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Abstract

The time discretization of gradient flows in metric spaces uses variants of the celebrated implicit Euler-type
scheme of Jordan, Kinderlehrer and Otto [9]. We propose in this Note a different approach which allows to
construct two second-order in time numerical schemes. In a metric space framework, we show that the schemes
are well defined and prove the convergence for one of them under some regularity assumptions. For the particular
case of a Fokker–Planck gradient flow in the Wasserstein space, we obtain (theoretically and numerically) the
second-order convergence.

Résumé

Schémas d’ordre deux en temps pour des flots de gradient dans des espaces métriques géodésiques
et de Wasserstein. La discrétisation temporelle des flots de gradient dans des espaces métriques utilise des
variantes du schéma d’Euler implicite issu du travail séminal de Jordan, Kinderlehrer et Otto [9]. Nous proposons
dans cette Note une approche différente permettant de construire deux schémas numériques d’ordre deux en temps.
Dans le cadre d’un espace métrique, nous montrons que les schémas sont bien définis et prouvons la convergence
de l’un d’entre eux sous des hypothèses de régularité. Pour le cas particulier d’un flot de gradient Fokker–Planck
dans l’espace de Wasserstein, nous obtenons (théoriquement et numériquement) la convergence à l’ordre deux.

1. Background on gradient flows and relationship with the implicit Euler scheme

Let f : Rd → R be a smooth convex function and x̄ be a point in Rd; a gradient flow starting from
x̄ is a curve (xt)t≥0 solution to the Cauchy problem x′t = −∇f(xt) for t > 0, x0 = x̄. A topic that has
received considerable attention lately is the extension of this definition to a Polish metric space (X , d)
and a functional F : (X , d) → R ∪ {+∞} (see [3,14,2,13] for instance). An important advance was in
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particular the work of Jordan, Kinderlehrer and Otto [9], who introduced the following numerical scheme:
given a time step τ > 0 and x̄ in X , define recursively the sequence (xτn)n∈N such that xτ0 = x̄ and, for
any natural integer n, xτn+1 is selected as a minimizer of the functional

x 7→ P JKOF (x;xτn, τ) := 1
2τ d

2(xτn, x) + F (x). (1)

When the metric space is a Hilbert space and the functional F is smooth enough, the above scheme
amounts to the implicit Euler scheme, i.e., xτn+1−x

τ
n

τ = −∇F (xτn+1). As a consequence, the Jordan–
Kinderlehrer–Otto method (abbreviated as JKO from now on) can be seen as a variational generalization
of the implicit Euler scheme in a metric space. Coupled with a suitable interpolation, the sequence con-
structed by this scheme defines, as the time step τ tends to zero, a (metric) gradient flow, the convergence
being of order one in τ (see [3, Theorem 4.0.4] for a sharp estimate in a particular setting). As a natural
numerical counterpart of the theoretical procedure, the JKO scheme was subsequently used to compute
the gradient flow in applications (see [10,5,4] for instance).
However, while the JKO scheme has theoretical advantages, its first-order convergence may be judged

insufficient in practice. When the gradient flow is regular enough, one may seek to replace it with a second-
order alternative, or even combine a second-order scheme with the JKO scheme in order to construct a
time step selection mechanism (see [12, Chapter 17, Section 17.2] for instance). The purpose of this Note
is to propose two second-order schemes, which are both easy to implement (one of them directly uses the
JKO scheme), and provide several preliminary theoretical and numerical results pertaining to them.

2. Second-order numerical schemes on metric spaces

Let (X , d) be a Polish metric space. We recall (see [2, page 37]) that a curve γ : [0, 1]→ X is called a
(constant speed) geodesic provided that d(γ(t), γ(s)) = |t− s| · d(γ(0), γ(1)), and that the space (X , d) is
called geodesic if, for any couple of points (x, y) ∈ X 2, there exists a geodesic γ connecting them, that is,
such that γ(0) = x and γ(1) = y. We will denote by Geodx,y the set of all geodesics connecting x and y.
Moreover, the set {γ( 1

2 ) | γ ∈ Geodx,y} will be called the set of midpoints of the couple (x, y) and will be
denoted x+y

2 (see [7, Chapter 2] for a definition in general metric spaces and [1] in the particular case of
Wasserstein spaces).

2.1. Definition of the schemes

Given a time step τ , we define the Variational Implicit Midpoint (VIM) scheme, starting from x̄ in X ,
for the (gradient flow of the) functional F by setting xτ0 = x̄ and, for any natural integer n, recursively
choosing

xτn+1 ∈ argmin
y∈X

PV IMF (y;xτn, τ), (2)

where
∀(x, y) ∈ X 2, PV IMF (y;x, τ) = inf

{
d2(x, y)

2τ + 2F (u)
∣∣∣∣u ∈ x+ y

2

}
. (3)

In the particular case of a Hilbert space and a smooth functional F , the point xτn+1 is effectively a solution
of the equation x−xτn

τ +∇F (x
τ
n+x
2 ) = 0, which characterizes the implicit midpoint rule method, a one-stage

implicit Runge–Kutta method of second order (see [8, Chapter II, Section 7]).
We now prove that the VIM scheme is well-defined by establishing the existence of a solution to

problem (2).
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Theorem 2.1 Let (X , d) be a Polish metric space such that,

for any x in X , the set
⋃
y∈X

x+ y

2 is closed. (4)

Assume that the functional F is lower semicontinuous, bounded from below, and such that, for all r > 0,
and c ∈ R, the set {y ∈ X |F (y) ≤ c, d(x̃, y) ≤ r} is compact for some x̃ in X . Then, there exists x in
X such that PV IMF (x; x̃, τ) = infy∈X PV IMF (y; x̃, τ).
Proof Let (xn, un)n∈N be a minimizing sequence for infy∈X PV IMF (y; x̃, τ). In particular, the sequence( 1

2 d
2(x̃, xn)

)
n∈N is bounded and so is (d(x̃, un))n∈N. On the other hand, the sequence (F (un))n∈N is also

bounded, so that, by hypothesis, the sequence (un)n∈N lives in a compact set and thus converges, up to
a subsequence, to some u. In addition, since ∪y∈X x̃+y

2 is closed, there exists x in X such that u ∈ x̃+x
2 .

Recalling that un ∈ x̃+xn
2 , we obtain that d(x̃, x) = 2 d(x̃, u) = 2 limn→∞ d(x̃, un) = limn→∞ d(x̃, xn).

The lower semicontinuity property of F then allows to conclude. �

Remark 1 The assumptions on the functional F in the above theorem are classical (see [2, Section 4.2.2]
for instance), but can be weakened. In particular, we may not suppose F to be bounded from below.

One may observe that, for any natural integer n, any point x in X and any midpoint u in xτn+x
2 , it

holds
1
2τ d

2(xτn, x) + 2F (u) = 2
τ
d2(xτn, u) + 2F (u) = 2P JKOF

(
u;xτn,

τ

2

)
. (5)

As a consequence, another interpretation of the VIM scheme is to view the midpoint u as computed
by a JKO scheme with a halved time step τ

2 and to extrapolate it as follows.
Recall that a geodesic space (X , d) is called non-branching (see [2, Definition 3.15] or [3, Theorem

11.2.10]) if, for any t ∈]0, 1[, a constant speed geodesic γ is uniquely determined by its initial point γ(0)
and by the point γ(t). In particular, if u ∈ x+y1

2 ∩ x+y2
2 then y1 = y2. By definition, the 2-extrapolate of the

couple (x, u) (denoted 2u− x hereafter) is the unique point y such that u ∈ x+y
2 . On the contrary, when

there exists no such point, the 2-extrapolate is defined as the point y with largest distance to x such that
u is on a geodesic from x to y. When the space is non-branching and complete, using the properties of the
distance between two points on a geodesic and the fact that any Cauchy sequence converges, we obtain
that, for any fixed points x and u, the set {d(x, y) | ∃γ ∈ Geodx,y, u ∈ γ} is closed. The 2-extrapolate is
thus well-defined and unique. It moreover satisfies d(x, u) ≤ d(x, 2u− x) ≤ 2 d(x, u).
These considerations lead to the definition of the Extrapolated Variational Implicit Euler (EVIE)

scheme, in which xτn+1 is now the 2-extrapolate 2u−xτn of the point u computed by the JKO scheme with
time step τ

2 . Implementation-wise, the last scheme has the obvious advantage of using the JKO scheme.
From a theoretical point of view, the existence and uniqueness of its solution in a non-branching space
is assured under the same hypotheses that those required for the JKO scheme. While adaptations would
certainly allow to define it in branching spaces, uniqueness may be lost, even when the JKO scheme
possesses a unique solution at each step.

2.2. Convergence of the VIM scheme

In this section, we prove the convergence of the VIM scheme in a metric space setting by showing that
a natural interpolation of its discrete solution converges to a gradient flow written in the integral form
of an Energy Dissipation Inequality (EDI) (see [2, Section 4.2]). More precisely, we recall that, given a
functional F : (X , d)→ R ∪ {+∞} with domain D(F ) = {x ∈ X , F (x) < +∞}, and a point x̄ ∈ D(F ),
the curve (xt)t≥0 in X is a gradient flow in the EDI sense starting at x̄ provided that it is a locally
absolutely continuous curve, x0 = x̄ and
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∀s ≥ 0, F (xs) + 1
2

∫ s

0
|x′r| dr + 1

2

∫ s

0
|∇F |2 (xr) dr ≤ F (x̄), (6)

a.e. t > 0, ∀s ≥ t, F (xs) + 1
2

∫ s

t

|x′r| dr + 1
2

∫ s

t

|∇F |2 (xr) dr ≤ F (xt), (7)

where, for any point x in D(F ), the slope of F at x is

|∇F | (x) = lim sup
z→x

(F (x)− F (z))+

d(x, z) = max
{

lim sup
z→x

F (x)− F (z)
d(x, z) , 0

}
,

and the metric derivative of x at r is

|x′r| = lim
h→0

d(xr+h, xr)
|h|

. (8)

The time step τ being fixed with 0 < τ < τ̄ , we introduce a variational interpolation à la De Giorgi of
the discrete solution of the VIM scheme by defining the curve (xτt )t≥0 as follows:

— xτ0 = x̄,
— for n ∈ N, xτ(n+1)τ ∈ argminy∈XPV IMF (y;xτnτ , τ),
— for n ∈ N and t ∈]nτ, (n+ 1)τ [, xτt ∈ argminy∈XPV IMF (y;xτnτ , t− nτ).

For such a map, we define the discrete speed Dspτ : [0,+∞)→ [0,+∞) by

Dspτt =
d(xτnτ , xτ(n+1)τ )

τ
for t in (nτ, (n+ 1)τ),

and the discrete slope Dslτ : [0,+∞)→ [0,+∞) by

Dslτt = d(xτnτ , xτt )
t− nτ

for t in (nτ, (n+ 1)τ).

In order to avoid unnecessary technicalities in the forthcoming analysis, we will suppose from now on
that midpoints are unique, that is

∀(x, y) ∈ X 2, the set x+ y

2 is a singleton. (9)

We finally introduce a notion of slope of F at the midpoint of (x, y) by setting

∣∣∇MF ∣∣ (x, y) = lim sup
z→y

(
F
(
x+y

2
)
− F

(
x+z

2
))+

d
(
x+y

2 , x+z
2
) .

Theorem 2.2 Let T > 0 be fixed and (X , d) be a Polish metric space satisfying hypotheses (4) and (9).
We moreover assume that
(i) F is lower semicontinuous, bounded from below, and such that

∀r > 0, ∀c ∈ R, ∀x ∈ X the set {y ∈ X |F (y) ≤ c, d(x, y) ≤ r} is compact, (10)

(ii) F has the following continuity property

if xn → x, and sup{|∇F |(xn), E(xn)} <∞ then F (xn)→ F (x); (11)

(iii)
∣∣∇MF ∣∣ : D(F )×D(F )→ [0,∞) has the following semicontinuity property: for any x in D(F ) and
any two sequences (xn)n∈N and (yn)n∈N in D(F ) converging to x, it holds∣∣∇MF ∣∣ (x, x) ≤ lim inf

n→∞

∣∣∇MF ∣∣ (xn, yn),
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(iv) if any two of the elements x, y, x+y
2 belong to D(F ), then the third also does and∣∣∣∣∣F (x) + F (y)− 2F (x+y

2 )
d2(x, y)

∣∣∣∣∣ ≤ H, (12)

where H is a constant independent of x and y.
Then, for some τ̄ > 0, the set of curves {(xτt )t∈[0,T ]; 0 ≤ τ ≤ τ̄} is relatively compact (with respect to the
local uniform convergence) and any limit curve is a gradient flow in the EDI formulation (6)–(7).

Remark 2 Assumptions (i) and (ii) are classical and used in [2, Assumption 4.13], whereas (iii) is a
generalization of the second assumption in [2, Assumption 4.13]. Item (iv) is however a regularity property
specific to our setting; in particular it is satisfied when both F and −F are λ-convex in the sense of [3,
Section 2.4 page 49]. On the other hand, it can be weakened to F (x) + F (y)− 2F (x+y

2 ) = o(d(x, y)).
Proof We will follow closely and adapt where necessary the method of proof given in [2, Subsection

4.2.2]. The proof is divided into several steps, starting with the derivation of some key properties of the
variational interpolation (xτt )t≥0 introduced above.

(I) First, we shall show that, the positive real number τ and the natural integer n being fixed, the
function (0, 1] 3 θ 7→ 1

2θτ d
2(xτnτ , xτ(n+θ)τ ) + 2F

(
xτnτ+xτ(n+θ)τ

2

)
is locally Lipschitz and that its

derivative is given by

d

dθ

(
1

2θτ d
2(xτnτ , xτ(n+θ)τ ) + 2F

(
xτnτ + xτ(n+θ)τ

2

))
= − 1

2θ2τ
d2(xτnτ , xτ(n+θ)τ ). (13)

Indeed, let 0 < θ0 < θ < θ1 ≤ 1. By the definition of the variational interpolation, one has

1
2θ0τ

d2(xτnτ , xτ(n+θ0)τ ) + 2F
(
xτnτ + xτ(n+θ0)τ

2

)
≤ 1

2θ0τ
d2(xτnτ , xτ(n+θ1)τ ) + 2F

(
xτnτ + xτ(n+θ1)τ

2

)
,

so that

1
2θ0τ

d2(xτnτ , xτ(n+θ0)τ ) + 2F
(
xτnτ + xτ(n+θ0)τ

2

)
− 1

2θ0τ
d2(xτnτ , xτ(n+θ1)τ )− 2F

(
xτnτ + xτ(n+θ1)τ

2

)
≤ (θ1 − θ0)τ

2θ0θ1τ2 d2(xτnτ , xτ(n+θ1)τ ).

Arguing symmetrically, one also has

1
2θ0τ

d2(xτnτ , xτ(n+θ0)τ ) + 2F
(
xτnτ + xτ(n+θ0)τ

2

)
− 1

2θ0τ
d2(xτnτ , xτ(n+θ1)τ )− 2F

(
xτnτ + xτ(n+θ1)τ

2

)
≥ (θ1 − θ0)τ

2θ0θ1τ2 d2(xτnτ , xτ(n+θ0)τ ),

and the function is thus locally Lipschitz. Moreover, dividing by θ1 − θ0 the last two inequalities
and passing to the limits θ0 ↑ θ and θ1 ↓ θ, we obtain the proposed expression for the derivative.

(II) Next, we establish that, with the same notations as above, θ 7→ d(xτnτ , xτ(n+θ)τ ) is non decreasing,

θ 7→ F
(
xτnτ+xτ(n+θ)τ

2

)
is non increasing and that it holds

∀θ ∈ (0, 1],
∣∣∇MF ∣∣ (xτnτ , xτ(n+θ)τ ) ≤

d(xτnτ , xτ(n+θ)τ )
θτ

. (14)
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Let 0 < θ0 < θ1 ≤ 1. By the respective minimality properties of xτ(n+θ0)τ and xτ(n+θ1)τ , we have

1
2θ0τ

d2(xτnτ , xτ(n+θ0)τ ) + 2F
(
xτnτ + xτ(n+θ0)τ

2

)
≤ 1

2θ0τ
d2(xτnτ , xτ(n+θ1)τ ) + 2F

(
xτnτ + xτ(n+θ1)τ

2

)
,

1
2θ1τ

d2(xτnτ , xτ(n+θ1)τ ) + 2F
(
xτnτ + xτ(n+θ1)τ

2

)
≤ 1

2θ1τ
d2(xτnτ , xτ(n+θ0)τ ) + 2F

(
xτnτ + xτ(n+θ0)τ

2

)
.

Adding the last two inequalities, we get(
1
θ0
− 1
θ1

)(
d2(xτnτ , xτ(n+θ0)τ )− d2(xτnτ , xτ(n+θ1)τ )

)
≤ 0,

so that d(xτnτ , xτ(n+θ0)τ ) ≤ d(xτnτ , xτ(n+θ1)τ ). From this, we now have

1
2θ1τ

d2(xτnτ , xτ(n+θ0)τ ) + 2F
(
xτnτ + xτ(n+θ1)τ

2

)
≤ 1

2θ1τ
d2(xτnτ , xτ(n+θ1)τ ) + 2F

(
xτnτ + xτ(n+θ1)τ

2

)
,

which implies, using a previous inequality, that F
(
xτnτ+xτ(n+θ1)τ

2

)
≤ F

(
xτnτ+xτ(n+θ0)τ

2

)
.

Finally, by the definition of xτ(n+θ)τ , one has

∀y ∈ X , 1
2θτ d

2(xτnτ , xτ(n+θ)τ ) + 2F
(
xτnτ + xτ(n+θ)τ

2

)
≤ 1

2θτ d
2(xτnτ , y) + 2F

(
xτnτ + y

2

)
,

so that, by the very definition of the set of midpoints between two points,
2
θτ

d2
(
xτnτ ,

xτnτ + xτ(n+θ)τ

2

)
+ 2F

(
xτnτ + xτ(n+θ)τ

2

)
≤ 2
θτ

d2
(
xτnτ ,

xτnτ + y

2

)
+ 2F

(
xτnτ + y

2

)
.

Hence, we get

F
(
xτnτ+xτ(n+θ)τ

2

)
− F

(
xτnτ+y

2

)
d
(
xτnτ+xτ(n+θ)τ

2 ,
xτnτ+y

2

) ≤

1
θτ

(
d
(
xτnτ ,

xτnτ+xτ(n+θ)τ
2

)
− d

(
xτnτ ,

xτnτ+y
2

))(
d
(
xτnτ ,

xτnτ+xτ(n+θ)τ
2

)
+ d

(
xτnτ ,

xτnτ+y
2

))
d
(
xτnτ+xτ(n+θ)τ

2 ,
xτnτ+y

2

)
Using the reverse triangle inequality and taking the upper limit as y tends to xτ(n+θ)τ , we obtain
that ∣∣∇MF ∣∣ (xτnτ , xτ(n+θ)τ ) ≤ 1

θτ
lim sup
y→xτ(n+θ)τ

(
d

(
xτnτ ,

xτnτ + xτ(n+θ)τ

2

)
+ d

(
xτnτ ,

xτnτ + y

2

))
= 2
θτ

d

(
xτnτ ,

xτnτ + xτ(n+θ)τ

2

)
= 1
θτ

d(xτnτ , xτ(n+θ)τ ).

(III) We now prove, that for any integers n and m such that 0 ≤ n < m one has,

1
2

∫ mτ

nτ

(Dspτr )2 dr + 2
m−1∑
k=n

F

(
xτkτ + xτ(k+1)τ

2

)
− 2

m−1∑
k=n

F (xτkτ ) = −1
2

∫ mτ

nτ

(Dslτr )2 dr. (15)

From (13), we infer that

∀k ∈ N,
1
2τ d(xτkτ , xτ(k+1)τ ) + 2F

(
xτkτ + xτ(k+1)τ

2

)
− 2F (xτkτ ) = −

∫ 1

0

d2(xτkτ , xτ(k+θ)τ )
2θ2τ

dθ,

6



which yields, by a change of variable and the respective definitions of the discrete speed and slopes,

∀k ∈ N, ∀t ∈ (kτ, (k+ 1)τ), τ2 (Dspτt )2 + 2F
(
xτkτ + xτ(k+1)τ

2

)
− 2F (xτkτ ) = −1

2

∫ (k+1)τ

kτ

(Dslτr )2 dr.

(16)
The result follows from summing from k = n to m− 1.

(IV) Combining relation (15) with hypothesis (12), we obtain∣∣∣∣12
∫ mτ

nτ

(Dspτr )2 dr + F (xτmτ )− F (xτnτ ) + 1
2

∫ mτ

nτ

(Dslτr )2 dr

∣∣∣∣ ≤ Hτ ∫ mτ

nτ

(Dspτr )2 dr. (17)

Therefore, for t ≤ T and T = nτ , it holds

d2(xτt , xτ0) ≤
(∫ T

0
Dspτr dr

)2

≤ T
∫ T

0
(Dspτr )2dr ≤ 2T

1− 2Hτ (F (xτ0)− inf F ), (18)

which shows that, for any T , the set {xτt }0≤t≤T is bounded (uniformly with respect to τ). Using (10),
we conclude that it is relatively compact. Moreover, further exploitation of inequality (17) shows
that for t = nτ < mτ = s, one has

d2(xτt , xτs ) ≤
(∫ s

t

Dspτr dr
)2
≤ 2(s− t)

1− 2Hτ (F (xτ0)− inf F ), (19)

which gives equicontinuity and, by the Arzelà–Ascoli theorem, the relative compactness of the set
of curves {(xτt )0≤t≤T ; 0 ≤ τ ≤ τ̄} with respect to the local uniform convergence.

(V) We finally pass to the limit. Let (τn)n∈N be a decreasing sequence tending to zero such that (xτnt )
converges to a limit curve xt locally uniformly as n tends to infinity. Using inequality (19), this
curve is absolutely continuous and satisfies

∀0 ≤ t < s,

∫ s

t

|x′r| dr ≤ lim inf
n→+∞

∫ s

t

(Dspτnr )2 dr. (20)

In addition, set t and, ∀n ∈ N, let N(n) ∈ N be such that N(n)τn < t ≤ (N(n) + 1)τn, so that
N(n)τn tends to t as n tends to infinity. Using the assumption (iii) on the lower semicontinuity of∣∣∇MF ∣∣ and (14), we have on the one hand∣∣∇MF ∣∣ (xt, xt) ≤ lim inf

n→+∞

∣∣∇MF ∣∣ (xτnN(n)τn , x
τn
t ) ≤ lim inf

n→+∞

d(xτnN(n)τn , x
τn
t )

t−N(n)τn
= lim inf

n→+∞
Dslτnt .

On the other hand, it follows from (12) that

∀t > 0,
∣∣∇MF ∣∣ (xt, xt) = lim sup

z→xt

(
F (xt)− F

(
xt+z

2
))+

d
(
xt,

xt+z
2
) = lim sup

z→xt

2
(
F (xt)− F

(
xt+z

2
))+

d(xt, z)

= lim sup
z→xt

(2F (xt)− (F (xt) + F (z)))+

d(xt, z)
= lim sup

z→xt

(F (xt)− F (z))+

d(xt, z)
= |∇F | (xt).

By Fatou’s lemma and (17), we thus obtain that, for τn ≤ 1/(2H),

∀t < s,

∫ s

t

|∇F |2 (xr) dr ≤ lim inf
n→+∞

∫ s

t

(Dslτnr )2 dr ≤ 2 (F (xτ0)− inf F ). (21)

Passing to the limit in (17) using (20) and (21) for t = 0 and s arbitrary yields (6). Note that the
same technique does not work for t > 0, since F is not necessarily continuous. However, from (21), it
follows that, for almost every t > 0 (taken as fixed from now on), there exists a subsequence τnk with
supk |∇F | (x

τnk
t ) <∞. By assumption (11), we then obtain (7). �
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3. Second-order schemes for the Fokker–Planck equation as a gradient flow in the
Wasserstein space

As a complement to the above results, we consider in this final section a particular gradient flow in the
one-dimensional case, for which the results of Section 2.2 do not apply but which provides evidence that
the VIM and EVIE schemes have good numerical properties. We refer to [11,4] for possible approaches
in higher dimensions compatible with these schemes.
The space X is now set to be the Wasserstein space of order 2, that is the set of probability measures on

(R,B(R)) with finite second-order moment, P2(R), endowed with the 2-Wasserstein distanceW2 (see [13,
Chapter 5] or [9,14]). Note that, from now on, the variable x will denote the position over the real line.

Consider a probability measure ν in P2(R). When ν is absolutely continuous with respect to the
Lebesgue measure, with probability density ρ, the functional F is defined by

F (ν) = E(ρ) + S(ρ) with E(ρ) =
∫
R
V (x)ρ(x) dx and S(ρ) = σ2

2

∫
R
ρ(x) log(ρ(x)) dx. (22)

Here, the term E(ρ) corresponds to a potential energy, the function V being the potential in question, and
the term S(ρ) corresponds to an internal energy, the scalar σ being a positive real number. Otherwise,
we set F (ν) = +∞. Correspondingly, if the measures ν1 and ν2 are absolutely continuous with respect
to the Lebesgue measure, with respective densities ρ1 and ρ2, we denote by W2(ρ1, ρ2) the Wasserstein
distance between ν1 and ν2 and by Geodρ1,ρ2 the set of geodesics connecting ν1 to ν2.
For any smooth potential V , it is well-known (see [9]) that the gradient flow in P2(R) of the functional

F is a curve t 7→ ν(t) in P2(R), such that, at almost any time t, the measure ν(t) is absolutely continuous
with respect to the Lebesgue measure, with probability density ρ(t, ·), and that ρ is solution of the
Fokker–Planck partial differential equation of the form

∂ρ

∂t
(t, x) = ∂

∂x
[V ′(x)ρ(t, x)] + σ2

2
∂2ρ

∂x2 (t, x), (23)

which is itself related to the following stochastic differential equation

dX(t) = −V ′(X(t)) dt+ σ dW (t), (24)

the stochastic process W being a standard one-dimensional Wiener process.
In what follows, we consider quadratic potentials of the form V (x) = θ (x−µ)2

2 , where θ and µ are
given constants. We denote by N (a, b2) the normal (Gaussian) distribution with mean a and variance
b2 and also, by abusing the notation, the associated density (with respect to the Lebesgue measure)
ρ(x) = 1√

2πb2 e
− (x−a)2

2b2 .

Proposition 3.1 If ρ(0, ·) = N (µ0, σ
2
0), any intermediary state of the semi-discrete VIM and EVIE

schemes has a Gaussian distribution and the error of both schemes has order O(τ2).
Proof We will prove the assertion for the VIM scheme, the proof for the EVIE one being similar. The
potential V being quadratic, the solution of (24) is an Ornstein–Uhlenbeck process, given by X(t) =
X(0) e−θt + µ(1 − e−θt) + σ√

2θ e
−θtW (e2θt − 1). In particular, the exact evolution from ρn = N

(
µn, σ

2
n

)
after τ time units is

ρexactn+1 = N
(
µne

−θτ + µ(1− e−θτ ), e−2θτσ2
n + σ2

2θ
(
1− e−2θτ)) .

On the other hand, ρn(x)dx being absolutely continuous with respect to the Lebesgue measure, the set
Geodρn,ρ is a singleton for any ρ in P2(R) (and so is the set ρn+ρ

2 ). Hence, the unique geodesic γρ in
Geodρn,ρ is determined by a map T : R→ R (which is the gradient of a convex function, see [6,14]), γρ(t)
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being the push-forward of ρn by x 7→ (1 − t)x + t T (x). The minimization in (2) can thus be expressed
in terms of T , for instance 1

2 d
2(ρn, ρ) =

∫
R

(T (x)−x)2

2 ρn(x) dx. After some tedious (but rather straightfor-
ward) computations, one obtains that the unique element ρV IMn+1 minimizing 1

2τ d
2(ρn, ρ)+2F

(
ρn+ρ

2
)
also

has a normal distribution, that is ρV IMn+1 = N
(
µn+1, σ

2
n+1
)
, with µn+1 =

(
1 + θτ

2
)−1 (

µn
(
1− θτ

2
)

+ µθτ
2

)
and σn+1 =

(
1 + θτ

2
)−1

√
σ2
n + σ2τ

(
1 + θτ

2
)
− σnθτ

2 . Consequently, ρV IMn+1 is an approximation of ρexactn+1
exact to the second order in τ and, by the usual Gronwall inequalities, the error of the VIM scheme is
globally of order O(τ2). �

We performed numerical simulations to support these results. Roughly speaking, we employed a con-
tinuous piecewise affine discretization for the cumulative distribution functions of elements in P2(R),
which amounts to replace the space P2(R) by a discrete one, denoted P2(R)m and defined as follows. Let
M ∈ N∗ and m = (m1, . . . ,mM ) be an ordered mass distribution such that mk > 0 for any integer k
in {1, . . . ,M} and

∑M
k=1 mk = 1, fixed once and for all. An element in P2(R)m with density ρX is then

represented by a vector X = (x0, . . . , xM ) ∈ RM+1, such that x0 < x1 < · · · < xM−1 < xM , by setting
ρX constant and equal to mk

xk+1−xk on the segment [xk, xk+1).
Approximating the integral defining the discrete potential energy E(ρX) by using the composite Simp-

son quadrature rule (see [12, Chapter 4, Subsection 4.1.3]), one obtains

Em(X) =
M∑
k=0

mk

6

[
V (xk) + 4V

(
xk + xk+1

2

)
+ V (xk+1)

]
. (25)

On the other hand, the discrete internal energy S(ρX) can be computed exactly and has the simple form

Sm(X) =
M∑
k=0

mk

xk+1 − xk
(xk+1 − xk) log

[
mk

xk+1 − xk

]
=

M∑
k=0

mk log(mk)−
M∑
k=0

mk log(xk+1 − xk). (26)

To compute the Wasserstein distance W2 between the discrete densities ρX1 and ρX2 , we note that the
map T is the unique piecewise linear function on any interval [x1

k, x
1
k+1], which associates x1

k with x2
k

and x1
k+1 with x2

k+1, respectively. Straightforward computations then show that the squared distance
W2

2(ρX1 , ρX2) =
∫
R(T (x)− x)ρX1(x) dx reduces to

W2
2(ρX1 , ρX2) = 1

3

M∑
k=0

mk

[(
x2
k − x1

k

)2 +
(
x2
k+1 − x1

k+1
) (
x2
k − x1

k

)
+
(
x2
k+1 − x1

k+1
)2
]
. (27)

For the numerical results presented in Figure 1, we have set σ = 1, θ = 1
2 , µ = 5, M = 32, a

uniform mass step mk = 1
M , the final time equal to 1, and the projection on the discrete space of a

standard Gaussian distribution as the initial datum. Second-order in time convergence is confirmed for
both schemes.
The internal energy S(ρX) constitutes a barrier enforcing the constraint xk < xk+1. As such the

(continuous in time) dynamics of the probability density can also be viewed as a dynamics of the vector X
which follows a, cumbersome but regular, system of ordinary differential equations. The proposed schemes
provide a consistent and second-order in time discretization of this system, and we have obtained the
following result.
Corollary 3.1 The scheme (2) discretized using (25), (26), and (27) converges at second order in time
to the exact solution of the semi-discrete gradient flow of the functional F in the Wasserstein space of
order 2.
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time step τ

W
2
er
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r

error JKO ref EVIE slope 0.97

error EVIE ref VIM slope 2.1

error VIM ref VIM slope 2.1

No. of time steps JKO VIM EVIE

4 0.56 0.14 0.12

7 0.21 0.22 0.20

12 0.35 0.37 0.29

20 0.57 0.45 0.41

33 0.69 0.73 0.66

54 1.11 1.17 1.07

90 1.81 1.95 1.79

148 2.95 3.21 2.91

244 5.47 5.28 4.79

Figure 1. Results of numerical simulation for the case considered in Section 3. Left: errors of the JKO scheme (dotted line)
and of the VIM and EVIE schemes (solid lines) as functions of the length of the time step τ . The error is the W2 distance
between the numerical solution computed by the schemes on grids containing respectively 4, 7, 12, 20, 33, 54, 90 and 148
time steps and a numerical reference solution obtained using the VIM scheme on a finer grid (244 time steps). The solutions
of the VIM and EVIE schemes are indistinguishable to machine precision. We observe that any of the second-order schemes
on a grid with four steps is as accurate as the standard JKO scheme on a grid with 90 steps. Similarly, the VIM or EVIE
scheme on a grid with seven steps is as good as the JKO scheme on a grid with 148 steps. The numerical estimation of the
order of convergence of the JKO scheme and of the VIM and EVIE schemes are given in the legend. Right: CPU times (in
seconds) with respect to the number of time steps (the implementation uses MATLAB Version: 8.6.0.267246 (R2015b) on
a 8 core Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz HP Thinkstation.).
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