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Solution scattering from colloidal
curved plates: Barrel tiles, scrolls
and spherical patches
Doru Constantin *

Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91405 Orsay Cedex, France

I provide analytical or semi-analytical expressions for the small-
angle scattering of colloidal objects that can be described as
curved plates. These models could help characterize a variety
of inorganic or biological systems.

1. Introduction
Over the last years, progress in colloidal chemistry has

enabled the synthesis of a wide variety of particles, such as
spheres, cubes, tetrapods, platelets with different shapes etc. (Lu
et al., 2009). In the latter category, some thinner particles do not
remain flat, but rather develop a more or less pronounced curva-
ture (Levard et al., 2010; Thill et al., 2012), and in some extreme
cases can even roll up in scrolls (Sharifi et al., 2013; Bouet
et al., 2013; Hutter et al., 2014). As further examples, small
building blocks (hybrid nanoparticles (Park, 2004) or proteins
(Tresset et al., 2013)) assemble into incomplete cylindrical or
spherical shells. In all of these cases, the final objects can be
described as curved plates, without however reaching full spher-
ical or cylindrical symmetry.

Due to the typical distances involved, small-angle scattering
(SAS) is very well adapted to characterizing such objects. With
respect to more direct techniques such as transmission electron
microscopy, SAS has the advantage of intrinsically performing
an average over a large number of objects (and thus of being
sensitive to the sample statistics) and of being amenable to time-
resolved in-situ studies, which can provide valuable information
on the kinetics of various processes (e.g. of particle synthesis).

Calculating the form factor of colloidal objects is an essen-
tial pre-requisite to interpreting their SAS signal. Although
analytical expressions exist for some shapes (Pedersen, 1997),
the procedure is rendered cumbersome by the need to inte-
grate over all particle orientations for each value of the scat-
tering vector. A general formalism was developed long ago
(Stuhrmann, 1970; Svergun & Stuhrmann, 1991) that expands
the density distribution over the spherical harmonics and takes
advantage of their integration properties to express the scattered
intensity as a sum over a function basis. This method, used
mainly for biomolecules in solution, considers a generic three-
dimensional distribution. Alternative approaches rely on calcu-
lating the correlation function of the object in drect space and
then converting to reciprocal space (Glatter, 1980; Ciccariello
et al., 2015).

In this paper, I particularize the approach of Stuhrmann and
Svergun to particles that can be modeled as curved plates, with
constant (or almost constant) curvature over the entire object.

This strategy considerably simplifies the calculations as well
as the numerical implementation of the model and is devel-
oped both for curvature along one direction (cylindrical sym-
metry) and for isotropic curvature (spherical symmetry). The
first case applies to the rolled-up nanoplatelets discussed above,
while the second one can describe, for instance, the intermedi-
ates that make up a viral capsid (Tresset et al., 2013; Law-Hine
et al., 2015).

In the following, I always assume that the solutions are dilute
enough for particle interactions to be negligible (the structure
factor always equals 1) and that the particles are isotropically
oriented, i.e. without a preferential direction. In this case, the
intensity as a function of the scattering vector I(q) is propor-
tional to the orientationally averaged form factor |F(q)|2 to
be obtained below. The cylindrical and spherical cases will be
denoted by subscripts c and s, respectively.

2. Methods
2.1. Cylindrical coordinates

We assume that the density distribution can be separated in
a contribution in the (x, y) plane and along the polar axis z:
Fc(r) = G(r,φ)H(z). The two-dimensional Fourier transform
of the in-plane part is:

G̃(qr, η) =

∫ ∞
0

rdr
∫ 2π

0
dφ exp(−iqrr)G(r,φ), (1)

that we will expand over the basis of harmonic functions
(Baddour, 2011):

G̃(qr, η) =

∞∑
k=−∞

gk(qr) exp(ikη) (2)

When modelling the SAS signal from the particles, we will
only need the rotational average (in the (r, φ) plane) of the
squared modulus of G̃(qr, η):〈∣∣G̃(qr, η)

∣∣2〉
η
=

1
2π

∫ 2π

0
dη
∣∣G̃(qr, η)

∣∣2 =

∞∑
k=−∞

|gk(qr)|2

(3)
which must be further combined with the Fourier transform of
H(z), given by:

H̃(qz) =

∫ ∞
−∞

dz exp(−iqzz)H(z) (4)

by an average over the polar angle θ:∣∣F̃c(q)
∣∣2 =

1
2

∫ π

0
sin θ dθ

〈∣∣G̃(qr, η)
∣∣2〉

η

∣∣H̃(qz)
∣∣2 (5)

where qr = |qr| = q sin θ and qz = q cos θ.

2.2. Spherical coordinates

In spherical coordinates, the Fourier transform of a function
Fs(r), with r = (r,θ′,φ′) is:

F̃s(q, θ, φ) =
∫
R3

d3r exp(−iqr)Fs(r) (6)
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If Fs(r) can be separated into a radial part and one that only
depends on the solid angle Ω′ = (θ′, φ′): Fs(r) = f (r)G(θ′,φ′)
we can expand the latter over the spherical harmonics Y`m,
that we define as in § 3.5 of (Jackson, 1998). We then have
G(θ′, φ′) =

∑
`m c`mY`m(θ′, φ′), with:

c`m =

∫
sin(θ′) dθ′

∫
dφ′Y ∗`m(θ

′, φ′)G(θ′, φ′) (7)

and can rewrite (6) as:

F̃s(q, θ, φ) =
∞∑
`=0

∑̀
m=−`

c`m

∫ ∞
0

r2 dr f (r)× (8)

×
∫

sin(θ′) dθ′
∫

dφ′ exp(−iqr)Y`m(θ′,φ′)

or, using the spherical harmonics expansion of a plane wave
((Jackson, 1998), § 3.6):

F̃s(q, θ, φ) = 4π
∞∑
`=0

∑̀
m=−`

i−`c`mY`m(θ, φ)b`(q) (9)

with

b`(q) =
∫ ∞

0
r2 dr j`(qr) f (r). (10)

The rotational average of the squared modulus of F̃s is given
by:∣∣F̃s(q)

∣∣2 =
〈∣∣F̃s(q, θ, φ)

∣∣2〉
Ω

=
1

4π

∫ π

0
sin(θ) dθ

∫ 2π

0
dφ
∣∣F̃s(q, θ, φ)

∣∣2 (11)

= 4π
∞∑
`=0

∑̀
m=−`

|c`m|2 |b`(q)|2 = 4π
∞∑
`=0

|b`(q)|2
∑̀

m=−`

|c`m|2 ⇒

∣∣F̃s(q)
∣∣2 = 4π

∞∑
`=0

c` |b`(q)|2 (12)

where c` =
∑`

m=−` |c`m|
2 can be found either by explicitly

resumming all the m terms or by using the double integral:

c` =
2`+ 1

4π

∫
dΩ

∫
dΩ
′ G(Ω)G∗(Ω′) P̀

[
cos(Ω̂,Ω′)

]
(13)

3. Results and discussion
3.1. Barrel tiles

Figure 1 shows a cylindrically curved rectangular plate (bar-
rel tile) in cylindrical coordinates.

For simplicity, we assume the thickness d of the tile to be neg-
ligible with respect to all other length scales involved: G(r, φ) =
dδ(r − R)Θ(φ, 0, φ0), where R is the curvature radius, φ0 is the
opening angle of the tile and the generalized Heaviside function
Θ(φ, 0, φ0) = 1 for 0 ≤ φ < φ0 and 0 elsewhere. From (1):

G̃(qr, η) = dR
∫ φ0

0
dφ exp [−iqrR cos(φ− η)]) (14)

and its coefficients gk(qr) =
1

2π

∫ 2π

0
dη G̃(qr, η) are:

gk(qr) = dRφ0 ik exp
(

ikφ0

2

)
sinc

(
kφ0

2

)
Jk(qrR) (15)

with sinc(x) = sin(x)/x the cardinal sinus function, yielding for
the in-plane average (3):

〈∣∣G̃(qr, η)
∣∣2〉

η
= (dRφ0)

2

[
J2

0 (qrR) + 2
∞∑

k=1

akJ2
k (qrR)

]
(16)

where the coefficients ak = sinc2
(

kφ0

2

)
are independent of qr

and of R.

3.2. Scrolls

We consider a rolled-up sheet as in Figure 2. Its thickness d
is constant and negligible with respect to the other dimensions
in the problem.

We assume that the section of the object in the (x, y) (or (r, φ))
plane is a spiral, i.e. it can be written as φ(r) = f (r), with f
a monotonously increasing differentiable function. This condi-
tion implies that the object does not “double back” on itself, in
radius or in angle.

In the coordinate system (s, t), with s the local tangent and
t the normal to the curve (see Figure 3), the scroll section is
given by δ(t). When converting to the polar coordinates (r, φ)
one needs to account for the slope of the curve α, with cosα =[
1 + r2 f ′(r)2

]−1/2
. In particular,

δ [t(φ)] =
1
r

√
1 + r2 f ′(r)2 δ [φ− f (r)] (17)

The spiral is then given by:

G(r, φ) =

 d

√
1 + r2 f ′(r)2

r
δ(φ− f (r)) for r ≤ R0

0 for r > R0
(18)

Without the square root prefactor, Eq. (18) would describe the
same geometrical shape, but with an inhomogeneous thickness
(or linear density). The Fourier transform (1) is:

G̃(qr, η) = d
∫ R0

0
dr
√

1 + r2 f ′(r)2 exp [−iqr cos( f (r)− η)] ,
(19)

and its coefficients in expansion (2) are finite Hankel transforms
of order k (Sneddon, 1946):

gk(qr) = ikd
∫ R0

0
dr
√

1 + r2 f ′(r)2 exp [−ik f (r)] Jk(qrr),

(20)
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3.3. Spherical patches

The simplest case is that of a negligible thickness d: f (r) =
dδ(r − R). From (10), the coefficients are simply:

b`(q) = dR2 j`(qR). (21)

In view of the applications, we also consider the case of a
finite-thickness homogeneous shell: f (r) = 1 for Rmin ≤ r <
Rmax (with d = Rmax − Rmin) and zero elsewhere. The compo-
nents (10) are then:

b`(q) =
∫ Rmax

Rmin

r2 dr j`(qr) =
1
q3

∫ zmax

zmin

z2 dz j`(z). (22)

with z = qr, zmin = qRmin and zmax = qRmax. The integral can be
expressed in terms of the regularized hypergeometric function
(Olver & NIST, 2010):

b`(q) =
1
q3

√
2

2`+2 Γ

(
`+ 3

2

)
×

×z`+3
1F̃2

(
`+ 3

2
;

2`+ 3
2

,
`+ 5

2
;− z2

4

)∣∣∣∣zmax

zmin

(23)

where the vertical bar at the end indicates that the expression
should be evaluated between zmin and zmax. The components
b`(q) only depend on Rmin and Rmax and can be precomputed
and stored for further use if these parameters remain constant.

4. Applications
Let us now consider some examples. For plates (§ 4.1) and

spherical caps (§ 4.3) we will compute the form factor of an
object with constant volume and increasing curvature; this is
useful for determining the point at which the curved-object
model starts to differ from the flat-object approximation.

We will also discuss scrolls whose section is a logarithmic
spiral. In this particular case, the integral (20) has an analytical
expression in terms of regularized hypergeometric functions.

4.1. Bending plates

We start by considering a barrel tile of constant length L and
with varying curvature radius R and opening angle φ0, such that
Rφ0 = L. The in-plane average (16) rescaled by its low-angle
value

〈∣∣G̃(qr, η)
∣∣2〉

η
/(Ld)2 is shown in Figure 5 for φ0 values

ranging from 0 (flat plate) to 2π (complete circle). The section
of the tile is shown in the inset. The intensity in the limiting case
φ0 = 0 was evaluated directly from the Fourier transform of the
object, without expanding in the components (15).

Clearly, the effect of curvature on the scattering signal is only
important for strongly curved plates, with a curvature radius R
smaller than about half the length L.

The convergence is quite fast, since the intensity no longer
changes perceptibly beyond seven to ten terms.

4.2. Logarithmic spirals

With the notations of § 3.2,

f (r) = 2π ln
(

r
Rc

)
, for Rmin ≤ r < Rmax (24)

where we need to introduce a lower limit Rmin. We renormal-
ize distances by Rc, defining u = r/Rc, umin = r/Rmin, umax =
r/Rmax and Q = qrRc. The coefficients (20) have a closed
expression involving the regularized hypergeometric function:

gk(Q) =
ik
√

1 + (2π)2

2k+1

Γ
( k+1

2 − kiπ
)

Γ(k + 1)Γ
( k+3

2 − kiπ
) Qk×

×u2k+1−kiπ
1F̃2

(
k + 1

2
− kiπ; k + 1,

k + 3
2
− kiπ;−Q2u2

4

)∣∣∣∣umax

umin

(25)

In practice, a few (kmax less than ten) coefficients suffice for
an accurate determination of the in-plane average (3):〈∣∣G̃(Q, η)

∣∣2〉
η
= |g0(Q)|2 + 2

kmax∑
k=1

|gk(Q)|2 (26)

as illustrated in Figure 6.

4.3. Spherical caps

A particularly simple case of a spherical patch is the polar
cap: G(θ, φ) = 1 for θ < θ0 and 0 otherwise, with no depen-
dence on φ. This type of object was used to model the shape
of an intermediate in the assembly of bacteriophage procapsid
(Tuma et al., 2008). The authors computed numerically the dis-
tance distributions (in real space) and obtained the scattering
curves by a Fourier transform.

In our approach, the scattering signal is obtained directly in
reciprocal space as a series with analytical terms since all coef-
ficients c`m with m 6= 0 vanish in (7), leaving only:

c`0 =

 π
[P̀ −1(u0)− P̀ +1(u0)]

2

2`+ 1
` > 0

π(1− u0)
2 ` = 0

(27)

Combining equations (23) and (27) it is then easy to com-
pute the rotationally averaged scattering signal (11). In Figure 7
we show this quantity for polar caps with a constant thickness
Rmax−Rmin and varying curvature radius R0 = (Rmax +Rmin)/2.
The volume of the objects is chosen as equal to that of a flat disk
with the same thickness d and radius Rd = 5d and the scatter-
ing signal of the disk (which corresponds formally to the case
R0 = ∞) is also shown, but is evaluated via numerical integra-
tion rather than by the c`0 expansion above.

Identifying the volume of the disk and that of the spherical
cap yields u0 = cos(θ0) via:

πR2
dd = 2πR2

0d(1− u0)

[
1 +

1
12

(
d
R0

)2
]

(28)

For small curvature radii (R0 ∼ Rd or smaller), the difference
with respect to the flat object is visible both in the appearance
of oscillations and in the reduction of the Guinier radius (the
low-Q plateau extends to higher Q values).

In terms of convergence, ten ` terms are enough to describe
the
∣∣F̃s(q)

∣∣2 (12) with very good precision (down to values of

about 0.01
∣∣F̃s(0)

∣∣2 ), while beyond fifteen terms there is no
longer any perceptible difference in the form factor values.
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4.4. Finite thickness

For simplicity, in some cases (§ 3.1, § 3.2 and Eq. (21) in
§ 3.3) I modeled the objects as infinitely thin. One can easily
account for a finite thickness d by multiplying the form factor
with the (amplitude squared of the) Fourier transform of a solid
ball with diameter d:

|R(q)|2 =

[
3

sin(qd/2)− (qd/2) cos(qd/2)
(qd/2)3

]2

(29)

This function is spherically symmetric, and thus unaffected
by the angular averaging. It can therefore be applied as a last
step, to the

∣∣F̃s(q)
∣∣2 calculated as in Eqs. (5) or (11).

5. Conclusion
When colloidal objects can be described as curved plates,

their density profile can often be written as the product of a
radial profile and an angular part. In this case, the corresponding
solution (orientationally averaged) form factor can be expanded
into a series, each term being representing the contribution of a
given harmonic degree.

This separation greatly reduces the computational require-
ments, since the number of numerical integrals required for
each value of the scattering value q is halved (in cylindrical
coordinates) or eliminated (in spherical coordinates). Moreover,
it renders the result easier to understand by connecting the q-
dependence of the form factor to the angular density profile.

For scrolls, although only one space direction is decoupled
from the angular dependence, the particular shape of the sec-
tion affords a similar expansion, as demonstrated for logarith-
mic spirals.
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Barrel tile represented in a cylindrical coordinate system.
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Figure 2
Scroll represented in a cylindrical coordinate system. The intersections
of the object with the (x, z) plane are highlighted.
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Figure 3
Detail of the scroll section. s and t are the local curvilinear coordinates
at point P and α is the slope.
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Spherical patch represented in a spherical coordinate system.
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Figure 5
Normalized in-plane average

〈∣∣G̃(qr, η)
∣∣2〉

η
/(Ld)2 (16) as a function

of the scaled scattering vector Q = qrL/2 for a plate of constant length
L = Rφ0 and varying opening angles φ0. The shape of the plate is
shown in the inset.
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Figure 6
a) Logarithmic spiral (24) with Rmin = Rc and Rmax = 10Rc b) In-plane
average for the spiral in a) with kmax = 4. The individual terms are
labelled and the top curve is the sum (26).
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Figure 7
Normalized average

〈∣∣F̃s(q, θ,φ)
∣∣2〉

Ω

/(Ld)2 (11) as a function of the
scaled scattering vector Q = qRd for a disk with radius Rd and polar
caps of equivalent volume and varying curvature radii R0. For all
objects, the thickness d = Rd /5.
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