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Abstract

The time discretization of gradient flows in metric spaces uses variants of the celebrated implicit Euler-type scheme
of Jordan, Kinderlehrer and Otto [9]. We propose in this Note a different approach which allows to construct two
second-order in time numerical schemes. In a metric space framework, we see that the schemes are well defined and
prove convergence for one of them under some regularity assumptions. For the particular case of a Fokker–Planck
gradient flow in the Wasserstein space, we obtain (theoretically and numerically) the second-order convergence.
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Résumé

Schémas d’ordre deux en temps pour des flots de gradient dans des espaces métriques géodésiques
et de Wasserstein. La discrétisation temporelle des flots de gradient dans des espaces métriques utilise des
variantes du schéma d’Euler implicite issu du travail séminal de Jordan, Kinderlehrer et Otto [9]. Nous proposons
dans cette Note une approche différente permettant de construire deux schémas numériques d’ordre deux en temps.
Dans un cadre d’espace métrique, nous montrons que les schémas sont bien définis et prouvons la convergence
de l’un d’entre eux sous des hypothèses de régularité. Pour le cas particulier d’un flot de gradient Fokker–Planck
dans l’espace de Wasserstein, nous obtenons (théoriquement et numériquement) la convergence à l’ordre deux.
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1. Background on gradient flows and relationship with the implicit Euler scheme

Let f : Rd → R be a smooth convex function and x̄ be a point in Rd; a gradient flow starting from
x̄ is a curve (xt)t≥0 solution to the Cauchy problem x′t = −∇f(xt) for t > 0, x0 = x̄. A topic that has
received considerable attention lately is the extension of this definition to a Polish metric space (X , d)
and a functional F : (X , d) → R ∪ {+∞} (see [3,14,2,13] for instance). An important advance was in
particular the work of Jordan, Kinderlehrer and Otto [9], who introduced the following numerical scheme:
given a time step τ > 0 and x̄ in X , define recursively the sequence (xτn)n∈N such that xτ0 = x̄ and, for
any natural integer n, xτn+1 is selected as a minimizer of the functional

x 7→ P JKOF (x;xτn, τ) := 1
2τ d

2(xτn, x) + F (x). (1)

When the metric space is a Hilbert space and the functional F is smooth enough, the above scheme
amounts to the implicit Euler scheme, i.e., xτn+1−x

τ
n

τ = −∇F (xτn+1). As a consequence, the Jordan–
Kinderlehrer–Otto method (named JKO from now on) can be seen as a variational generalization of the
implicit Euler scheme in a metric space. Coupled with a suitable interpolation, the sequence constructed
by this scheme defines, as the time step τ tends to zero, a (metric) gradient flow, the convergence being of
order one in τ (see [3, Theorem 4.0.4] in a particular setting for a sharp estimate). As a natural numerical
counterpart of the theoretical procedure, the JKO scheme was consequently thus used to compute the
gradient flow in many applications (see [10,5,4] for instance).
However, while the JKO scheme has theoretical advantages, its first-order convergence may be judged

insufficient in practice. When the gradient flow is regular enough, one may seek to replace it with a
second-order alternative, or even combine these two schemes in order to construct a time step selection
mechanism (see [12, Chapter 17, Section 17.2] for instance). The purpose of this Note is to propose two
second-order schemes, which are both easy to implement (one of them directly using a step of the JKO
scheme), and provide several preliminary theoretical and numerical results pertaining to them.

2. Second-order numerical schemes on metric spaces

Let (X , d) be a Polish metric space. We recall (see [2, page 37]) that a curve γ : [0, 1]→ X is called a
(constant speed) geodesic provided that d(γ(t), γ(s)) = |t− s| · d(γ(0), γ(1)), and that the space (X , d) is
called geodesic if, for any couple of points (x, y) ∈ X 2, there exists a geodesic γ connecting them, that is,
such that γ(0) = x and γ(1) = y. We will denote by Geodx,y the set of all geodesics connecting x and y.
Moreover, the set {γ( 1

2 ) | γ ∈ Geodx,y} will be called the set of midpoints of the couple (x, y) and will be
denoted x+y

2 (see [7, Chapter 2] for a definition in general metric spaces and [1] in the particular case of
Wasserstein spaces).

2.1. Definition of the schemes

Given a time step τ , we define the Variational Implicit Midpoint (VIM) scheme, starting from x̄ in X ,
for the (gradient flow of the) functional F by setting xτ0 = x̄ and, for any natural integer n, recursively
choosing

xτn+1 ∈ argmin
y∈X

PV IMF (y;xτn, τ), (2)

where
∀(x, y) ∈ X 2, PV IMF (y;x, τ) = inf

{
d2(x, y)

2τ + 2F (u)
∣∣∣∣u ∈ x+ y

2

}
. (3)
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In the particular case of a Hilbert space and a smooth functional F , the point xτn+1 is effectively a
solution of the equation x−xτn

τ +∇F (x
τ
n+x
2 ) = 0, which characterizes the implicit midpoint rule method,

a one-stage implicit Runge–Kutta method of second order (see [8, Chapter II, Section 7]).
We now prove that the VIM scheme is well-defined by establishing the existence of a solution to

problem (2).
Theorem 2.1 Let (X , d) be a Polish metric space such that,

for any x in X , the set
⋃
y∈X

x+ y

2 is closed. (4)

Assume that the functional F is lower semicontinuous, bounded from below, and such that, for all r > 0,
and c ∈ R, the set {y ∈ X |F (y) ≤ c, d(x̃, y) ≤ r} is compact for some x̃ in X . Then, there exists x in
X such that PV IMF (x; x̃, τ) = infy∈X PV IMF (y; x̃, τ).
Proof Let (xn, un)n∈N be a minimizing sequence for infy∈X PV IMF (y; x̃, τ). In particular, the sequence( 1

2 d
2(x̃, xn)

)
n∈N is bounded and so is (d(x̃, un))n∈N. On the other hand, the sequence (F (un))n∈N is also

bounded, so that, by hypothesis, the sequence (un)n∈N lives in a compact set and thus converges, up to
a subsequence, to some u. In addition, since ∪y∈X x̃+y

2 is closed, there exists x in X such that u ∈ x̃+x
2 .

Recalling that un ∈ x̃+xn
2 , we obtain that d(x̃, x) = 2 d(x̃, u) = 2 limn→∞ d(x̃, un) = limn→∞ d(x̃, xn).

The lower semicontinuity property of F then allows to conclude. �

Remark 1 The assumptions on the functional F in the above theorem are classical (see [2, Section 4.2.2]
for instance), but can be weakened. In particular, we may not suppose F to be bounded from below.

One may observe that, for any natural integer n and any point x in X and any midpoint u in xτn+x
2 , it

holds
1
2τ d

2(xτn, x) + 2F (u) = 2
τ
d2(xτn, u) + 2F (u) = 2P JKOF

(
u;xτn,

τ

2

)
. (5)

As a consequence, another interpretation of the VIM scheme is to view the midpoint u as computed by
a JKO scheme with a halved time step τ

2 and to extrapolate it as follows.
Recalling that a geodesic space (X , d) is called non-branching (see [2, Definition 3.15] or [3, Theorem

11.2.10]) if, for any t ∈]0, 1[, a constant speed geodesic γ is uniquely determined by its initial point γ(0)
and by the point γ(t). In particular, if u ∈ x+y1

2 ∩ x+y2
2 then y1 = y2. By definition, the 2-extrapolate of

the couple (x, u) (denoted 2u − x hereafter) is the unique point y such that u ∈ x+y
2 . On the contrary,

when there exists no such point, the 2-extrapolate is defined as the point y with largest distance to x such
that u is on a geodesic from x to y. When the space is non-branching and complete, using the properties
of the distance between two points on a geodesic and the fact that any Cauchy sequence converges, we
obtain that, for fixed points x and u, the set {d(x, y) | ∃γ ∈ Geodx,y, u ∈ γ} is closed. The 2-extrapolate
is thus well-defined and unique. It moreover satisfies d(x, u) ≤ d(x, 2u− x) ≤ 2 d(x, u).
These considerations lead to the definition of the Extrapolated Variational Implicit Euler (EVIE)

scheme, in which xτn+1 is now the 2-extrapolate 2u − xτn of the point u computed by the JKO scheme
with time step τ

2 . Implementation-wise, this last scheme has the obvious advantage of using the JKO
scheme. From a theoretical point of view, the existence and uniqueness of its solution in a non-branching
space is assured under the same hypotheses that those required for the JKO scheme. While adaptations
would certainly allow to define it in branching spaces, uniqueness may be lost, even when the JKO scheme
possesses a unique solution at each step.

2.2. Convergence of the VIM scheme

In this section, we prove the convergence of the VIM scheme in a metric space setting by showing that
a natural interpolation of its discrete solution converges to a gradient flow written in the integral form
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of an Energy Dissipation Inequality (EDI) (see [2, Section 4.2]). More precisely, we recall that, given a
functional F : (X , d)→ R ∪ {+∞} with domain D(F ) = {x ∈ X , F (x) < +∞}, and a point x̄ ∈ D(F ),
the curve (xt)t≥0 in X is a gradient flow in the EDI sense starting at x̄ provided that it is a locally
absolutely continuous curve, x0 = x̄ and

∀s ≥ 0, F (xs) + 1
2

∫ s

0
|x′r| dr + 1

2

∫ s

0
|∇F |2 (xr) dr ≤ F (x̄), (6)

a.e. t > 0, ∀s ≥ t, F (xs) + 1
2

∫ s

t

|x′r| dr + 1
2

∫ s

t

|∇F |2 (xr) dr ≤ F (xt), (7)

where, for any point x in D(F ), the slope of F at x is

|∇F | (x) = lim sup
z→x

(F (x)− F (z))+

d(x, z) = max
{

lim sup
z→x

F (x)− F (z)
d(x, z) , 0

}
,

and the metric derivative of x at r is

|x′r| = lim
h→0

d(xr+h, xr)
|h|

. (8)

The time step τ being fixed with 0 < τ < τ̄ , we introduce a variational interpolation à la De Giorgi of
the discrete solution of the VIM scheme by defining the curve (xτt )t≥0 as follows:

— xτ0 = x̄,
— for n ∈ N, xτ(n+1)τ ∈ argminy∈XPV IMF (y;xτnτ , τ),
— for n ∈ N and t ∈]nτ, (n+ 1)τ [, xτt ∈ argminy∈XPV IMF (y;xτnτ , t− nτ).

For such a map, we define the discrete speed Dspτ : [0,+∞)→ [0,+∞) by

Dspτt =
d(xτnτ , xτ(n+1)τ )

τ
for t in (nτ, (n+ 1)τ),

and the discrete slope Dslτ : [0,+∞)→ [0,+∞) by

Dslτt = d(xτnτ , xτt )
t− nτ

for t in (nτ, (n+ 1)τ).

In order to avoid unnecessary technicalities in the forthcoming analysis, we will suppose from now on
that midpoints are unique, that is

∀(x, y) ∈ X 2, the set x+ y

2 is a singleton. (9)

We finally introduce a notion of slope of F at the midpoint of (x, y) by setting

∣∣∇MF ∣∣ (x, y) = lim sup
z→y

(
F
(
x+y

2
)
− F

(
x+z

2
))+

d
(
x+y

2 , x+z
2
) .

Theorem 2.2 Let T > 0 be fixed and (X , d) be a Polish metric space satisfying hypotheses (4) and (9).
We moreover assume that
(i) F is lower semicontinuous, bounded from below, and such that:

∀r > 0, ∀c ∈ R, ∀x ∈ X the set {y ∈ X |F (y) ≤ c, d(x, y) ≤ r} is compact, (10)

(ii) F has the following continuity property

if xn → x, and sup{|∇F |(xn), E(xn)} <∞ then F (xn)→ F (x); (11)
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(iii)
∣∣∇MF ∣∣ : D(F )×D(F )→ [0,∞) has the following semicontinuity property: for any x in D(F ) and
any two sequences (xn)n∈N and (yn)n∈N in D(F ) converging to x, it holds∣∣∇MF ∣∣ (x, x) ≤ lim inf

n→∞

∣∣∇MF ∣∣ (xn, yn),

(iv) if any two of the elements x, y, x+y
2 belong to D(F ), then the third also does and:∣∣∣∣∣F (x) + F (y)− 2F (x+y

2 )
d2(x, y)

∣∣∣∣∣ ≤ H, (12)

where H is a constant independent of x and y.
Then, for some τ̄ > 0, the set of curves {(xτt )t∈[0,T ]; 0 ≤ τ ≤ τ̄} is relatively compact (with respect to the
local uniform convergence) and any limit curve is a gradient flow in the EDI formulation (6)–(7).

Remark 2 Assumptions i and ii are classical and used in [2, Assumption 4.13] while iii is a generalization
of the second assumption in [2, Assumption 4.13]. Item iv is however a regularity property specific to our
setting; it could be weakened to F (x) + F (y)− 2F (x+y

2 ) = o(d(x, y)).
Proof We will follow closely and adapt where necessary the method of proof given in [2, Subsection

4.2.2]. The proof is divided into several steps, starting with the derivation of some key properties of the
variational interpolation (xτt )t≥0 introduced above.
(I) First, we shall show that, the positive real number τ and the natural integer n being fixed, the

function (0, 1] 3 θ 7→ 1
2θτ d

2(xτnτ , xτ(n+θ)τ ) + 2F
(
xτnτ+xτ(n+θ)τ

2

)
is locally Lipschitz and that its

derivative is given by
d

dθ

(
1

2θτ d
2(xτnτ , xτ(n+θ)τ ) + 2F

(
xτnτ + xτ(n+θ)τ

2

))
= − 1

2θ2τ
d2(xτnτ , xτ(n+θ)τ ). (13)

Indeed, let 0 < θ0 < θ < θ1 ≤ 1. By the definition of the variational interpolation, one has
1

2θ0τ
d2(xτnτ , xτ(n+θ0)τ ) + 2F

(
xτnτ + xτ(n+θ0)τ

2

)
≤ 1

2θ0τ
d2(xτnτ , xτ(n+θ1)τ ) + 2F

(
xτnτ + xτ(n+θ1)τ

2

)
,

so that
1

2θ0τ
d2(xτnτ , xτ(n+θ0)τ ) + 2F

(
xτnτ + xτ(n+θ0)τ

2

)
− 1

2θ0τ
d2(xτnτ , xτ(n+θ1)τ )− 2F

(
xτnτ + xτ(n+θ1)τ

2

)
≤ (θ1 − θ0)τ

2θ0θ1τ2 d2(xτnτ , xτ(n+θ1)τ ).

Arguing symmetrically, one also has

1
2θ0τ

d2(xτnτ , xτ(n+θ0)τ ) + 2F
(
xτnτ + xτ(n+θ0)τ

2

)
− 1

2θ0τ
d2(xτnτ , xτ(n+θ1)τ )− 2F

(
xτnτ + xτ(n+θ1)τ

2

)
≥ (θ1 − θ0)τ

2θ0θ1τ2 d2(xτnτ , xτ(n+θ0)τ ),

and the function is thus locally Lipschitz. Moreover, dividing by θ1 − θ0 the last two inequalities
and passing to the limits θ0 ↑ θ and θ1 ↓ θ, we obtain the proposed expression for the derivative.

(II) Next, we establish that, with the same notations as above, θ 7→ d(xτnτ , xτ(n+θ)τ ) is non decreasing,

θ 7→ F
(
xτnτ+xτ(n+θ)τ

2

)
is non increasing and that it holds

∀θ ∈ (0, 1],
∣∣∇MF ∣∣ (xτnτ , xτ(n+θ)τ ) ≤

d(xτnτ , xτ(n+θ)τ )
θτ

. (14)
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Let 0 < θ0 < θ1 ≤ 1. By the respective minimality properties of xτ(n+θ0)τ and xτ(n+θ1)τ , we have

1
2θ0τ

d2(xτnτ , xτ(n+θ0)τ ) + 2F
(
xτnτ + xτ(n+θ0)τ

2

)
≤ 1

2θ0τ
d2(xτnτ , xτ(n+θ1)τ ) + 2F

(
xτnτ + xτ(n+θ1)τ

2

)
,

1
2θ1τ

d2(xτnτ , xτ(n+θ1)τ ) + 2F
(
xτnτ + xτ(n+θ1)τ

2

)
≤ 1

2θ1τ
d2(xτnτ , xτ(n+θ0)τ ) + 2F

(
xτnτ + xτ(n+θ0)τ

2

)
.

Adding the last two inequalities, we get(
1
θ0
− 1
θ1

)(
d2(xτnτ , xτ(n+θ0)τ )− d2(xτnτ , xτ(n+θ1)τ )

)
≤ 0,

so that d(xτnτ , xτ(n+θ0)τ ) ≤ d(xτnτ , xτ(n+θ1)τ ). From this, we now have

1
2θ1τ

d2(xτnτ , xτ(n+θ0)τ ) + 2F
(
xτnτ + xτ(n+θ1)τ

2

)
≤ 1

2θ1τ
d2(xτnτ , xτ(n+θ1)τ ) + 2F

(
xτnτ + xτ(n+θ1)τ

2

)
,

which implies, using a previous inequality, that F
(
xτnτ+xτ(n+θ1)τ

2

)
≤ F

(
xτnτ+xτ(n+θ0)τ

2

)
.

Finally, by the definition of xτ(n+θ)τ , one has

∀y ∈ X , 1
2θτ d

2(xτnτ , xτ(n+θ)τ ) + 2F
(
xτnτ + xτ(n+θ)τ

2

)
≤ 1

2θτ d
2(xτnτ , y) + 2F

(
xτnτ + y

2

)
,

so that, by the very definition of the set of midpoints between two points,
2
θτ

d2
(
xτnτ ,

xτnτ + xτ(n+θ)τ

2

)
+ F

(
xτnτ + xτ(n+θ)τ

2

)
≤ 2
θτ

d2
(
xτnτ ,

xτnτ + y

2

)
+ 2F

(
xτnτ + y

2

)
.

Hence, we get

F
(
xτnτ+xτ(n+θ)τ

2

)
− F

(
xτnτ+y

2

)
d
(
xτnτ+xτ(n+θ)τ

2 ,
xτnτ+y

2

) ≤

1
θτ

(
d
(
xτnτ ,

xτnτ+xτ(n+θ)τ
2

)
− d

(
xτnτ ,

xτnτ+y
2

))(
d
(
xτnτ ,

xτnτ+xτ(n+θ)τ
2

)
+ d

(
xτnτ ,

xτnτ+y
2

))
d
(
xτnτ+xτ(n+θ)τ

2 ,
xτnτ+y

2

)
Using the reverse triangular inequality and taking the upper limit as y tends to xτ(n+θ)τ , we obtain
that∣∣∇MF ∣∣ (xτnτ , xτ(n+θ)τ ) ≤ 1

θτ
lim sup
y→xτ(n+θ)τ

(
d

(
xτnτ ,

xτnτ + xτ(n+θ)τ

2

)
+ d

(
xτnτ ,

xτnτ + y

2

))
= 2
θτ

d

(
xτnτ ,

xτnτ + xτ(n+θ)τ

2

)
= 1
θτ

d(xτnτ , xτ(n+θ)τ ).

(III) We now prove that for any integers n and m such that 0 ≤ n < m :

1
2

∫ mτ

nτ

(Dspτr )2 dr + 2
m−1∑
k=n

F

(
xτkτ + xτ(k+1)τ

2

)
− 2

m−1∑
k=n

F (xτkτ ) = −1
2

∫ mτ

nτ

(Dslτr )2 dr. (15)

From (13), we infer that

∀k ∈ N,
1
2τ d(xτkτ , xτ(k+1)τ ) + 2F

(
xτkτ + xτ(k+1)τ

2

)
− 2F (xτkτ ) = −

∫ 1

0

d2(xτkτ , xτ(k+θ)τ )
2θ2τ

dθ,
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and, by a change of variable and the respective definitions of the discrete speed and slopes,

∀k ∈ N, ∀t ∈ (kτ, (k+ 1)τ), τ2 (Dspτt )2 + 2F
(
xτkτ + xτ(k+1)τ

2

)
− 2F (xτkτ ) = −1

2

∫ (k+1)τ

kτ

(Dslτr )2 dr.

(16)
The results follows from summing from k = n to m− 1.

(IV) Combining relation (15) with hypothesis (12), we obtain∣∣∣∣12
∫ mτ

nτ

(Dspτr )2 dr + F (xτmτ )− F (xτnτ ) + 1
2

∫ mτ

nτ

(Dslτr )2 dr

∣∣∣∣ ≤ Hτ ∫ mτ

nτ

(Dspτr )2 dr. (17)

Therefore, for t ≤ T and T = nτ , it holds

d2(xτt , xτ0) ≤
(∫ T

0
Dspτr dr

)2

≤ T
∫ T

0
(Dspτr )2dr ≤ 2T

1− 2Hτ (F (xτ0)− inf F ), (18)

which shows that, for any T , the set {xτt }0≤t≤T is bounded (uniformly with respect to τ). Using (10),
we conclude that it is relatively compact. Moreover, further exploitation of inequality (17) shows
that for t = nτ < mτ = s, one has

d2(xτt , xτs ) ≤
(∫ s

t

Dspτr dr
)2
≤ 2(s− t)

1− 2Hτ (F (xτ0)− inf F ), (19)

which gives equicontinuity and, by the Arzelà–Ascoli theorem, the relative compactness of the set
of curves {(xτt )0≤t≤T ; 0 ≤ τ ≤ τ̄} with respect to the local uniform convergence.

(V) We finally pass to the limit. Let (τn)n∈N be a decreasing sequence tending to zero such that (xτnt )
converges to a limit curve xt locally uniformly as n tends to infinity. Using inequality (19), this
curve is absolutely continuous and satisfies

∀0 ≤ t < s,

∫ s

t

|x′r| dr ≤ lim inf
n→+∞

∫ s

t

(Dspτnr )2 dr. (20)

In addition, set t and, ∀n ∈ N, let N(n) ∈ N be such that N(n)τn < t ≤ (N(n) + 1)τn, so that
N(n)τn tends to t as n tends to infinity. Using the lower semicontinuity of

∣∣∇MF ∣∣ (assumption iii)
and (14), we have on the one hand∣∣∇MF ∣∣ (xt, xt) ≤ lim inf

n→+∞

∣∣∇MF ∣∣ (xτnN(n)τn , x
τn
t ) ≤ lim inf

n→+∞

d(xτnN(n)τn , x
τn
t )

t−N(n)τn
= lim inf

n→+∞
Dslτnt .

On the other hand, it follows from (12) that

∀t,
∣∣∇MF ∣∣ (xt, xt) = lim sup

z→xt

(
F (xt)− F

(
xt+z

2
))+

d
(
xt,

xt+z
2
) = lim sup

z→xt

2
(
F (xt)− F

(
xt+z

2
))+

d(xt, z)

= lim sup
z→xt

(2F (xt)− (F (xt) + F (z)))+

d(xt, z)
= lim sup

z→xt

(F (xt)− F (z))+

d(xt, z)
= |∇F | (xt).

By Fatou’s lemma and (17), we thus obtain that, for τn ≤ 1/(2H),

∀t < s,

∫ s

t

|∇F |2 (xr) dr ≤ lim inf
n→+∞

∫ s

t

(Dslτnr )2 dr ≤ 2 (F (xτ0)− inf F ). (21)

Passing to the limit in (17) using (20) and (21) for t = 0 and s arbitrary we obtain (6). Note that
the same technique does not yet work for t > 0, since F is not necessarily continuous. From (21), it
follows that, for almost every t > 0 (taken as fixed from now on), there exists a subsequence τnk with
supk |∇F | (x

τnk
t ) <∞. By assumption (11), we then obtain (7). �
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3. Second-order schemes for the Fokker–Planck equation as a gradient flow in the
Wasserstein space

As a complement to the above results, we consider in this final section a particular gradient flow in the
one-dimensional case, for which the results of Section 2.2 do not apply but which provides evidence that
the VIM and EVIE schemes have good numerical properties. We refer to [11,4] for approaches in higher
dimensions compatible with these schemes.
The space X is now set to be the Wasserstein space of order 2, that is the set of probability measures on

(R,B(R)) with finite second-order moment, P2(R), endowed with the 2-Wasserstein distanceW2 (see [13,
Chapter 5] or [9,14]). Note that, from now on, the variable x will denote the position over the real line.

Consider a probability measure ν in P2(R). When ν is absolutely continuous with respect to the
Lebesgue measure, with probability density ρ, the functional F is defined by

F (ν) = E(ρ) + S(ρ) with E(ρ) =
∫
R
V (x)ρ(x) dx and S(ρ) = σ2

2

∫
R
ρ(x) log(ρ(x)) dx. (22)

Here, the term E(ρ) corresponds to a potential energy, the function V being the potential in question, and
the term S(ρ) corresponds to an internal energy, the scalar σ being a positive real number. Otherwise,
we set F (ν) = +∞. Correspondingly, if the measures ν1 and ν2 are absolutely continuous with respect
to the Lebesgue measure, with respective densities ρ1 and ρ2, we denote by W2(ρ1, ρ2) the Wasserstein
distance between ν1 and ν2 and by Geodρ1,ρ2 the set of geodesics connecting ν1 to ν2.
For any smooth potential V , it is well-known (see [9]) that the gradient flow in P2(R) of the functional

F is a curve t 7→ ν(t) in P2(R), such that, at almost any time t, the measure ν(t) is absolutely continuous
with respect to the Lebesgue measure, with probability density ρ(t, ·), and that ρ is solution of the
Fokker–Planck partial differential equation of the form

∂ρ

∂t
(t, x) = ∂

∂x
[V ′(x)ρ(t, x)] + σ2

2
∂2ρ

∂x2 (t, x), (23)

which is itself related to the following stochastic differential equation

dX(t) = −V ′(X(t)) dt+ σ dW (t), (24)

the stochastic process W being a standard one-dimensional Wiener process.
In what follows, we consider quadratic potentials of the form V (x) = θ (x−µ)2

2 , where θ and µ are
given constants. We denote by N (a, b2) the normal (Gaussian) distribution with mean a and variance
b2 and also, by abusing the notation, the associated density (with respect to the Lebesgue measure)
ρ(x) = 1√

2πb2 e
− (x−a)2

2b2 .

Proposition 3.1 If ρ(0, ·) = N (µ0, σ
2
0), any intermediary state of the semi-discrete VIM and EVIE

schemes has a Gaussian distribution and the error of both schemes has order O(τ2).
Proof We will prove the assertion for the VIM scheme, the proof for the EVIE one being similar. The
potential V being quadratic, the solution of (24) is a Ornstein–Uhlenbeck process, given by X(t) =
X(0) e−θt + µ(1 − e−θt) + σ√

2θ e
−θtW (e2θt − 1). In particular, the exact evolution from ρn = N

(
µn, σ

2
n

)
after τ time units is

ρexactn+1 = N
(
µne

−θτ + µ(1− e−θτ ), e−2θτσ2
n + σ2

2θ
(
1− e−2θτ)) .

On the other hand, ρn being absolutely continuous with respect to the Lebesgue measure, the set Geodρn,ρ
is a singleton for any ρ in P2(R) (and so is the set ρn+ρ

2 ). Hence, the unique geodesic γρ in Geodρn,ρ is
determined by a map T : R→ R (which is the gradient of a convex function, see [6,14]), γρ(t) being the
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push-forward of ρn by x 7→ (1−t)x+t T (x). The minimization in (2) can thus be expressed in terms of the
map T , for instance 1

2 d
2(ρn, ρ) =

∫
R

(T (x)−x)2

2 ρn(x) dx. After some tedious (but rather straightforward)
computations, one obtains that the unique element ρV IMn+1 minimizing 1

2τ d
2(ρn, ρ) + 2F

(
ρn+ρ

2
)
also has a

normal distribution, that is ρV IMn+1 = N
(
µn+1, σ

2
n+1
)
, with µn+1 =

(
1 + θτ

2
)−1 (

µn
(
1− θτ

2
)

+ µθτ
2

)
and

σn+1 =
(
1 + θτ

2
)−1

√
σ2
n + σ2τ

(
1 + θτ

2
)
− σnθτ

2 . Consequently, ρV IMn+1 is an approximation of ρexactn+1 exact
to the second order in τ and, by the usual Gronwall inequalities, the error of the VIM scheme is globally
of order O(τ2). �

We performed numerical simulations to support these results. Roughly speaking, we employed a con-
tinuous piecewise affine (P1) finite element discretization for the cumulative distribution functions of
elements in P2(R), which amounts to replace the space P2(R) by a discrete one, denoted P2(R)m and
defined as follows. LetM ∈ N∗ and m = (m1, . . . ,mM ) be a (ordered) mass distribution such that mk > 0
for any integer k in {1, . . . ,M} and

∑M
k=1 mk = 1, fixed once and for all. An element in P2(R)m with

density ρX is then represented by a vector X = (x0, . . . , xM ) ∈ RM+1, with x0 < x1 < · · · < xM−1 < xM ,
by setting ρX constant and equal to mk

xk+1−xk on the segment [xk, xk+1).
Approximating the integral defining the discrete potential energy E(ρX) using the composite Simpson

quadrature rule (see [12, Chapter 4, Subsection 4.1.3]), one obtains

Em(X) =
M∑
k=0

mk

6

[
V (xk) + 4V

(
xk + xk+1

2

)
+ V (xk+1)

]
. (25)

On the other hand, the discrete internal energy S(ρX) can be computed exactly and has the simple form

Sm(X) =
M∑
k=0

mk

xk+1 − xk
(xk+1 − xk) log

[
mk

xk+1 − xk

]
=

M∑
k=0

mk log(mk)−
M∑
k=0

mk log(xk+1 − xk). (26)

To compute the Wasserstein distance W2 between the discrete densities ρX1 and ρX2 , we note that
the map T is the unique piecewise linear function on any interval [x1

k, x
1
k+1], which associates x1

k to
x2
k and x1

k+1 to x2
k+1 respectively. Straightforward computations then show that the squared distance

W2
2(ρX1 , ρX2) =

∫
R(T (x)− x)ρX1(x) dx reduces to

W2
2(ρX1 , ρX2) = 1

3

M∑
k=0

mk

[(
x2
k − x1

k

)2 +
(
x2
k+1 − x1

k+1
) (
x2
k − x1

k

)
+
(
x2
k+1 − x1

k+1
)2
]
. (27)

For the numerical results presented in Figure 1, we have set the final time equal to 1, σ = 1, θ = 1
2 ,

µ = 5, M = 32, a uniform mass step mk = 1
M , and the projection on the discrete space of a centered

reduced Gaussian distribution as the initial datum. Second-order in time convergence is confirmed for
both schemes.
The internal energy S(ρX) constitutes a barrier enforcing the constraint xk < xk+1. As such the

(continuous in time) dynamics of the probability density can also be viewed as a dynamics of the vector
X which follows a, cumbersome but regular, system of ordinary differential equations. The proposed
schemes provide a consistent, second-order in time, discretization of this system, and we have obtained
the following result.
Corollary 3.1 The scheme (2) discretized using (25), (26), and (27) converges at second order in time
to the exact solution of the semi-discrete gradient flow of the functional F in the Wasserstein space of
order 2.
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Figure 1. Results of numerical simulation for the case presented in Section 3. Left: error of the JKO scheme (dotted line)
and of the VIM and EVIE schemes (solid lines) schemes as a function of the length of the time step τ . The error is the W2
distance between the numerical solution computed by the schemes on grids containing respectively 4, 7, 12, 20, 33, 54, 90
and 148 time steps and two numerical reference solutions obtained using both the VIM and EVIE schemes on a finer grid
(244 time steps). We observe that any of the second-order schemes on a grid with four steps is as accurate as the standard
JKO scheme on a grid with 90 steps. Similarly, the VIM or EVIE scheme on a grid with seven steps is as good as the
JKO scheme on a grid with 148 steps. Note that the points of the VIM and EVIE schemes are indistinguishable to machine
precision. Right: numerical estimation of the order of convergence of the JKO scheme (dotted line) and of the VIM and
EVIE schemes (solid lines).
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