeds. Unlike most of the interactive solutions proposed to medical

image segmentation, the presented prototype allows users to draw strokes in any of the three

views, making the interactive task often easier and more comprehensive. Figure 4 shows a

screenshot of the OARs SUMMER-MITK prototype.255

III. MATERIALS

A. Organs at risks in thoracic radiation oncology

In thoracic radiation oncology the critical normal structures (Organs at Risk) that are

at risk to receive a significant radiation dose are: spinal canal; lungs; trachea; proximal

bronchus tree; heart and pericardium; and esophagus [30]. For the case of the trachea260

segmentation, only the cavity segmentation was taken into account when comparing with

our approach.
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Figure. 4. Screenshot of the SUMMER-MITK plug-in to segment OARs in radiotherapy. Dark

gray brush strokes represent foreground -in this case, the heart- seeds, while bright gray strokes

are the seeds belonging to the background. An interesting feature of this tool is that it allows to

draw the seeds in any of the three planes.

B. Datasets

The proposed method was evaluated on a cohort of 30 (15 male, 15 female) patients

aged [51-84] years old. Thirty patients with early stage NSCLC or pulmonary metastases265

received SBRT and those with locally advanced NSCLC received conventionally fractionated

radio(chemo)therapy (CFRT)(Table I). Segmentation was performed on the planning CT

which was acquired for 6 patients with a Siemens Emotion CT scanner, for 21 patients with

a Philips GEMINI TF Big Bore CT scanner and for 3 patients with a Philips Brilliance Big

Bore CT scanner. Image resolution and voxel size for the different scanners are reported in270

table II.
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Treatment

SBRT CFRT

Early NSCLC Metastases Advanced NSCLC

Number of Patients 9 4 17

Stages

cT-stage
T1

T2

7

2

Tx

T0

2

2

T1

T2

T3

T4

3

5

6

3

cN-stage N0 9 N0 4

N0

N1

N2

N3

0

3

10

4

cM-stage
M0

M1

9

0

M0

M1

0

4

M0

M1

17

0

TABLE I. Pathologies of the included NSCLC patients.

Resolution (pixel) Voxel size (mm) [min-max]

x y z (Range) x y z

Siemens

Emotion
512 512 53-138 0.686-0.977 0.686-0.977 3-5

Philips GEMINI

TF Big Bore
512 512 86-152 0.897-1.172 0.897-1.172 3

Philips Brilliance

Big Bore
512 512 118-132 0.885-0.977 0.885-0.977 3

TABLE II. Scanners used and characteristics of images used in the current experiment.

Average contouring time in clinical routine was indicated to range from 40 minutes up

to 70 minutes, in anatomically challenging cases. Total time is divided into the following

steps: 5-10 minutes to manually delineate the heart; 5 minutes to inspect automatically

pre-contoured lungs and if adjustments are required, this can eventually take 10 more min-275

utes; manual segmentation of the trachea takes around 5 minutes; manual segmentation

of proximal bronchus tree takes nearly to 10 minutes; 5 minutes to inspect automatically

pre-contoured spinal canal and if adjustments are required, 10 additional minutes are often

required; and the esophagus delineation takes, on average, between 10-15 minutes.
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IV. EXPERIMENTS280

A. Evaluation experiments

This study was conducted at the Department of Radiation Oncology, University Medical

Center, Freiburg, Germany. Two physicians with experience in treatment planning were

invited to participate in this evaluation.

Nowadays, in clinical routine, delineation is mostly done manually. This means that no or285

few machine assistance is available to carry out this task. Due to this, physicians involved

in the presented experiment were not familiar with the presented prototype and a short

training on how the tool must be used was therefore given before to start the experiment.

In addition, to constrain the number of iterations the users could carry out, a maximum of

five seeds modifications were allowed. During the seeds modification process the user was290

able to add, modify or suppress an unlimited number of seeds, although the trend was to

add only few of them (Figure 4). Each time seeds were modified and the tool was run again

is referred to as one iteration. If the obtained results were satisfactory before the maximum

number of iterations, the segmentation was considered as accepted. On the other hand, if

the users reached the maximum number of iterations with no success on the contours, the295

segmentation was simply annotated as rejected.

B. Evaluation measures

Qualitative evaluation and acceptability. Participants subjectively evaluated the accuracy

of the semi-automatic contours. After running the algorithm, they inspected the contours

and decided whether they were satisfactory or further modifications were needed. If they300

were satisfied with the result, the contour was accepted. If the maximum number of iterations

was reached prior to the obtention of acceptable segmentation results, the contour was

then rejected. For the accepted contours, the number of iterations used to achieve that

segmentation was recorded.

Quantative evaluation. The semi-automatic segmentations are compared to manual seg-305

mentations outlined by an expert radiologist which are used in clinical routine for RTPs.

Three common metrics are computed: Dice similarity coefficient (DSC) [31], Hausdorff dis-

tances(HD) [32] and average volume differences.
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The DSC(X,Y) is defined as the ratio of twice the intersection over the sum of the two

segmented results, X and Y :310

DSC = 2
| Vexpert

⋂
Vauto |

| Vexpert | + | Vauto |
(3)

where Vexpert is the expert delineation, and Vauto is the result segmentation of the proposed

approach. The DSC measure varies between [0-1], where 1 indicates perfect overlapping and

0 represents not overlapping at all. To measure volume differences between manual and

automatic contours with the ground truth, the following formula is used315

∆V (%) =
Vauto − Vexpert

Vexpert
∗ 100 (4)

where Vexpert represents the expert or reference delineation, and Vauto is the outcome of

the proposed segmentation approach.

Statistical volumetric measures, such as DSC, can give a good estimate of expert agree-

ment; however, it is insensitive to the exact position of errors in the segmentation. Eval-320

uation of the accuracy of the boundary from contour delineation is particularly important

to RTP, as it affects the reliability of the treatment plan in limiting dose to normal tissues.

To measure how far the two surfaces are from each other, HD is used. In particular, HD

computes the distance between the set non-zero pixels of two input images, X and Y, using

the following formula:325

H(X, Y ) = max(h(X, Y ), h(Y,X)) (5)

where

h(X, Y ) = maxx∈Xminy∈Y ‖ x− y ‖ (6)

X and Y represent respectively the set of non-zero pixels in the first and second input images.

V. RESULTS330

A. Qualitative

The quality of the contours of the OARs (excluding the esophagus) generated with our

semi-automatic approach was satisfactory, i.e. sufficiently accurate to be clinically usable
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Figure. 5. Acceptance rate of the semi-automatic contours generated by the proposed prototype

are shown on the left. On the right, mean number of iterations per organ for the clinically accepted

contours are displayed. ∗ Since the segmentation of the esophagus was completely unsuccessful, its

rejection rates were not taken into account.

for RTP, in more than 75% for each OAR and each observer(Figure 5, left). On average,

they represented the 89.7% of all the contours generated and analyzed at exception of the335

esophagus. Regarding the number of iterations needed to achieve satisfactory results, mean

value between 1.2 and 2.2 were reported (Figure 5, right). The heart represented the most

difficult structure to segment (2.52 iterations, observer 1), while the lung, the spinal canal,

the trachea segmentations were the easiest to perform (1-1.2 iterations, observer 2), on aver-

age. Considering the number of iterations for the esophagus segmentation is not applicable340

since results were unsatisfactory in all the patients.

It is important to note that in the analysis made from the two previous figures, the esoph-

agus segmentation information has not been taken into account. The reason is because the

automatic segmentation for this structure failed most of the time. Merging, therefore, this

information with the performance of the rest of the organs is meaningless. As a conse-345

quence, results for the esophagus have not been further analyzed due to low acceptance

rates. However, its failure will be analyzed in the discussion part.
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B. Quantitative

It is generally accepted in medical image segmentation that a DSC value greater than

0.7 is recognized as good agreement [33]. More than 90 % of the semi-automatic contours350

for all the OARs met this requirement on the accepted reported cases, with exception of

the esophagus. Figure 6 shows the Dice coefficients for the semi-automatic contours of the

five OARs under examination. Mean DSC values for observer 1 were 0.86 [0.80-0.94] for the

heart, 0.97 [0.94-0.98] for lungs, 0.72 [0.65-0.88] for proximal bronchus tree, 0.82 [0.68-0.90]

for spinal canal, 0.88 [0.76-0.98] for the trachea. For observer 2 the following DSC values355

were reported: 0.91 [0.83-0.94] for the heart, 0.97 [0.94-0.98] for lungs, 0.74 [0.69-0.89] for

proximal bronchus tree, 0.85 [0.82-0.90]for spinal canal, 0.85 [0.78-0.96] for the trachea.
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Figure. 6. Dice Score coefficients of all the semi-automatic OARs segmentations with respect to

the manual standard contours. Dice score coefficients for both all and only accepted segmentations

are shown.

17



Pe
rs
on
al
Co
py
of
th
e
Au
th
or

Figure. 7. Hausdorff distances of the accepted semi-automatic OARs segmentations (left) and

percentage of volume differences with respect to the manual standard contours.

Although DSC values reported were often satisfactory, maximum Hausdorff distances of

semi-automatic contours were sometimes quite high (Fig 7, left). In particular for the heart,

a mean HD of 15.7 mm and 12.3 mm has been reported for each observer. These high HD360

distances were most often due to the segmentation failure of the inferior part of the heart,

where the boundary between the heart and the liver is often fuzzy, e.g. in situations of

low-contrast between organs. Figure 8 presents three cases of heart segmentation, accepted

as usable for the RTP by the experts. In situations where some -even low- contrast exists

between the inferior part of the heart and the liver (Fig. 8a), contours obtained using365

our interactive approach were close to the ones from the ground truth, resulting therefore

in low HD values. However, in situations where no contrast thus no visible boundaries

- exists (Fig. 8b and Fig. 8c), contours obtained using our interactive approach were

more distant from the reference ones, leading to a high values of HD. For lungs, prox BT

and the spinal canal segmentations, results reported mean HD values in the range of 5-10370

mm. On the other hand, semi-automatic segmentation of the trachea provided mean HD

values close to 3 mm. Volume distributions of the accepted semi-automatic contours for

each of the organs investigated are plotted in figure 7, right. First thing we note is that

mean values of the distribution for each of the organs fall in the range of -20% to 20%

with respect to manual contours, which may be considered a priori as acceptable. Average375

volume differences (%) for observer 1 were: -10.75 [-18.30,10.48], -2.43 [-6.96,-0.08], 1.36 [-
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14.96,27.56], -8.75 [-28.47,13.16] and 2.60 [-11.87,35.94] for the heart, the lungs, the proximal

bronchus tree, the spinal canal and the trachea. In the same order, mean volume differences

of 2.32 [-10.94,35.78], -1.94 [-7.21,2.74], 10.50 [-28.51,33.09], -2.22 [-19.93,16.02] and -0.80

[-14.31,20.30] were reported for observer 2.380

Figure. 8. Visual examples of several heart segmentation cases accepted as usable for the RTP.

Bright gray contour represents the manual reference standard and dark gray contour is the gener-

ated by the semi-automatic tool.

In order to evaluate the robustness of the proposed system, as well as to investigate

whether spending more time on the interaction side improves the segmentation, a within

patient ANOVA analysis between the two observers was performed for all the computed

metrics. To conduct this analysis all the semi-automatic segmentations were taken into

account, independently of whether they were accepted or not. Outcomes from the statistical385

analysis are presented in Table III. It is shown that with exception of the Hausdorff distances

and volume differences for the case of heart segmentation (p<0.05), the analyzed metrics

did not show significant statistical differences between observers 1 and 2 across the different

groups.
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p-values

DSC Hausdorff Distances Volume Differences

Heart 0.2334 0.0451 0.0018

Lungs 0.4605 0.7045 0.7583

Prox BT 0.1198 0.5112 0.3078

Spinal canal 0.1630 0.5389 0.2643

Trachea 0.4804 0.6125 0.9384

TABLE III. Statistical analysis between the semi-automatic contours generated by the two ob-

servers.
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Figure. 9. Mean segmentation times of the semi-automatic contours reported in this evaluation

for each of the OARs. The whole time is split into manual (light part) and automatic (dark part)

times. Manual time comprises the time spent to add/modify input seeds whilst automatic time is

the total time employed by the algorithm to achieve the segmentation (one or multiple iterations).

Mean segmentation times are shown in Figure 9. The whole segmentation process was390

performed in each patient by observer 1 in 12 minutes and 55 seconds, on average. Observer

2, however, employed a mean time of 19 minutes and 3 seconds to perform the same task.

This time includes both the automatic segmentation process and the interactive process in

which the user participates (Figure 1). On the other hand, the manual interactive process

time refers to the time the user really performed some actions during the segmentation395

process. These actions included brushing the seeds and inspecting the segmentation result.

20



Pe
rs
on
al
Co
py
of
th
e
Au
th
or

In terms of users’ interaction, mean participation time per patient was reported to be of 7

minutes and 51 seconds, and 14 minutes and 32 seconds, for observer 1 and 2, respectively.

Manual interaction on heart was the longest task among the OARs with accepted segmen-

tations on both observers, in terms of user’s participation, according to Figure 9. Contrary,400

segmentations of spinal canal did not require such an effort. It is important to notice differ-

ences on the user participation between both observers. Manual participation from observer

2 was in all the cases nearly double than in observer 1. However, taking into account the

statistical analysis (Table III), no statistical differences between observers was reported and

only marginal improvements were achieved by observer 2, as indicated by figures 6 and 7.405

According to manual segmentation times detailed in Section III B, the task is usually

performed for all the OARs (at the exception of the esophagus) in a range from 30 to 55

minutes. The use of the proposed approach represented a gain of time between 64-73%

with respect to the manual segmentation, as average. This gain was relatively larger for

the trachea and proximal bronchus tree segmentations, where the semi-automatic approach410

achieved the task around 75% faster than the manual process. If pre-segmented clinical

contours for spinal canal and lungs are accepted, our method improves the segmentation

time by nearly 50% (See Section III B, paragraph 2 to see typical segmentation times in

RTP). However, if adjustments are required from the pre-clinical contours we can say that

our method achieves the segmentation task in roughly 20% and 30% of the time that would415

have been employed in clinical routine for spinal canal and lungs, respectively.

VI. DISCUSSION

A prototype for minimally interactive segmentation of the OARs in RTP, using a hybrid

approach combining watershed and graph cuts, has been presented and evaluated. Mini-

mization of user interaction required by semi-automatic segmentation methods plays a key420

role in the workflow of RTP. Our prototype minimizes such interaction by allowing users to

coarsely indicate inner and outer regions at few locations in the volume instead of precisely

tracing lines close to the object boundaries in a large number of locations throughout the

volume. Although the evaluation has been done on NSCLC patients, the use of this tool

can be extended to thoracic radiotherapy in general.425

Sophisticated automatic segmentation algorithms proposed to segment OARs in RTP
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often fail to achieve clinically acceptable results. Additionally, although several works have

contributed with approaches to segment different of these critical structures, they are often

organ dependent and therefore limited to work in merely one or very few structures, which

makes them usable only in certain situations. The results of our evaluation demonstrate that430

our prototype, however, is able to successfully segment a set of OARs typically included in

the RTP of thoracic oncology, at the exception of the esophagus. Although segmenting

the inferior part of the heart was not always quantitatively successful using the proposed

approach, in most of the cases the generated contours were judged as being satisfactory by

the experts, and therefore considered as qualitatively successful. The proposed approach435

successfully allowed the delineation of organs having low-contrast with surrounding tissues,

such as part of the spinal canal, as presented in Figure 10. We can thereby say that, up

to our knowledge, this is the first work which evaluates the performance of an approach to

segment all OARs required for RTP of thoracic oncology, particularly NSCLC.

Figure. 10. Axial slice of a CT volume, presenting low-contrast (left), making the delineation of the

spinal canal challenging. Ground truth delineation (white) and generated interactive delineation

(black) are presented (right).

Nevertheless, segmentation of the esophagus on CT images is still a challenging task,440

mainly due to its low contrast and versatile appearance. While it may appear sometimes

solid, it can also occasionally be filled with air bubbles, remains of oral contrast agent

or both. Furthermore, its walls consist of muscle tissue, which has low contrast in CT,
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particularly if the esophagus is empty. All this makes that it can easily be confused with

vessels, muscles, or lymph nodes. Up to now, prior work on this topic is limited and all of the445

proposed methods require a significant amount of user input, as well as prior information.

For example, in Kurugol et al ’s method [34], relative spatial location of esophagus centers

with respect to neighboring structures was learned during a training phase. In addition

to this information, a combination of the level-set function with a prior shape was used

to locate the esophagus in all the slices. Contrary to methods using prior knowledge, the450

proposed approach creates the organs models based on intensity properties and uses no prior

information. However, as explained above, the esophagus shares a wide range of intensity

values with its neighbor structures. Thus, although the presented tool has shown to work in

situations where very similar texture values are shared by the organ and the background, in

cases where no visible boundaries are present it might fail, like in the segmentation of the455

esophagus.

Automatic segmentation results have been validated by physicians, and almost 90% of

these contours were approved for being usable in RTP. With exception of the esophagus,

all the OARs presented high acceptance rate (Figure 6) with most DSC values above 0.7.

Although there have been some approaches that outperform the presented system when seg-460

menting single OARs, results from evaluation show that our approach is able to successfully

segment several OARs.

Results demonstrate that the presented prototype might be introduced in clinical routine

with the final goal of assisting RTTs and radiation oncologists in the OARs delineation

process. Although automatically generated contours must be approved, and sometimes465

modified, by experts prior to be used in clinical practice, in a high percentage of cases semi-

automatic contours generated by our approach were accepted with no manual adjustment.

Taking into consideration a single OAR, for instance the spinal canal, manual contouring

typically requires between 5-15 minutes, while interactive segmentation (by observer 1)

required less than 2 minutes, therefore leading to an improvement of 60%-80% in this case.470

More generally, and according to the results, for the set of OARs analyzed this led to a gain

of time that ranged from 50% up to nearly 80% as compared to the manual time, for single

OAR delineation.

Last, as the performance of the segmentation approach - and particularly in very low-

contrast areas - is dependent on the input seeds provided by the user, some performance475
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differences between observers were noticed in this study. In fact, in this study and as

indicated in Section IV.A, solely a brief training was provided to the users prior to take part

in the evaluation. Therefore, due to their lack of knowledge on how to efficiently position the

input seeds, additional iteration(s) made in the interactive process, i.e. modification of seeds,

did not particularly improve their segmentation performance, nor did it improve over time480

while analyzing more cases. It should therefore be noted that providing additional training to

the user might allow a more efficient use of the interactive computer-assisted system. These

findings are supported by the work of Ramkumar et al. [35], in which dependencies between

user interaction and segmentation performance of the proposed interactive approach, by use

of two different interactions input (seeds vs. coarse contours) are investigated. Authors485

highlight that, besides the performance of the algorithm, the quality of the segmentation

also depends on the user and the human computer interaction process. Furthermore, they

disclosed that the interactive segmentation method employing seeds as input is more efficient,

less cognitively demanding, and requires less effort, in comparison with the other analyzed

method. We thus refer the reader to that work for further information regarding the usability490

of the proposed interactive computer-assisted system.

VII. CONCLUSION

This work presented a prototype for interactive segmentation of the organs at risk in the

radiation treatment planning of NSCLC. The proposed interactive tool has been clinically

evaluated on a group of 30 patients. User interaction to achieve OARs segmentation has been495

minimized by allowing users to coarsely indicate inner and outer regions in few locations in

the volume. Results reported an acceptance rate of nearly 90% of all the generated contours,

at the exception of the esophagus. Results demonstrated that, ideally, the introduction of

such interactive prototype in clinical routine might represent a valuable tool for radiation

oncologists and therapists to achieve the OARs delineation task in thoracic oncology.500
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