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Abstract

In the context of mobile devices, speaker recognition engines may suffer from
ergonomic constraints and limited amount of computing resources. Even if
they prove their efficiency in classical contexts, GMM/UBM systems show
their limitations when restricting the quantity of speech data. In contrast, the
proposed GMM/UBM extension addresses situations characterised by limited
enrolment data and only the computing power typically found on modern
mobile devices. A key contribution comes from the harnessing of the temporal
structure of speech using client-customised pass-phrases and new Markov
model structures. Additional temporal information is then used to enhance
discrimination with Viterbi decoding, increasing the gap between client and
imposter scores. Experiments on the MyIdea database are presented with a
standard GMM/UBM configuration acting as a benchmark. When imposters
do not know the client pass-phrase, a relative gain of up to 65% in terms of
EER is achieved over the GMM/UBM baseline configuration. The results
clearly highlight the potential of this new approach, with a good balance
between complexity and recognition accuracy.
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1. Introduction

The speech signal offers several advantages over other biometric signals,
with distinct benefits coming from the potential to link together information
derived from the context and the content of the message as well as the voice
biometric itself. With appropriate classification and fusion, these components
can be brought together to enhance any biometric validation process.

There are however practical constraints within the cell-phone scenario,
stemming largely from ergonomic factors and the available computing re-
sources typically found within such hand-held devices. Such embedded ap-
plications impose constraints and an important one in terms of recognition
performance can be the quantity of data, particularly for reference models but
also for the subsequent test phase. In certain applications these quantities
might prove to have a critical influence on recognition accuracy. Examples
include security systems that might well have speech of only a few words
spanning just 2 or 3 seconds. The main contributions of this paper address
these issues with new computational structures designed to harness maxi-
mum information from the temporal structure information (TSI) of speech
to reinforce the acoustic modelling.

Classical speaker recognition engines offer a high level of performance
as shown for example during NIST evaluations [1]. However such systems,
which are invariably founded on the GMM/UBM paradigm [2], exhibit high
sensitivity to the quantity of data, particularly the reference model data [3],
[4], [5]. Their performance degrades strongly while reducing the duration of
speech material available [6, 7, 8]. For situations where the speech duration
is below 30 seconds, recognition performance falls rapidly [9, 10]. Text-
dependency is well known to compensate for the lack of data by constraining
the acoustic content of the spoken utterance [11].

Meaningful comparison of recognition accuracy in text-dependent speaker
verification tends to be very difficult due to the lack of controlled evaluations
and large scale databases, essential particularly when error rates are very low
[12]. Hence the tendency of the community towards the text-independent
scenario that benefits from the NIST large scale databases and the inde-
pendent evaluations [1]. However, two major trends dominate the field of
text-dependent speaker verification. Approaches based on dynamic program-
ming have been proposed for tasks where the quantity of speech is limited
[13, 14, 15, 16]. They provide a precise modelling of the time constraints but
lack the generalization power available with hidden Markov model (HMM)
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approaches [17]. Indeed, HMM and GMM models which are the most com-
mon modelling methods [18] are more robust to speaker or environment vari-
abilities and can take advantage of larger amounts of data [11]. Depending on
the type of application that is targeted, HMMs can be used to model whole
sentences [19, 20], word-level units [21, 22] or phone-level units [23, 24]. In
addition to the two major approaches that dominate text-dependent speaker
verification, text-dependent and text-independent speaker verification often
cross-pollinate each other. While there have been several attempts to adapt
Support Vector Machines [25, 26] or i-vector systems [27, 28] to take advan-
tages of a lexical constraints, others incorporate text-dependent techniques
in text-independent applications such as [29, 30].

In this paper, a classification structure that takes advantage of the tem-
poral structure of the speech utterance is examined. The structure utilises
text-dependencies derived from a multilayer classifier illustrated in Figure 1,
the foundation of which is the standard GMM/UBM. These first two layers
are complemented by a third layer that harnesses temporal structure infor-
mation extracted from speaker-specific phrases. The approach, described in
[31], [32], [33] and further developed in this paper, takes advantage of the
temporal structure of pass-phrases, an example of which is ”Ce petit canard
apprend à nager2”. In order to model the TSI of such a pass-phrase while
achieving statistical modelling from the GMM/UBM, we propose to extend
the standard paradigm with an HMM/Viterbi approach. Finite-state mod-
els aim to incorporate pass-phrase-based information, like temporal organi-
sation of acoustic features, not otherwise harnessed by classical GMM/UBM
approaches.

A key point here is the inclusion of additional temporal information within
the finite-state modelling. This additional information is used to constrain
the Viterbi decoding in order to enhance discrimination. It does so by using
the temporal structure of the given pass-phrase. A set of N classical HMM
nodes is arranged in time sequence with the transitions in time from one
node to the next controlled first by the normal acoustic features and then by
additional temporal information.

The proposed structure is designed specifically to accommodate the use
of two such simultaneous synchronous signals. The roles of the two can be
clearly separated: first, variants of the conventional GMM/UBM nodes; and

2This little duck is learning to swim.
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second, additional synchronization control of state transitions. Here, the lat-
ter comes from the acoustic signal and divides each pass-phrase into segments
overarching several states of the HMM, as shown in Figure 2. These overar-
ching segments provide constraints at the lexical level that are in addition to
those of the finite-state models and that can be harnessed by the recogniser.
We refer to these as lexical constraints.

The approach proposed in this work is related to that of others in the
literature. For example in [34] Becerra Yoma and Facco Pegoraro constrain
the state duration of word-units HMMs. Additional knowledge is included
in the HMM topology by training different transition probabilities depend-
ing on the position of a given word in the speech segment. In [35], speaker
dependent semi-continuous HMMs are compared to a reference HMM to
produce a discriminative representation of the speaker pronouncing a given
pass-phrase. In the two previous works, the use of a background HMM to
adapt the speaker dependent models or to model the alternative hypothesis
strongly limits the flexibility of the system in terms of lexicon. The architec-
ture proposed in this work takes advantages of the GMM/UBM framework
to model the alternative hypothesis and adapt the speaker model and thus,
gives more flexibility to the user to choose a specific pass-phrase. Another re-
lated work is proposed in [36] where supra-segmental temporal information is
used to reinforce the robustness of a Dynamic Time Warping algorithm. By
combining the different information sources in a later stage, using a neural
network, the system does not take advantage of the temporal synchronization
of the different signals as is the case in the work presented here.

Many techniques exist in the literature to compensate for the variabil-
ities due to channel or environment mismatch in the GMM/UBM frame-
work. Some of these techniques like RASTA and Short Term Gaussianiza-
tion work at the parametrization level [37, 38] when others are dedicated
to score normalization [39, 40]. These techniques have not been applied in
this article which focus on the advantages of our approach compared to the
GMM/UBM. Nevertheless, most of the techniques that have been developed
for the GMM/UBM may be applied to our approach and are expected to
provide similar improvement.

The overall system architecture is described in Section 2. The impact
of the lexical information in constraining the Viterbi decoding is described
in Section 3. Section 4 describes the experimental protocol and results. It
includes a description of the MyIdea database [41]. Section 5 summarises the
benefits of this approach and presents future work directions.
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2. A three-level acoustic architecture

The architecture presented in Figure 1 is an extension of the standard
GMM/UBM paradigm. Throughout the text we refer to this new structure
as the Embedded LIA SpkDet3 (EBD) [42]. This architecture is configured
to deal with a user-customised speaker recognition task. Each client has a
customised pass-phrase, which is unique to that person. Hence some form of
text dependency can be harnessed within the speaker recognition system.

Acoustic
Space Model

Text-independent
Speaker Models

Text-dependent
Speaker Models

Speaker 
GMM

State 1 State 2 State 3

UBM

State 4 State 5 State 6 State 7

Figure 1: General view of the EBD architecture.

2.1. Training phase

The two first layers of the EBD consist of a classical GMM/UBM speaker
recognition system. The upper layer, a standard universal background model
(UBM), aims to model the acoustic speech space. This GMM is built off-line
using a suitably large amount of data and the classical EM/ML algorithm
[2]. A text-independent speaker-specific GMM (2nd layer) is then adapted
from the UBM for each client speaker with the client data using the EM
algorithm and the maximum a posteriori (MAP) criterion [43].

Finally, a semi-continuous hidden Markov model (SCHMM) [44] is used
with the goal of harnessing the TSI of the individual pass-phrase. This third
layer introduces text-dependency into the client models. In order to initialize
the S states of the SCHMM, the pass-phrase is cut into S segments {segi}
of equal length. The training algorithm is then a two step process. During
the first step, a GMM is trained for each segment segi by adapting only
the weight parameters of the text-independent client model. For the cth

3Implementation of the EBD is based on the open-source toolkit LIA SpkDet, part of
ALIZE, http://alize.univ-avignon.fr
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distribution of the GMM, the adapted weight parameter ŵc is given by:

ŵc =
[
αc

nc

T
+ (1− αc)wc

]
γ (1)

where wc is the weight of the cth distribution of the text-independent client
model, nc is the occupancy of distribution c, T is the total number of speech
frames allocated to the cth distribution and γ assures that the weight param-
eters of a GMM state sum to one. Finally, αc is given by

αc =
nc

nc + r
(2)

with r a regulation factor empirically determined. The second step consists
of running a Viterbi decoding with the current SCHMM on the enrolment
data to produce new segments {segi}. The two steps are repeated until
convergence of the segmentation. During this process, the number of states
is systematically reduced from a given maximum by removing those states
that receive fewer than a pre-set minimum number of frames. The optimal
initial number of states and the minimum number of frames per state are
experimentally determined. Such a combined system was originally proposed
in [17] for speaker recognition and extended to word recognition in [45].

2.2. Testing phase

During a test, two scores are computed. The first is the conventional
GMM/UBM log-likelihood ratio obtained from the text-independent speaker
model; the second is from the SCHMM. For the case of the original GMM/UBM,
the log-likelihood of a test sequence O = {ot}, t ∈ [1, T ] and a N -distribution
GMM is given by:

L(GMM) =
1

T

T∑
t=1

log

(
N∑
c=1

γcN (ot|µc,Σc)

)
(3)

where γc, µc and Σc are respectively the weight, mean vector and covariance
matrix of the cth distribution of the GMM and N (µ,Σ) indicates a Gaussian
distribution with mean µ and covariance Σ. Similarly, for the case of the
SCHMM, the log-likelihood of the test sequence O on the SCHMM is:

L(SCHMM) =
1

T

T∑
t=1

log

(
N∑
c=1

γctN (ot|µc,Σc)

)
(4)

6



where γct is the weight parameter of the cth distribution of the SCHMM
state allocated by the Viterbi decoding at time t. Note that the only dif-
ference between the two log-likelihood expressions is the parameter γ that
weights the contribution of each distribution. Indeed, all distributions from
the text-independent speaker model are shared among model states but their
weights are unique for each state. Log-likelihoods computed on the GMM
and SCHMM (Eq. 3 and 4) are normalized by using the UBM to form log-
likelihood ratios that are linearly combined. The final score for the decision
stage is given by:

S =

[
λ× L(SCHMM) + (1− λ)× L(GMM)

]
− L(UBM) (5)

where L(UBM) is the log-likelihood of the test sequence O on the UBM and
λ is a empirically chosen in [0; 1].

In addition to the TSI introduced by the semi-continuous HMM, further
information can be added to the system in the form of overarching temporal
constraints as illustrated in the lower part of Figure 2 (three segments in this
case). In Section 3 we describe such additional constraints.

Acoustic
Space Model

Text-independent
Speaker Models

Text-dependent
Speaker Models

Speaker 
GMM

State 1 State 2 State 3

UBM

State 4 State 5 State 6 State 7

SEGMENT 1 SEGMENT 3SEGMENT 2

Figure 2: General view of the EBD architecture integrating additional TSI
in the form of three overarching segments.

2.3. Complexity

With the given mobile application in mind it is important to consider the
complexity of the proposed approach and in particular that of the testing
phase; the training is less important since that can be performed offline. We
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estimate the complexity of the testing phase and make comparison with both
a standard GMM/UBM and an equivalent HMM.

The complexity is very much dominated by two tasks, namely the like-
lihood computation and the Viterbi decoding. The likelihood computation
is likely to be dominated by the exponential function, for which an estima-
tion is O(n

1
2M(n)) where n is the number of digits of precision and M(n)

is the complexity of the multiplication algorithm. Other key parameters are
the number of acoustic features, T , the dimension D of those features and
the number of Gaussian components, C. Thus a reasonable estimate of the
computational load would be O(n

1
2M(n)CDT ). Complexity of the Viterbi

algorithm can be expressed as O(TS2) where S is the number of states in
the model.

The computational effort associated with an HMM is dominated largely
by two components, namely the likelihood computation and the Viterbi de-
coding. In our EBD architecture, the likelihood component is reduced to that
of the GMM/UBM structure since the states of the SCHMM share all com-
ponents with the text-independent speaker model of the second layer. Thus
additional complexity of our approach compared to that of the GMM/UBM
is restricted to the Viterbi decoding only.

In assessing the system complexity, we have examined the likelihood/Viterbi
ratio with two approaches, namely complexity estimates and profiling of the
program. The first is a theoretical estimate of complexity that leads to
likelihood/Viterbi ratio of 32 × n

1
2M(n). The second relates to the actual

computation load and leads to an estimate of a likelihood/Viterbi ratio of
16:1. From the combination of these two observations it could reasonably be
concluded that likelihood computation itself dominates overall and thus the
additional cost of our approach over the standard GMM/UBM is negligible.

3. The constrained Viterbi

We reinforce the TSI modelling of the client-specific utterance by using
additional temporal information. The bottom layer SCHMM of the EBD
architecture is based on a conventional left-to-right topology for which two
types of transitions are defined (Figure 3): transitions E that are fixed and
set to equiprobability and transitions S, the values of which vary during the
decoding. Each transition S, with a default probability of 0, is driven by
a discrete event or synchronization point. During the decoding, the value
of a transition S turns to 1 when reaching the associated synchronization
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point and back to 0 once this point is past. This temporal constraint forbids
the Viterbi path to go across certain areas of the lattice (areas illustrated on
Figures 4(a) and 4(b) by filled states). In this context, the bottom layer of the
EBD architecture could be compared to a succession of sub-SCHMMs and
the Viterbi path is then computed from one synchronization point to the next
with the corresponding sub-SCHMM. The synchronization constraint which
is applied in the training and test phase could be linked to an external source,
leading to the notion of synchronization between two sources of information.

State 1 State 2 State 3 State 6 State 7

Segment 1 Segment 2 Segment 3

Text-dependent
Speaker ModelState 4 State 5

S S
EE E E

Figure 3: Use of a lexical synchronization in the bottom layer of the EBD
architecture constrains the Viterbi decoding and increases the discriminative
power of the system. In this example, the synchronization signal consists
of 2 discrete points separating 3 overarching segments. Transitions E are
fixed and set to equiprobability while transitions S value varies during the
decoding.

The addition of complementary information coming from the synchro-
nization points could improve the training of SCHMM models. Such an im-
provement could potentially lead to increased client scores during the testing
phase. The second effect, mainly expected when constraining the Viterbi
decoding, consists in increasing the discrimination power of the EBD.

The effect of the lexical constraint is illustrated in Figures 4(a) and 4(b).
The Viterbi path computed under this constraint is not allowed to pass
through the blackened states area. Free zones correspond to the intersec-
tion of the segmentations computed on both the training and the testing
utterances.

Figure 4(a) shows paths obtained on a same model for two different pass-
phrase occurrences: the occurrence used to train this SCHMM model and one
occurrence of the same pass-phrase, pronounced by the client. The temporal
structure of a client test utterance is assumed to be close to the temporal
structure of the training utterance. With this hypothesis the path computed
for the client test utterance goes through the allowed zones only. This is
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(a) Viterbi alignment of client training
and test utterances with a lexical con-
straint applied during the decoding.
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Synchronization signal extracted from the test sequence

HMM States Index

Feature
Index

With constraint

Without constraint

Imposter test:

(b) Alignment of imposter utterance with
and without lexical constraint.

Figure 4: Schematic drawing of the alignment of acoustic feature sequences
for different configurations. Time dimension is represented on the horizontal
axis while progress across the HMM model is given by the vertical axis.

illustrated in Figure 4(a). In this case, the synchronization constraint has no
effect on the Viterbi decoding and the resulting score remains high.

Figure 4(b) shows two expected alignment paths for a given imposter
test utterance, one with the synchronization constraint (the more central
one) and one without the synchronization constraint. The temporal struc-
ture of an imposter utterance is assumed to be different from that of the true
client pass-phrase structure. The path resulting from the alignment of this
utterance on the client pass-phrase SCHMM without applying the lexical
constraint is assumed to go through the forbidden area. Thus, the synchro-
nization constraint forces the algorithm to find a path through the allowed
zones. This path is not optimal and the imposter score is therefore lower
than the one computed without any constraint.

4. Experiments

This section presents the experiments designed to evaluate the benefits
of both the SCHMM extension and the constrained decoding. It includes a
description of the evaluation corpus and the experimental protocol.
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4.1. The MyIdea database

The multi-modal MyIdea database [41] includes recordings of 30 male
speakers, each pronouncing 25 sentences in 3 sessions under controlled acous-
tic conditions. Twelve of the sentences, common to all speakers and sessions,
are used for our experiments4. Out of these twelve sentences, ten are approx-
imately three seconds long and will be referred to as 3s sentences, two are 6s
long. The ten 3s sentences are used as user-customized pass-phrases.

4.2. Experimental protocol

The 30 males of the MyIdea database are separated into two groups of 15
speakers each. The whole recorded material of each group is successively used
to train the UBM using the classical EM algorithm [46] while the 15 speakers
of the remaining group are used for enrolment and tests. Note that when a
group of speakers is dedicated to UBM training, data from these speaker is
not used for any other purpose. Due to the lack of data, a jackknifing process
is used within the enrolment and test group by successively considering each
speaker as a client while each of the 14 other speakers of the group is regarded
as an imposters [31].

Each client GMM (layer two of the EBD architecture) is derived using
two 6s sentences and one occurrence of the selected 3s sentence (around 15
seconds of speech in total). The given 3s sentence is also used to train the
client pass-phrase SCHMM. Over the two groups of 15 speakers, 900 SCHMM
models are trained (Table 1).

A speaker model is trained using one 3s sentence from one of the 3 ses-
sions. The same 3s sentence from the two other sessions of the same speaker
is used for target trials, giving 2 target trials per speaker model. This pro-
cess, applied to the 900 target models obtained after jackknifing, leads to a
total of 1,800 target trials over the two groups of speakers.

For each speaker model, imposter tests are computed against the 3s sen-
tences from the others 14 speakers of the same group. Three configurations
of imposter tests are considered.

UNKNOWN configuration the linguistic content of the imposter test oc-
currences is different from that of the material used to train the models.
Each client model is compared to three randomly selected 3s sentences

4The others 13 sentences differ across speakers and sessions and can thus not be used
for text-dependent experiments.
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Table 1: Number of GMM speaker models trained per sentence, session,
speaker and group for the MyIdea database. Note that the number of
SCHMM models (layer three of the EBD architecture) is equal to the number
of GMM speaker model given in this table.

Number of models Detail
per 3s sentence 1 1
per speaker per session 10 1 ×10 sentences
per speaker 30 (1× 10) ×3 sessions
per group 450 (1× 10× 3) ×15 speakers
Total 900 (1× 10× 3× 15) ×2 groups

(one per session) out of the 9 remaining sentences of each of the 14
imposter speakers. This reflects the condition when an imposter does
not know the client pass-phrase.

KNOWN configuration the linguistic content of the imposter test occur-
rences is the same as that of the material used to train the models.
Each client model is compared to the three 3s sentences (one per ses-
sion) of each of the 14 imposter speakers. This reflects the condition
when an imposter knows the client pass-phrase.

ALL configuration the imposter tests are all tests from both the KNOWN
and the UNKNOWN configurations above.

For both KNOWN and UNKNOWN configurations, the number of imposter
tests is constant across the clients. Moreover, the global number of imposter
tests is 37,800 in the two first configurations and 75,600 in the ALL config-
uration. Further experimental details are presented in [31].

4.3. System configuration

Each file of the database is parametrized into a sequence of 32-dimensional
vectors made up of 15 Linear-Frequency Cepstral Coefficients (LFCC), the
log-energy and the corresponding ∆ coefficients. An energy labelling is ap-
plied to separate speech frames from the non-speech frames and cepstral mean
and variance normalization (CMVN) is applied to the remaining frames [47].
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The number of components in GMMs is fixed to 256 across the EBD archi-
tecture. The initial number of states in SCHMM to model the 3s sentences
is set to 20 regardless of the sentence and the regulation factor r of the MAP
adaptation is set to 14. At the end of the iterative training, over all 3s sen-
tences of the 30 speakers, the average number of states per sentence is just
over 19. For comparison, modelling the same ten 3s sentences of the MyIdea
database by using non-contextual phone models requires an average of 24.2
states per sentence.

4.4. Results

Experiments aim to assess the contributions of the three components,
namely the GMM/UBM, the SCHMM and the constrained Viterbi. The
GMM/UBM is regarded as the baseline. The experimental results are pre-
sented in Table 2.

Table 2: EER (%) of a standard GMM/UBM configuration compared to the
EBD system with 20 states per SCHMM, with the free or constrained Viterbi
alignment.

Configuration
GMM/UBM baseline

EBD system
% EER

% EER Free Constrained
UNKNOWN 2.44 1.11 0.84

KNOWN 4.00 4.06 4.11
ALL 3.22 2.83 2.89

The main advantage expected from the EBD system compared to a classi-
cal GMM/UBM is the incorporation of pass-phrase-based information as well
as the pass-phrase itself and the relative TSI. This hypothesis is supported
by results in Table 2 which shows error rates fall from 2.44% to 1.11% using
the SCHMM when imposters do not know the client pass-phrases. When the
imposters know the client pass-phrases (KNOWN) the performances of the
EBD and GMM/UBM systems are equivalent.

Additionally, Figures 5(a) and 5(b) show that this hypothesis stands for
different miss probability and false alarm ratios as the DET curves of the
EBD system are well below those of the GMM/UBM when imposters do not
know the client pass-phrases but comparable when imposters know the client
pass-phrase.
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Figure 5: Detection Error Trade-off curves of the GMM-UBM baseline and
EBD system with 20 states per SCHMM, with free or constrained Viterbi
alignment. Cases where the imposters do not know the client pass-phrase
and pronounce a different utterance (UNKNOWN - condition) and where
the imposters know the client pass-phrases (KNOWN - condition)

In order to evaluate the effect of the lexical constraint, a new experiment
is performed using the constrained Viterbi decoding. Here, knowledge of
the correct client-specific pass-phrase is used in constraining the alignment.
The lexical constraint consists of five synchronization points corresponding to
word boundaries extracted from each enrolment and test utterance using the
LIA SPEERAL Toolkit [48]. The fixed number of synchronization points and
their selection process has been empirically determined and various strate-
gies could be applied in the future to optimize this process. The results of
this experiment are presented in the fourth column of Table 2. As expected,
the performance of the EBD in the UNKNOWN condition improves when
constraining the Viterbi alignment with the lexical synchronization. Indeed,
the EER drops by 65% relatively to the baseline GMM/UBM (from 2.44%
to 0.84%). Here, imposters do not know the client pass-phrase and pro-
nounce a different utterance whose temporal structure is penalised by the
synchronization constraint.

Figure 6-A shows that the client score distributions with and without
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Figure 6: Evolution of the client and imposter text-dependent score distri-
butions when using additional information coming from a lexical synchro-
nization (constrained Viterbi decoding) or no synchronization information
(classical Viterbi decoding). Case where imposters do not know the client
pass-phrase and pronounce a different utterance (UNKNOWN).

constraining the Viterbi decoding are essentially unchanged. This might be
explained by any potential information coming from a lexical synchroniza-
tion being highly correlated with the acoustic information already exploited
by the SCHMM extension. At the same time, these results show that the
constrained Viterbi is effective in that it does not degrade client scores.

However, benefits are seen in the case of imposters. Figure 6-B confirms
that imposter scores decrease consistently, in terms of the distributions. Fur-
thermore, Figure 7 shows that the Viterbi constraint affects a very large
number (95%) of imposter tests. This shows that the synchronization con-
straint leads to sub-optimal alignment when the temporal structure of the
test utterance is different from the training pass-phrase structure.

5. Conclusions and future work

The approach proposed in this paper addresses the issue of speaker recog-
nition in the challenging context of having only a limited quantity of data
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Figure 7: Distribution of imposter score differences, between Viterbi decoding
with and without lexical constraint, when imposters do not know the client
pass-phrase and pronounce a different utterance (UNKNOWN).

during both training and test phases. A new temporal structure combining
the GMM/UBM text-independent paradigm and the HMM/Viterbi abilities
has been investigated, aimed at harnessing the temporal structure informa-
tion of user-customised pass-phrases. This new three level architecture, re-
ferred to as the EBD, is structured so that constraints can be applied to state
transitions.

Experimental results are presented for the baseline GMM/UBM and for
the EBD, with and without Viterbi constraints. The performances for the
EBD and the EBD constrained show relative improvement of 65%, with EERs
from the baseline of 2.44% to 1.11% to 0.84% when imposters utter a pass-
phase other than the correct and client-specific phrase. These results show
the benefits of harnessing the temporal structure information in combination
with the classical GMM/UBM configuration.

Even if the EBD demonstrates its ability to take advantage of the tem-
poral structure of the speaker pass-phrase, the results remains very similar
to those of the GMM/UBM when imposters know the client pass-phrase (see
row marked ’KNOWN’ in Table 2). In [34], Becerra Yoma and Facco Pego-
raro conclude that state duration restriction seems not to be relevant in the
context of clean speech when imposters know the client pass-phrase but that
it can lead to significant improvement in noisy conditions. This conclusion
may explain our observation and further experiments have to be conducted
in the future on noisy signal to evaluate the impact of a temporal structure
for the case where imposters know the client pass-phrase. A deeper analysis
of the client-specific temporal information may also help to further optimize

16



the EBD for the KNOWN condition, for example by taking into account
intrinsically the state duration information as done in [34].

Another source of potential improvement could come from the substitu-
tion of the lexical synchronization by a less correlated source of information.
Future work will focus on multi-modality by replacing the lexical synchro-
nization with temporal information extracted from the video part of the
audio-visual stream to increase the performance of the current approach.
Additionally, the use of a second modality into the verification process could
be very useful to thwart synthetic playback attack by monitoring the tem-
poral correlation of the two streams of information.

Moreover, given that the first results show the ability of the EBD to take
advantage of the linguistic content of speaker-specific pass-phrases, more tests
are to be performed to evaluate the performance of the EBD system with
more utterance-variability, for example considering the pass-phrase duration.
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[48] P. Nocera, G. Linares, D. Massonié, L. Lefort, Phoneme lattice based A*
search algorithm for speech recognition, in: Text, Speech and Dialogue,
Springer, 2006, pp. 301–308.

Dr Anthony Larcher:

Anthony is scientist at Institute for Infocomm Research (I2R). He grad-
uated from the Grenoble Institute of Technology, receiving Engineering and
M.S. degrees in electronics, electrical engineering, automation and signal pro-
cessing in 2005. He received the Ph.D. degree in Computer Science from
University of Avignon in France in 2009. His current research interests are
in the areas of speaker recognition, speech processing and language identifi-
cation.

Pr Jean-Francois Bonastre:

Jean-Francois Bonastre obtained his Ph.D. degree in 1994 in automatic
speaker identification using phonetic-based knowledge. He is full professor

22



at the University of Avignon and a member of the Institut Universitaire de
France. He has been vice president of University of Avignon since December
2008. As a member of the Natural Language Processing Group, he devel-
oped his research in speaker characterization and recognition using phonetic,
statistic and prosodic information, while teaching and lecturing on various
subjects covering computer science, speech processing, audio signal classifi-
cation and indexing, and biometry. In 2002 he took up a one-year sabbatical
stay in Panasonic Speech Technology Laboratory, Santa Barbara, CA. From
2001 to 2004, he was the chairman of AFCP, the French-Speaking Speech
Communication Association (currently a regional branch of ISCA). He is
President of International Speech Communication Association (ISCA) since
September 2011, after he has been ISCA vice president since 2007. He was
also the chair of the ISCA Speech and Language Characterization SIG for
two years. Jean-Francois Bonastre is IEEE Senior Member.

Dr John Mason:

John is currently an Associate Professor at Swansea University. He re-
ceived MSc and Ph.D. degrees from the University of Surrey in 1971 and 1974
respectively, joining University of Wales Swansea as a lecturer in May 1973.
In 1979 he took up a one-year appointment as a senior research engineer at
Hewlett Packard Ltd in South Queensferry and in 1994 he was invited to
work on an international project at the Australian National University, Can-
berra, as a visiting research fellow. From the time of his PhD studies through
to today his research interest have focused on digital signal processing. Of
particular note is the work done on finding solutions to complex Chebyshev
approximations, a long-standing problem. Over the last 20 years his research
has revolved around speaker recognition. In this area he has served on the
technical committees of many international research meetings.

23


