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I. INTRODUCTION

This research explores the problem of extending machine
learning (ML) methods, specifically supervised methods, to
the case of datasets given by the aggregation of several sets,
i.e., datasets of the form:

T = {si}Ni=1, (1)

where N ∈ N is the number of observations and each
observation si is a non-empty set. Examples on methods and
datasets for this task are in references: [1]–[14].

The ML pipeline for such datasets usually involves a
preprocessing step that computes a feature value from each
observation, with the attempt of encoding the behavior of
points within the set. However, useful information may be
lost, resulting in models with poor performance.

The importance of the study of this problem relies on the
development of ML models for such data. Therefore, pro-
posed solutions could improve performance, interpretability,
and hence robustness in ML applications. However, a main
difficulty to be solved is how to include all the information
provided by the data into ML models.

Even though this problem could be solved from several
points of views. i.e., neural networks, generative models, etc,
we used an approach based on discriminative kernel methods,
fuzzy sets theory, and probability measures. We justify this
choice in the next paragraphs.

Kernel methods. They are a class of models and algorithms
to perform ML on data [15]–[18]. They are based in two
main concepts: 1) a similarity measure between observations
called kernel [19]–[22]; and 2) a ML algorithm working with
kernels. Indeed, a kernel is a mapping from the data space to

∗Present address: IBM Research, Brazil. e-mail: jorged@br.ibm.com.
∗Homepage: http://researcher.ibm.com/person/br-jorged.

a special kind of geometric space, for instance, a Reproducing
Kernel Hilbert Space (RKHS), a Krein space [23] or a pseudo-
Euclidean space [24]. Kernels enable to carry out operations
on those high-dimensional spaces via the kernel trick [16]:
a kernel evaluation of two points from the original space
correspond to a bilinear form evaluation of two functions1.
Therefore, a ML algorithm is implicitly defined, via the kernel
trick, on those spaces. Kernels does not have constraints about
the input space. Hence, there exists kernels defined on strings,
graphs, images, distributions, sets, logic predicates, etc. An
advantage of kernels methods is their modularity: it is possible
to change the kernel definition without changing the algorithm.
Examples of kernel methods are: support vector machines
[25]–[27], support vector data description [28], Kernel PCA
[16], Gaussian process [29], multiple kernel learnig [30].

Probability measures. They are functions used to measure
sets. They are used to model uncertainty from a random
perspective. i.e., uncertainty arise by chance and it is mod-
eled from a probabilistic point of view. In this sense, we
use probability measures to say that a observation si is a
sample following a probabilistic law defined by a probability
measure. Therefore, the analysis of the datasets of interest
given by Equation (1), depends on the local distribution of
each observation si. Examples of such observations, are: a set
of features from a image [31]; temporal-space features [32];
object invariance features [10]; among others [1]. Probability
measures are widely used in measure theory and probability
theory. They are widely used within the ML community as
a tool to describe and model random uncertainty in data and
algorithms.

Fuzzy sets. A fuzzy set [33] is a relaxed version of a set:
its indicator function, called as membership function, takes
values within an interval. Fuzzy sets have been widely used
to model uncertanty. In this research we used fuzzy sets
to model uncertainty from a observation si using an ontic
interpretation, that is, a fuzzy set modeling si is an entity or a
granula. Moreover, we also use a epistemic interpretation, i.e.,
a fuzzy set is a model of non-precise data. Examples of ob-
servations with fuzzy modeling include: interval measurements
[34], non-precise data [35], overlapping intervals described by

1For example the inner product of two functions in RKHS’s.
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(subjective) words [36], a fuzzy version of precise data [37].
Fuzzy sets have a set of rich mathematical tools and they
are a powerful modeling technique. They are widely used in,
control systems, operations research, optimization, databases,
etc2. Observations that are candidates to be modeled by fuzzy
sets are: replicate measurements [38]; point-wise uncertainty
[6]–[8]; subjective opinions [9]. meteorological, economics
and bio-informatics data [7], [39]–[42].

Kernel embeddings. As we previously mentioned, kernels
are mappings from an input space towards a geometrical space.
This research focus on ML algorithms with either kernels
embeddings of probability measures or kernels embeddings of
fuzzy sets. That is the functional representation of probability
measures and fuzzy sets in high dimensional spaces. Even
though the kernel embedding of probability measures is not
a new idea [12], [18], practical applications are still at its
beginnings [4], [14], [43]–[49]. This thesis also presents the
novel concept of kernel embeddings of fuzzy sets. This new
idea will leverage several theoretical and practical applications
on fuzzy sets.

A. Contributions

We list our principal theoretical and practical contributions
within the areas of science benefited from them.
• Fuzzy mathematics: we proposed a new class of similarity

measures between fuzzy sets via kernels on fuzzy sets.
Those kernels make possible a kernel embedding of
fuzzy sets into functional spaces. Hence, they enable a
geometrical interpretation in high dimensional spaces, via
the kernel trick, of several tasks involving fuzzy sets.

• Fuzzy systems: we proposed a new fuzzy system: the non-
singleton TSK fuzzy system. We show that the dynamics
of such fuzzy system can be viewed as a kernel. This view
is useful to understand how functions are approximated
by fuzzy systems in a RKHS context.

• Kernel methods: we formulate several classes of kernels
on fuzzy sets: the intersection kernel, the cross product
kernel, the convolution kernel, the distance-based kernel,
the non singleton TSK kernel, all those kernels defined on
fuzzy sets. We showed how to perform kernel engineering
from those kernels. As result, we present the RBF,
polynomial among others new kernels on fuzzy sets.

• Fuzzy data analytics: we applied kernels on fuzzy sets
on supervised classification of athletic performance and
dyslexic prediction [5]. We performed a hypotheses test-
ing using a two-sample kernel test on clinical data using
kernels on fuzzy sets [51].

• Description models: we propose three new non-
parametric data description models for distributional data:
the support measure data description models [52]–[54].
That is a kernel method, and it can be used as an one-class
classifier. This method could be applied in classification,
density estimation and clustering tasks. This method is
based in kernel embeddings of probability measures.

2 However, there is a lack of use of fuzzy modeling from the core ML
community as it was noted in [37]. This research attempts to fill this gap in
the kernel method area.

• Anomaly detection: we applied description models for
distributional data to the task of group anomaly detection
on astronomical data [52], [54]. The task to be solved was
given by finding out anomalous clusters of galaxies from
a dataset of clusters of galaxies.

• Machine learning and fuzzy machine learning: we fill
a gap between those two communities in the realm of
kernel methods. There is no work analyzing fuzzy data
from using kernels embeddings of fuzzy sets.

Our contributions were published in top conferences of the
ML and Fuzzy sets areas: [5], [50]–[55].

B. Outline

A background in presented in Section II. The following sec-
tions are self-contained, each one describing our contributions,
experiments and main results. We omitted proofs, however
they are available in the thesis report or under request. Our
main contributions are in the following sections: Section III
formulates a data description model for distributional data.
Section IV defines the kernels on fuzzy sets. Section V shows
how fuzzy systems can be viewed from the kernel respective.
Section VI shows how a distance between fuzzy sets can
be used to generate new kernels on fuzzy sets. Section VII
presents the conclusions.

II. BACKGROUND

We briefly describe in this section kernels, fuzzy sets,
probability measures, fuzzy data and distributional data.

A. Kernels

Kernels are real-valued functions defined on X ×X , where
X is a non-empty set. They define similarity measures between
objects or entities3 [16], [18], [21]. Whereas a value k(x, y)
close to zero means that x and y are less similar. Higher values
means more similarity between x and y. We say that k is
positive definite if it satisfies:

N∑
i=1

N∑
j=1

cicjk(xi, xj) ≥ 0, (2)

for all N ∈ N, {c1, . . . , cN} ⊂ R, {x1, . . . , xN} ⊂ X . If
(2) has the inverse relation ≤, the kernel is called negative
definite. If k is neither positive nor negative definite it is called
indefinite. Positive definite kernels have the property

k(x, y) = 〈φx, φy〉H, (3)

whereH denotes a RKHS of functions f : X → R, with kernel
k, norm ‖.‖H, and inner product 〈· , ·〉H. Hence, φx, φy are
functions in H, and they are mappings of the form4:

φx : X → R, y 7→ φx(y) = k(x, y). (4)

We denote by k(., s) the mapping t → k(t, s) with fixed s.
Positive kernels are called reproducing kernels because they

3There are more general definitions of kernels but for our purposes we will
only use real-valued kernels

4Functions φx and φy are called as representative functions of x and y.
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satisfy: 1) ∀x ∈ X , φx ∈ H and 2) ∀x ∈ X , ∀f ∈ H
〈f, φx〉H = 〈f, k(., x)〉H = f(x). The reproducing property
of positive definite kernels is given by Condition 2). Equation
(3) is derived from it.

Positive kernels provide a way to compute inner products in
RKHS’s for non-vectorial data using the kernel trick. More-
over, they permit to use geometrical tools and algorithms on
non-vectorial data. For instance, to estimate empirical means,
projections, angles, etc, on φy, φx.

Indefinite kernels either symmetric or non-symmetric had
been used in ML problems with state-of-the-art results [56]
[57]–[59]. Some work has been done to give a geometrical
interpretation for indefinite kernels in pseudo-euclidean spaces
[24], [56] and Krein spaces [23]. In such spaces, bilinear forms
are not necessarily positive definite and norms do not define
metrics. However, a geometric interpretation is given by linear
spaces with symmetric bilinear forms5. For a deeper study of
kernel methods we refer books [16], [18].

B. Fuzzy set Theory

Fuzzy sets are sets allowing membership degrees for their
elements. A fuzzy set X ∈ Ω is a set characterized by a mem-
bership function X : Ω→ [0, 1]. Given x ∈ Ω, the evaluation
X(x) is called as the degree of membership of x to the fuzzy
set X . The support of a fuzzy set, denoted by supp(X), is
the set {x ∈ Ω | X(x) > 0}. Moreover, the set of all the
fuzzy sets in Ω is denoted by F(Ω). A intersection between
fuzzy sets is ussually implement via a T-norm operator [61],
[62]; which is a function T : [0, 1]2 → [0, 1], such that, for all
x, y, z ∈ [0, 1], satisfies: 1) commutativity: T (x, y) = T (y, x);
2) associativity: T (x, T (y, z)) = T (T (x, y), z); 3) monotonic-
ity: y ≤ z ⇒ T (x, y) ≤ T (x, z); and 4) limit condition
T (x, 1) = x. A multi-argument extension Tn : [0, 1]n → [0, 1]
is given by the recurrence:

T2(x1, x2) = T (x1, x2), n = 2,

Tn(x1, x2, . . . , xn) = T (x1, Tn−1(x2, x3, . . . , xn)), n ≥ 3.

Throughout this text we use T to denote a T-norm and its
multi-argument extension.

C. Probability measures

Let (Ω,F ,P) be a tuple with Ω being a non-empty set, F
a σ-algebra and a probability measure P : F → [0, 1]. i.e.
P satisfies the probability axioms. Then (Ω,F ,P) is called a
probability space. We use notation X ∼ P to say that the
random variable X is distributed according to P. Notation
EX∼P[f(X)] means the expectation of f(X), where X is
distributed according to P. We use B(RD) to denote the Borel
σ-algebra of RD.

5If k is symmetric, then k(x, x′) = Q(k(., x), k(., x′)), where Q is a sym-
metric and bilinear form, with reproducing property Q(k(., x), f) = f(x).
See Proposition 6 in [60] for details.
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Figure 1. a) a) Red box: Two group anomalies. Green box: Two non-
anomalous groups b) From several anomalous and non-anomalous groups
similar to the ones from a) we compute the mean statistic per group. Red
points are the means of anomalous groups. Blue points are the means of non-
anomalous groups. Notice that it is hard it is to find out group anomalies
using the mean statistic, because the overlapping.

D. Distributional data and Fuzzy data

We conclude this section defining distributional and fuzzy
data [63]–[72]. By distributional data we mean that si is a
sample according to a probability measure Pi. In this sense
(1) can be modeled by {Pi}Ni=1. By fuzzy data we mean
either that si contains fuzzy elements. i.e., si = (X1, . . . XD)i,
consequently (1) can be modeled by {(X1, . . . XD)i}Ni=1 or si
is a fuzzy set. i.e., (1) can be modeled by {Xi}Ni=1.

III. SUPPORT MEASURE DATA DESCRIPTION

We now present in this section how to construct data
description (DD) models for distributional data. DD models
[28], [73]–[76] are useful in several ML tasks including one-
class classification, clustering and description. We use our DD
models in the task of group anomaly detection.

A. Contributions

Our main contributions are:

• a framework based on the concept of Minimum-Volume
set (MV-set) to derive DD models for distributional data;

• a set of discriminative and non-parametric DD kernel
methods for distributional data: the support measure data
description (SMMD) models:

– a SMDD model derived from minimum enclosing
balls (MEB) of mean maps;

– a SMDD model as the MEB of mean maps of norm
one and stationary kernels;

– a SMDD model as stochastic optimization problem.
• application of the models as one-class classifiers to solve

the task of group anomaly detection on astronomical data;

B. Definitions

We present useful definitions regarding kernel embeddings
[12], [12], [18], [45], [48], [77], [78] and Minimum-Volume
(MV) sets [73]–[75].
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Definition 1 (Mean map). Let P be a probability measure and
X ∼ P. The mean map in H is the function:

µP : RD → R

t 7→ µP(t) = EP[k(X, t)] =

∫
x∈RD

k(x, t)dP(x),

(5)

Definition 2. The embedding of probability measures P ∈ P
in H is given by the mapping

µ : P → H

P 7→ µP = EP[k(X, .)] =

∫
x∈RD

k(x, .)dP(x).

Hence, µP acts as the representative function in H for P.
The embedding is injective if the kernel k is characteristic [48],
[79], [80]. Empirical estimators for µP, are bounded [12].

Theorem 1 (Kernel on probability measures). A real-valued
kernel on P × P , defined by

k̃(P,Q) =〈P,Q〉P = 〈µP, µQ〉H

=

∫
x∈RD

∫
x′∈RD

k(x,x′)dP(x)dQ(x′)
(6)

is positive definite [18].

Next, we present an extension of MV-sets to the case of
probability measures

Definition 3 (MV-set for probability measures). Let (P,A, E)
be a probability space, where P is the space of all probability
measures P on (RD,B(RD)), A is some suitable σ-algebra of
P and E is a probability measure on (P,A). The MV-set is
the set

G∗α = argmin
G∈A

{ρ(G)|E(G) ≥ α}, (7)

where ρ is a reference measure on A and α ∈ [0, 1]. The
MV-set G∗α, describes a fraction α of the mass of E .

We make the following assumptions: The i-th observation
si contains i.i.d. 6 realizations of a random variable X ∼
Pi. The density and the form of each Pi is unknown. The
sample {Pi}Ni=1 is i.i.d. according to E (Def. 3). The empirical
measure: P̂i = 1

Li

∑Li

`=1 δx`
(si) approximates Pi;

C. SMDD models

We introduce the Support Measure Data Description Mod-
els (SMDD) as a mean to describe distributional data. The
formulation of the objective functions and the optimization
problem of the SMDD models are given thanks to the def-
inition of MV-set for probability measure. Our main idea is
to use a minimum enclosing ball, in the RKHS, for the mean
functions of probability measures and hence the distributional
data. SMDD’s solutions rely only on a subset of probability
measures: the support measures.

6Independent and identically distributed.

1) Enclosing balls for volume sets : The definition of MV-
sets is very general. Instead, we limit our attention to the class
of sets A formed by sets of probability measures satisfying
some specific criteria. A first empirical7 approximation for G
in (7) is given by:

Ĝ0(R, c) = {Pi ∈ P | ‖Xi − c‖2 ≤ R2}, (8)

R ∈ R+ and center c ∈ RD are parameters of a hypersphere.
A MV-set will be found optimizing over R and c. However, (8)
has two main drawbacks: it does not consider complex models,
and some Pi will be in (8) if only if all possible realizations
of Xi ∼ Pi are inside the hypersphere (R, c). Such limitations
are overtaken considering the following three classes of sets:
• Only mean maps inside the ball

Ĝ1(R, c) = {Pi ∈ P | ‖µPi
− c‖2H ≤ R2}, (9)

• mean maps with norm one and stationary kernels,
• a stochastic approach

Ĝ3(K) = {Pi ∈ P | Pi(‖k(Xi, .)−c‖2H ≤ R2) ≥ 1−κi}.
(10)

The third class considers bounding values K = {κi}Ni=1, κi ∈
[0, 1]. Thus, Pi is in the volume-set G, if a subset of the
realizations of the random variable k(X, ·), X ∼ Pi is inside
the hypersphere (R, c), with probability less than 1− κi.

D. First model SMDD

The MV-set Ĝ∗α for volume-sets G given by (9) can be
computed solving the following optimization problem. Given
{µPi
}Ni=1 the SMDD model is:

Problem 1.

min
c∈H,R∈R+,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to ‖µPi − c‖2H ≤ R2 + ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N.

Proposition 1 (Dual form).

Problem 2.

max
α∈RN

N∑
i=1

αik̃(Pi,Pi)−
N∑

i,j=1

αiαj k̃(Pi,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . , N
N∑
i=1

αi = 1

where k̃(Pi,Pj) = 〈µPi
, µPj
〉H by (6), and α is a Lagrange

multiplier vector with non negative components αi.

Proposition 2 (Representer theorem).

c(.) =
∑
i

αiµPi
, i ∈ {i ∈ I | 0 < αi ≤ λ},

7Empirical in the sense of the sample {Pi}Ni=1.
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where I = {1, 2, . . . , N}. Furthermore, all Pi, i ∈ {i ∈
I | αi = 0} are inside the MV-set Ĝ∗α. All Pi, i ∈ {i ∈
I | αi = λ} are the training errors. All Pi, i ∈ {i ∈ I | 0 <
αi < λ} are the support measures.

Theorem 2. Let η be the Lagrange multiplier of the constraint∑N
i=1 αi = 1 of Problem 2, then R2 = −η + ‖c‖2H.

A test probability measure Pt is in this SMDD model, if
‖µPt

− c‖2H is a value less than R. The value ‖µPt
− c‖2H is

computed via

k̃(Pt,Pt)− 2
∑
i

αik̃(Pi,Pt) +
∑
i,j

αiαj k̃(Pi,Pj), (11)

where indices i, j belongs to the support measure set.

E. Second SMDD Model

This SMDD model constraint means maps to have norm
one. The main reason to do this is because stationary kernels
[81]: kI(x,x′) = f(x − x′) have constant norm. However
mean maps do not have constant norm [4]. This SMDD model
performs the following normalization to means maps.

˜̃
k(Pi,Pj) =

k̃(Pi,Pj)√
k̃(Pi,Pi)k̃(Pj ,Pj)

=
〈µP, µQ〉H√

〈µP, µP〉H〈µQ, µQ〉H
,

(12)
which is actually a positive definite kernel. This normalization
preserves the injectivity of the mapping µ : P → H.
Therefore, the distributional information of the observations.

The MV-set Ĝ∗α for volume-sets G of the form given by (9),
but with ‖µP‖ = 1 can be computed by solving Problem 2 but
with kernel ˜̃

k. Furthermore, note that k̃ is given by (6) but with
kernel kI . As

∑N
i=1 αi

˜̃
k(Pi,Pi) is constant in Problem 2 when

˜̃
k is used, the MV-set Ĝ∗α can be computed by the following
optimization problem:

Problem 3.

max
α∈RN

−
N∑

i,j=1

αiαj
˜̃
k(Pi,Pj)

subject to 0 ≤ αi ≤ λ, i = 1, . . . , N
N∑
i=1

αi = 1.

This formulation is similar to the dual of the One-class
Support Measures Machines [4], [75] but is not equivalent8.

F. Third SMDD model

The MV-set Ĝ∗α for volume-sets G given by (10) can
be computed by a chance-constrained optimization problem.
Given {µPi}Ni=1, and {κi}Ni=1, κi ∈ [0, 1], the SMDD model
is:

8The thesis report contains a study of the equivalence between SMDD
models and other discriminative models.

Problem 4.

min
c∈H,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to Pi(‖k(Xi, .)− c(.)‖2H ≤ R2 + ξi) ≥ 1− κi,
ξi ≥ 0,

for all i = 1, . . . , N .

Chance constraints control the probability of constraint
violation, allowing model flexibility. However, it is required
to deal with every possible realization of k(X, ·), X ∼ Pi.
Thus, it is necessary to turn probabilistic constraints into
deterministic ones. Using Markov’s inequality, we state that:

Pi(‖k(Xi, .)− c(.)‖2H ≥ R2 + ξi) ≤
EP[‖k(Xi, .)− c(.)‖2H]

R2 + ξi
,

(13)
holds, for all i = 1, 2, . . . , N .

The term EP[‖k(Xi, .)−c(.)‖2H in (13) can be expressed in
terms of the trace of a covariance operator in H. A covariance
operator in H with kernel k is the mapping ΣH : H → H,
such that for all f, g ∈ H it satisfies:

〈f,ΣHg〉H = EP[f(X)g(X)]− EP[f(X)]EP[g(X)],

because the reproducing property 9. The covariance operator
is then expressed in terms of tensorial products:

ΣH = EP[k(X, .)⊗k(X, .)]−EP[k(X, .)]⊗EP[k(X, .)] (14)

To compute the trace of covariance operator, we establish
the following proposition and lemma.

Proposition 3.

tr(ΣH) = EP[k(X,X)]− k̃(P,P). (15)

That is, the trace of a possible infinite dimensional matrix
can be computed in terms of kernel evaluations.

Lemma 1.

EP[‖k(X, .)− c(.)‖2H] = tr(ΣH) + ‖µP − c(.)‖2H.

1) Deterministic Form: From Lemma (1), the deterministic
form of the Problem 4 is the following optimization problem.
Given the mean functions {µPi

}Ni=1 and {κi}Ni=1, κi ∈ (0, 1],
the SMDD model is:

Problem 5.

min
c∈H,R∈R,ξ∈RN

R2 + λ

N∑
i=1

ξi

subject to ‖µPi
− c(.)‖2H ≤ (R2 + ξi)κi − tr(ΣHi ),

ξi ≥ 0,

for all i = 1, . . . , N , where tr(ΣHi ) is given by (15).

Proposition 4 (Dual form). The dual form of Prob. 5 is given
by the following fractional programming problem10:

9ΣH is a bounded operator on a separable infinite dimensional Hilbert
space and can be represented by an infinite matrix [82].

10A reference for this kind of optimization problem is [83].
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Problem 6.

max
α∈RN

N∑
i=1

αi〈µPi
, µPi
〉H −

∑N
i,j=1 αiαj〈µPi , µPj 〉H∑N

i=1 αi

+

N∑
i=1

αitr(Σ
H
i )

subject to 0 ≤ αiκi ≤ λ, i = 1, . . . , N
N∑
i=1

αiκi = 1,

where 〈µPi
, µPj
〉H is computed by k̃(Pi,Pj), α is a La-

grange multiplier vector with αi non negative components;
and tr(ΣHi ) is given by (15).

Proposition 5 (Representer theorem).

c(.) =

∑
i αiµPi∑
i αi

, i ∈ {i ∈ I | 0 < αiκi ≤ λ}, (16)

where I = {1, 2, . . . , N}. Furthermore, all Pi, i ∈ {i ∈
I | αi = 0} are inside the MV-set Ĝ∗α. All Pi, i ∈ {i ∈
I | αiκi = λ} are the training errors. All Pi, i ∈ {i ∈
I | 0 < αiκi < λ} are the support measures and, from this,
the radius is computed by

R2 =
‖µPi − c(.)‖2 + tr(ΣHi )

κi
, (17)

for all i ∈ {i ∈ I | 0 < αiκi < λ}.

Alternatively, we have the following result to compute R.

Theorem 3. Let η be the Lagrange multiplier of the constraint∑N
i=1 αiκi = 1 of the Lagrangian of Problem 6, then R2 =

−η.

In order to test if a probability measure Pt is described by
this model, we have to compare R against ‖µPt

−c‖2H+tr(ΣHt )
which equals to (Prop. 5, Theorem 3, and Eq. (15))

k̃(Pt,Pt)− 2
∑
i

αik̃(Pi,Pt) +
∑
i,j

αiαj k̃(Pi,Pj) + tr(ΣHt )

(18)

G. Experiments on Supervised Group Anomaly Detection

We present some experiments on group anomaly detec-
tion11.

1) Group anomaly detection: This task aims to find out
anomalous groups of points from distributional data. Dif-
ferently from usual anomaly detection in which anomalies
are points far away of the center of the data, points of
anomalous groups can be highly mixed with points of non-
anomalous groups turning group anomaly detection a chal-
lenging problem. Group anomalies can be given by [1]: 1)
point-based anomalies, defined as being an aggregation of
anomalous points; 2) distribution-based anomalies, defined as
being an anomalous aggregation of non-anomalous points. Our
approach is to use SMDD models to find out group anomalies.

11More experiments on this data and artificial datasets were carried out and
reported in the thesis manuscript.

Figure 1 shows why the information provided by each local
distribution crucial to perform a right description of those
datasets. For related works using generative and discriminative
approaches we refer papers: [1], [2], [4], [84]–[86].

2) Experimental setting: We use empirical estimators to
estimate the kernel between probability measures (6), and the
the trace of the covariance operator (15). We used our three
SMDD models and, for the sake of comparison, two state-
of-the-art anomaly detection discriminative models. Table I
shows the models and their respective notations. SVDD model

Model Problem Section/Ref.

M1 6 III-F

M2 2 III-D

M3 3 III-E

OCSMM - [4]

SVDD - [28]
Table I

MODELS USED IN THE EXPERIMENTS

was trained using the empirical group means. To see generative
models vs OCSMM on the same problem we refer to [4] 12.
To get reliable statistics, we performed 200 runs. Performance
metrics were area under the ROC curve (AUC), and accuracy
(ACC). AUC values close to one indicate models find out
group anomalies with few false positives and false negatives. A
RBF kernel was always used within the kernel on probability
measures. The kernel parameter was given by the median
heuristic, that is one divided by the median of the Euclidean
distance between all possible pairs of points in the dataset.
The regularization parameter was set to one.

Figure 2. Group anomaly detection dataset. Green and yellow boxes contain
non-anomalous groups of points. Red, blue, and magenta boxes contain
anomalous groups of points.

3) Point-Based Group Anomaly Detection over a Gaussian
Mixture Distribution dataset: We generated 50 non-anomalous
groups and 30 groups for test. From the 30 groups in the test
set, 20 groups correspond to anomalous groups. The number
of points per group (anomalous or non-anomalous) follows
a Poisson distribution with parameter β = 10. Points
in non-anomalous groups were randomly sampled from two

12The Matlab code and datasets for experiments can be found at http://
www.vision.ime.usp.br/∼jorjasso/SMDD.html.

http://www.vision.ime.usp.br/~jorjasso/SMDD.html
http://www.vision.ime.usp.br/~jorjasso/SMDD.html
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(a) AUC. (b) ACC Non A. (c) ACC Anom. (d) Group Means

Figure 3. Experimental results and a plot of the group means for the point-based group anomaly detection experiment.

(a) AUC. (b) ACC Non A. (c) ACC Anom. (d) Group Means

Figure 4. Experimental results and plot of the group means for the two distribution-based anomaly detection experiment.

different Multimodal Gaussian Mixture Distribution (GMD).
The parameters for the first GMD were mixture weights:
(0.33, 0.64, 0.03); means: (−1.7,−1), (1.7,−1), (0, 2); and
0.2 ∗ I2 as the sharing covariance matrix, where I2 denotes
the 2 × 2 identity matrix. The second GMD had the same
parameters but mixture weights: (0.33, 0.03, 0.64). The prob-
ability of chosen either the first or the second GMD was
π = (0.48, 0.52). The green box in Fig. 2 shows three non-
anomalous groups for π = 0.48 and the yellow box shows
two non-anomalous groups for π = 0.52.

We generated three different types of anomalous groups.
The first type was given by 10 groups of points sampled
from the normal distribution: N ((−0.4, 1), I2). Magenta box
in Figure 2 show five of those groups. The second type
was given by five groups of points sampled from GMD
with the following parameters: weights: (0.1, 0.08, 0.07, 0.75);
means: (−1.7,−1), (1.7,−1), (0, 2), (0.6,−1); and a sharing
covariance matrix given by 0.2∗I2. Blue box in Figure 2 shows
five of those groups. The third type was given by five groups
of points sampled from a GMD with parameters: weights:
(0.14, 0.1, 0.28, 0.48); means: (−1.7,−1), (1.7,−1), (0, 2),
(−0.5, 1); and 0.2 ∗ I2 as the sharing covariance matrix. Red
box in Figure 2 shows five of those groups.

Figure 3 shows the metrics AUC, ACC for anomalous
and non anomalous groups, for this experiment. To see the
difficulty of the problem, we also plotted the group means
of anomalous vs non-anomalous groups: Green points are
the means of non-anomalous groups. Red, blue, and magenta
points are the means of anomalous groups. Findings suggest
that SMDD models can detect well such anomalies.

4) Distribution-Based Group Anomaly Detection over a
Gaussian Mixture Distribution dataset: We generated 50 non-
anomalous groups for the training set and 30 groups: 15
anomalous and 15 non-anomalous, for the test set. The number
of points per group was the same as the last experiment.

Points from non-anomalous groups were sampled from a
GMD with parameters: mixture weights: p = {1/3, 1/3, 1/3};
means: (−1.7, 1), (1.7,−1), (0, 2) and sharing the same co-

variance matrix 0.2∗I2. The same GMD was used to generate
group anomalies. However, the covariance matrix was given by
estimating the covariance of the points rotated by 45 degrees.

Figure 4 shows the performance metrics for this experi-
ment. In addition, we show a graph of the group means of
non anomalous (green points) vs the anomalous groups (red
points). Findings suggest that SMDD models perform well in
this problem.

H. Group Anomaly Detection on Astronomical Data

PCA

PCA

PCA

PCA

PCA

PCA

Figure 5. Feature extraction pipeline for the group anomaly experiment on
astronomical data .

We show an application of SMDD models on astronomical
data. The task is to find out anomalous groups of galaxies
from a set containing several clusters of galaxies. Finding out
those anomalies may help scientists to understand a common
behavior among groups of galaxies in the universe. Also could
leverage new discoveries by analyzing clusters with unusual
behavior. The data was obtained from The Sloan Digital
Sky Survey13 (SDSS) project. Previous experiments with this
dataset can be found in in [2]–[4]. This data contains massive
spectroscopic surveys of the Milky Way galaxy and extra
solar planetary systems. We used about 7×105 galaxies, each
of them represented by a 4000-dimensional vector denoting

13http://www.sdss3.org/
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spectral information. Following [3], each vector was down-
sampled to a 500-dimensional vector. A neighborhood relation
among galaxies was used to aggregate galaxies. The analysis
returns 505 groups of galaxies from a total of 7530 galaxies.
Thus, each group of galaxies contain about 10− 15 galaxies.
Finally, we applied PCA to the spectral vectors, we used the
first four PCA components, which preserved about 85% of the
variance. Figure 5 shows the feature extraction pipeline

It is hard to have real examples of anomalous clusters
of galaxies. For the sake of model comparison, we did two
experiments. In both of them, we injected artificial group
anomalies.

We set the first experiment by randomly using 455 non-
anomalous groups as the training set. The test set was given
by remaining 50 non-anomalous groups, plus 50 anomalous
groups. We formed each group anomaly by randomly selecting
ni galaxies from all the dataset of galaxies. Parameter ni was
distributed according to a Poisson distribution with parameter
β = 15. As galaxies were randomly chosen, the aggregation
itself is anomalous.

The training set for the second experiment was given
as before. We also used the remaining 50 non-anomalous
groups plus 50 group anomalies. Each group anomaly was
sampled from a GMD. We compute the mean, and the
covariance of three random sets of galaxies. Those values
was given as parameter of the GMD. The weights were
p = {0.33, 0.33, 0.33}.

Figures 6d and 6h, show a graph of the group means of
the four dimensional PCA vectors. Green points are the non-
anomalous group means, and red points are the anomalous
group means. From left to right, top to bottom, the 1st vs
2nd, 2nd vs 3rd , 3rd vs 4th and 4th vs 1st PCA dimension.
Notice that group anomalies are hard to be detect by common
methods, because there is an overlapping of group means.

Figure 6 shows performance metrics for the first experiment
(top), and the second experiment (bottom). It is important to
emphasize that OCSMM was compared against other group
anomaly generative method and it obtained equivalent per-
formance [4]. Therefore, we compare only SMDD models
against OCSMM and SVDD models. The AUC metric shows
that SMDD models performed well. Furthermore, a spherical
normalization has a positive effect, increasing M3 AUC value
close to one.

I. Summary and further research on this topic
We presented in this section the Support Measure Data

Description (SMDD) models for distributional data. Some
properties of those models are: 1) they are kernel methods;
2) the model is a function that only depends on a sub-set of
probability measures: the support measures; 3) it is a non-
parametric and discriminative model; 4) SMDD models are
derived from MV-sets, when the class of functions are hyper-
spheres in the RKHS. We successfully tested those models
against the challenging task of group anomaly detection. We
include a real application of detecting anomalous clusters
of galaxies. Future work includes applications in novelty
detection, clustering and classification, for distributional data,
and extension to other learning methodologies.

IV. KERNELS ON FUZZY SETS

Fuzzy sets similarity is an important topic of research due to
its several theoretical and practical applications [87], [88]. We
use a well-know concept from kernel methods, the kernel, to
define a new class of similarity measures between fuzzy sets.
In this sense, we present and define a new class of kernels:
kernels on fuzzy sets. [5], [50], [51] They bring advantages
and tools from kernels to the realm of fuzzy sets. Kernel
on fuzzy sets implicitly define an embedding of fuzzy sets
on functional spaces. Therefore, a geometrical interpretation
of similarity measures for fuzzy sets. In the realm of ML
and fuzzy data analytics, extending kernel methods to fuzzy
data is straightforward, it only suffices to change the kernel
definition in algorithms as support vector machines, kernel
PCA, etc. Those advantages could leverage the development
of many applications in several areas of research where the
observational data is fuzzy data. Figure 7 shows a vectorial
view of similarity measures for fuzzy sets in a RKHS.

Let F(Ω) = {X | X : Ω → [0, 1]} be the class of fuzzy
sets on Ω. A kernel on fuzzy sets is a mapping of the form
[5], [50], [51], [55]:

k : F(Ω)×F(Ω) → R (19)
(X,Y ) 7→ k(X,Y ), (20)

Because reproducing property of kernels if k is positive
definite, then there exist the following kernel embedding of
fuzzy sets into a RKHS:

φ : F(Ω)→ H, X 7→ φX(.) = k(., X). (21)

Thus, similarity measures between fuzzy sets, via kernels on
fuzzy sets, have the following geometrical view:

k(X,Y ) = 〈φX , φY 〉H. (22)

A. Contributions

Our main contributions are :
• the development of the theory of behind kernels on fuzzy

sets and kernel embeddings;
• the formulation of the intersection kernel on fuzzy sets;
• the formulation of the cross product kernel on fuzzy sets;
• the formulation of the convolution kernel on fuzzy sets;
• examples of applications on mathematics, ML and fuzzy

data analytics

B. Related work

A related work using fuzzy sets and kernel methods, without
implying kernels on fuzzy sets, are given by: clustering [89]–
[91], classification [92], feature extraction [93], discriminant
analysis [94]. Another related work linking fuzzy systems to
kernels, without implying kernels on fuzzy sets are given by
[95]–[103]. Also, there is a link between fuzzy equivalence
relations and positive definite kernels [104]–[106]. To our best
of knowledge, there is not a formulation of kernels on fuzzy
sets.

Next, we present three class of kernels on fuzzy sets: the
cross product, the intersection and the convolution kernel on
fuzzy sets.
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(a) AUC. (b) ACC Non A. (c) ACC Anom. (d) Group Means

(e) AUC. (f) ACC Non A. (g) ACC Anom. (h) Group Means

Figure 6. The results of the experiment for the group anomaly detection task over a SDSS III dataset.

Figure 7. A geometrical view of a similarity measure between fuzzy sets
using kernel on fuzzy sets.

C. The cross product kernel on fuzzy sets

1) The cross product kernel on sets: Let Ω be a nonempty
set and Let G(Ω) denote the set of all non-empty subsets of
Ω. Assuming also G(Ω) contains as elements all the nonempty
countable finite subsets of Ω. The cross product kernel is the
real-valued mapping k : G(Ω) × G(Ω) → R given by [107],
[108]:

kset(A,B) =
∑

x∈A,y∈B
k(x, y), (23)

where k is a real-valued kernel on Ω×Ω. Kernel kset defines
a similarity measure for any two sets A,B ∈ G(Ω) by
k(A,B) = 〈φA, φB〉H, where φA and φB are the representer
functions in a RKHS of the sets A,B, respectively.

Assuming that for all X ∈ F(Ω) the set supp(X) is a
nonempty finite countable set, we present the cross product
kernel on fuzzy sets in the following definition.

Definition 4 (The cross product kernel on fuzzy sets). Given
two real-valued kernels k1, k2 defined on Ω× Ω and [0, 1]×
[0, 1] respectively. The cross product kernel on fuzzy sets is a
function k× : F(Ω)×F(Ω)→ R given by:

k×(X,Y ) =
∑

x∈supp(X),
y∈supp(Y )

k1 ⊗ k2

(
(x,X(x)), (y, Y (y))

)
, (24)

where X(x) and Y (y) are the membership degrees of x, y ∈ Ω
to the fuzzy sets X,Y , and the tensorial product: k1 ⊗ k2 :

(Ω× [0, 1])× (Ω× [0, 1])→ R, is defined by:

k1 ⊗ k2

(
x,X(x), y, Y (y)

)
= k1(x, y) k2(X(x), Y (y)). (25)

Lemma 2. If k1 and k2 are real-valued positive definite
kernels, then k× is a real-valued positive definite kernel.

However, it is possible to use any kernels, positive or not,
for k1 and k2 in k×. The geometrical representation for such
cases is guaranteed [22], [23], [56], [60].

2) Examples:

Example 1. Table II shows several kernels k× when
k2

(
X(x), Y (y)

)
= X(x)Y (y), and k1 is a positive definite

kernel.

k1(x, y) k×(X,Y )

linear
∑

x∈supp(X),
y∈supp(Y )

xyX(x)Y (y)

polynomial
∑

x∈supp(X),
y∈supp(Y )

(α〈x, y〉+ β)dX(x)Y (y)

exponential
∑

x∈supp(X),
y∈supp(Y )

exp(σ〈x, y〉)X(x)Y (y)

Gaussian
∑

x∈supp(X),
y∈supp(Y )

exp(−σ‖x− y‖2)X(x)Y (y)

Table II
EXAMPLES OF KERNELS k× FOR DIFFERENT FORMULATIONS FOR k1 AND

k2 BEING THE LINEAR KERNEL.

The main difference between k×(X,Y ) and kset is that
the former treat each element from the set with equally
importance.

Example 2. We explore the case when the elements to be
analyzed are in the finite measure space (Ω,A, µ). Let k1, k2

be continuous functions with finite integral14.

14k is a µ-integrable function, i.e., k ∈ L1(µ). (Definition 10.1, [109]).
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The kernel

k×(X,Y ) =∫∫
x∈supp(X),
y∈supp(Y )

k1 ⊗ k2

(
(x,X(x)), (y, Y (y))

)
dµ(x)dµ(y),

(26)

is a cross product kernel on fuzzy sets.

Example 3. If the data lives in a probability space (Ω,A,P),
where P is a probability measure, the resulting cross product
kernel on fuzzy sets will be

k×(X,Y ) =∫∫
x∈supp(X),
y∈supp(Y )

k1 ⊗ k2

(
(x,X(x)), (y, Y (y))

)
dP(x)dP(y),

(27)

Moreover, if we have the set probability measures

P = {P |
∫

Ω

√
k1(x, x)k2

(
X(x), X(x)

)
dP(x) <∞}

The cross product kernel on fuzzy sets is given by:

k×(X,Y ) =∫∫
x∈supp(X),
y∈supp(Y )

k1 ⊗ k2

(
(x,X(x)), (y, Y (y))

)
dP(x)dQ(y),

(28)

where elements from X and Y are i.i.d according to P,Q ∈ P .

Notice that in the last example we mix two types of
uncertainty: randomness and fuzzyness (ontic or epistemic)
Fuzzyness in the sense of membership degree of an element
to a fuzzy set. Randomness in the sense of that the elements
of such sets could follow some probabilistic law.

3) Generalization towards a product space: A general-
ization of k× to deal with a D-tuple of fuzzy sets, i.e.,
(X1, . . . , XD) ∈ F(Ω1) × · · · × F(ΩD) is implemented by
the following kernel:

kπ×
(
(X1, . . . , XD), (Y1, . . . , YD)

)
=

D∏
d=1

kd×(Xd, Yd). (29)

If all the kernels kd× are positive definite then kπ× is positive
definite by closure properties of kernels. Also, the following
generalization is possible:

kΣ
×
(
(X1, . . . , XD), (Y1, . . . , YD)

)
=

D∑
d=1

αik
d
×(Xd, Yd).

(30)
Kernel kΣ

× is positive definite if only if αi ∈ R+ and all the
kD× kernels are positive definite.

4) Properties: The following propositions show some prop-
erties of this kernel.

Proposition 6. l k× is a convolution kernel.

Proposition 7. k× is a kset and k2 is a linear kernel over
membership functions given by indicator functions.

D. The fuzzy convolution kernel

We present a fuzzy version of the convolution kernel [110].

Definition 5 (The fuzzy convolution kernel). Let e and ~e =
(e1, e2, . . . , eL) elements of the sets E and E1 × · · · × EL,
respectively. Given the fuzzy relation R ⊆ (E1 × E2 × · · · ×
EL)× E, with membership function:

R : E1 × E2 × · · · × EL × E → [0, 1]

(~e, e) 7→ R(~e, e), (31)

and defining the decomposition R−1(e) =
{(~e,R(~e, e))|R(~e, e)}. The fuzzy convolution kernel is
a real-valued function on E × E, satisfying ∀e, e′ ∈ E:

k?(e, e
′) =

∑
(~e,R(~e,e))∈R−1(e),

(~e
′
,R(~e

′
,e′))∈R−1(e′)

R(~e, e)R(~e
′
, e′)

L∏
l=1

kl(el, e
′
l),

(32)
where kl, 1 ≤ l ≤ L are positive definite kernels on El × El.

Lemma 3. If kernels k1, k2, . . . , kL are positive definite, then
k? is positive definite

1) Examples:

Example 4. Consider the following fuzzy data:

{xi, ~xi, R(~xi, xi)}Ni=1, (33)

where xi ∈ Ω is an object, ~xi = x
(i)
1 , . . . x

(i)
L ∈ Ω1×· · ·×ΩL

are a set of features and R(~xi, xi) is a fuzzy relation modeling
an membership degree of the features ~xi to the object xi. We
use functions fl : Ωl → RD, 1 ≤ l ≤ L e D ∈ N, and the set
of Gaussian kernels:

kl(x
(i)
l , x

(j)
l ) = exp(−γl‖fl(x(i)

l )− fl(x(j)
l )‖2), γ > 0,

where 0 ≤ i, j ≤ N . Then, the following is a fuzzy
convolution kernel on Ω× Ω:

k?(xi, xj) = R(~xi, xi)R(~xj , xj)

exp(−
L∑
l

γl‖fl(xil)− fl(x
j
l )‖

2). (34)

Example 5. Using X,Y ∈ F(Ω) and the fuzzy relation:

R : Ω×F(Ω) → [0, 1]

(~x,X) 7→ R(~x,X) = X(~x)

The fuzzy convolution kernel is a kernel on F(Ω)×F(Ω):

k?(X,Y ) =
∑

~x,R(~x,X)∈R−1(X),

~y,R(~y,Y )∈R−1(Y )

R(~x,X)R(~y, Y )k(~x, ~y)

=
∑

~x,R(~x,X)∈R−1(X),

~y,R(~y,Y )∈R−1(Y )

X(~x)Y (~y)k(~x, ~y). (35)

This is the cross product kernel on fuzzy sets.

2) Generalization: Placing the kernel kR on [0, 1] × [0, 1]
in (32). i.e., kR

(
R(~e, e), R(~e

′
, e′)
)

instead of R(~e, e)R(~e
′
, e′),

give us a more general form for k?
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E. The intersection kernel k∩ on fuzzy sets

This kernel is based on two key concepts:
• a finite decomposition of the support of a fuzzy set. In

order to develop that concept we need the concept of
semi-ring of sets;

• the concept of fuzzy contribution. We need here the
definition of measure on semi-ring of sets

Next, we present some important definitions for the formula-
tion of k∩.

1) Previous definitions:

Definition 6 (Semiring of sets). A semi-ring of sets, S ⊆ Ω,
is a subset of the power set P(Ω), satisfying:

1 φ ∈ S, φ is the empty set,
2 A,B ∈ S =⇒ A ∩B ∈ S,
3 for all A,A1 ∈ S such that A1 ⊆ A, there is a

sequence of pairwise disjoint sets: A2, A3, . . . AN ∈
S, satisfying:

A =

N⋃
i=1

Ai.

Condition 3 is called as finite decomposition of A.

Definition 7 (Measure on semi-ring of sets). Let S be a semi-
ring of sets. Let ρ : S → [0,∞] be a function satisfying:

1 ρ(φ) = 0;
2 ρ(A) = ρ(

⋃N
i=1Ai) =

∑N
i=1 ρ(Ai). Where A ∈ S

has finite decomposition:
⋃N
i=1Ai

by Carathéodory’s extension theorem [111], ρ is a measure on
σ(S), where σ(S) is the smallest σ-algebra containing S.

Using the both definitions, it is possible to define the
intersection kernel on sets. [112]. This kernel is a function
k : S × S → R defined by:

k(A,A′) = ρ(A ∩A′). (36)

This kernel is positive definite.
2) Measuring the support of fuzzy sets: We developed a

way to measure the support of a fuzzy set. First, we define
the set:

FS(Ω) = {X ⊂ Ω|supp(X) ∈ S},

Then, follows that, the support of any fuzzy set belonging to
FS(Ω), by Definition 6, has finite decomposition:

supp(X) =
⋃

A∈B⊆A

A. (37)

Next, we introduce the following indicator function:

1B : S → {0, 1}

A 7→ 1B(A) =

{
1, A ⊆ B,

0, cc
, (38)

where B ⊆ S.

Definition 8 (Measure of the support of a fuzzy set). Let
X ∈ FS(Ω) be a fuzzy set15. Let 1supp(X) be given by (38).

15Note that supp(X) admits finite decomposition

We define a measure of the support of a fuzzy set being a
measure on semi-ring of sets, satisfying:

ρ(supp(X)) =
∑

A∈B⊆A

ρ(A) (39)

=
∑
A∈A

ρ(A)1supp(X)(A). (40)

Example 6 (Measuring the support of an intersection of fuzzy
sets). Let X,Y be two fuzzy sets in ∈ FS(Ω). A measure of
the support of their intersection is given by:

ρ(supp(X∩Y )) =
∑
A∈A

ρ(A)1supp(X)(A)1supp(Y )(A). (41)

We present another key concept, the fuzzy contribution.

Definition 9 (Fuzzy contribution). Let X be a fuzzy set in
∈ FS(Ω). The fuzzy contribution of the set A ∈ S is the
value:

X(A) =
∑
x∈A

X(x). (42)

3) The intersection kernel on fuzzy sets: Based on the above
definitions, we state the intersection kernel on fuzzy sets in the
following definition.

Definition 10 (The kernel k∩ ). Let X,Y be two fuzzy sets
in FS(Ω). We define the kernel k∩ as being the function:
k∩ : FS(Ω)×FS(Ω)→ R, satisfying:

k∩(X,Y ) =
∑
A∈A

(
X ∩ Y

)
(A)ρ(A)1supp(X)(A)1supp(Y )(A),

(43)
Where

(
X ∩ Y

)
(A) is the fuzzy contribution of A ∈ A.

For the sake of easy notation, we introduce: CX,Y = {A ∈
A|1supp(X)(A)1supp(Y )(A) = 1}. Then, follows that (43) can
be rewritten as:

k∩(X,Y ) =
∑

A∈CX,Y

X ∩ Y (A)ρ(A). (44)

4) Examples:

Example 7. Using a T-norm k∩ can be rewritten as:

k∩(X,Y ) =
∑

A∈CX,Y

X ∩ Y (A)ρ(A) (45)

by fuzzy contribution (Definition 9)

=
∑

A∈CX,Y

(∑
x∈A

X ∩ Y (x)

)
ρ(A)

using a T-norm

=
∑

A∈CX,Y

(∑
x∈A

T (X(x), Y (x))

)
ρ(A)(46)

Example 8. Table III shows several kernels k∩(X,Y ) derived
from common T-norms.

Example 9. If the σ-algebra for ρ is a Borel algebra, then k∩
can be rewritten as:

k∩(X,Y ) =
∑

A∈CX ,Y

∫
x∈A

X∩Y (x)dρ(x) ≡
∫
x∈Ω

X∩Y (x)dρ(x),

(47)
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Kernel k∩ T-norm

k∩ min(X,Y ) =
∑
A∈CX ,Y

∑
x∈A min(X(x), Y (x))ρ(A) minimum

k∩ pro(X,Y ) =
∑
A∈CX ,Y

∑
x∈AX(x)Y (x)ρ(A) product

k∩ Łuk(X,Y ) =
∑
A∈CX ,Y

∑
x∈A max(X(x) + Y (x)− 1, 0)ρ(A) Łukasiewicz

k∩ Dra(X,Y ) =
∑
A∈CX ,Y

∑
x∈A Z(X(x), Y (x))ρ(A) Drastic

Table III
DIFFERENT FORMULATIONS FOR k∩ INDUCED BY DIFFERENT T-NORMS

Example 10. From the last example, if the measure is the
probability measure P, then k∩ can be rewritten as:

k∩(X,Y ) =

∫
RD

T (X(x), Y (x))dP(x). (48)

Specific T-norms, for instance, the minimum and product T-
norms produce the following kernels:

k∩ min(X,Y ) =

∫
RD

min(X(x), Y (x))dP(x) (49)

k∩ pro(X,Y ) =

∫
RD

X(x)Y (x)dP(x) (50)

5) Positivity of the kernels: We have proved the follow-
ing propositions showing that kernels k∩ min and k∩ pro are
reproducing kernels.

Proposition 8. Kernel k∩ min(X,Y ) is positive definite.

Proposition 9. Kernel k∩ pro(X,Y ) is positive definite.

Theorem 4 (A positive definite intersection kernel on fuzzy
sets). If the T-norm T is a positive definite function, then k∩
is positive definite.

F. Mathematical applications

1) Kernel embedding of fuzzy sets into a RKHS: Positive
definite kernels on fuzzy sets perform, implicitly, the following
embedding of fuzzy sets into a RKHS:

φ : F(Ω)→ H, X 7→ φX(.) = k(., X).

That mapping is a nonlinear one. An important result of
this embedding is that it is possible to have a vectorial
representation of fuzzy sets in a RKHS.

2) Distances on fuzzy sets: If the mapping is injective, then
the following expression is a metric in a RKHS:

D(X,Y )
def
= ‖k(., X)− k(., Y )‖H. (51)

That metric induce a topology on the set of fuzzy sets F(Ω).
Moreover, relaxing the condition it is possible to induce
pseudo-metrics and semi-metrics in a RKHS. Both of them
inducing a topology in the set F(Ω).

3) A new geometrical view of fuzzy sets: Kernels on fuzzy
sets leverages a new geometrical view of fuzzy sets. For
example, for two fuzzy sets X,Y , it is possible to estimate:

〈φX , φY 〉H = ‖φX‖H‖φY ‖H cos θ = k(X,Y )

4) A new similarity notion for fuzzy sets: Kernel values will
be within:

0 ≤ k(X,Y ) ≤ ‖φX‖H‖φY ‖H.

In the extreme case, we have either, k(X,Y ) =
‖φX‖H‖φY ‖H if the angle between φX and φY is zero; or
k(X,Y ) = 0 if φX and φY are orthogonal.

5) Open questions: An important open question is about
the characterization of injective mappings φ. Specifically, what
kind of kernels on fuzzy sets make φ to be injective.

G. Kernel engineering

Let k1, k2 be two positive definite kernels on fuzzy sets.
Value α ∈ R+, function f : F(Ω) → R, a positive definite
kernel k3 on RD ×RD, a N ×N positive definite symmetric
matrix Σ and φ : F(Ω) → RD. By closure properties of
positive kernels [17], the following are positive definite kernels
on fuzzy sets 1) k = k1 + α; 2) k = k1 + k2; 3) k = αk1;
4) k(x, x′) = k1(x, x′)k2(x, x′); 5) k(x, x′) = f(x)f(x′);
6) k(x, x′) = k3(φ(x), φ(x′)). Based on those primitives, we
have the following positive definite kernels on fuzzy sets:16

• The convex combination kernel on fuzzy sets:

kmkl(X,X
′) =

M∑
m=1

αmkm(X,X ′), com αm ∈ R+

(52)
• The polynomial kernel on fuzzy sets:

kpol(X,Y ) = (k(X,Y ) + α)β , α ≥ 0, β ∈ N (53)

• The RBF kernel on fuzzy sets:

kgauss(X,Y ) = exp(−γD(X,Y )), γ > 0 (54)

• The rational quadratic kernel on fuzzy sets

kratio(X,Y ) = (1 +
D(X,Y )

αβ2
)−α, α, β > 0 (55)

Also, it is possible to have the following Conditionally positive
definite kernels
• Multiquadric kernel on fuzzy sets:

kmulti(X,Y ) = −
√
D(X,Y ) + α2, α ∈ R (56)

• Inverse multiquadric kernel on fuzzy sets.

kinvmult(X,Y ) = (
√
D(X,Y ) + α2)−1, α ∈ R (57)

16All this examples assume that D is a metric on fuzzy sets.
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H. Fuzzy data analytics and ML applications

Kernels o fuzzy sets will be used in modular form in
kernel methods to solve several ML problems and fuzzy
data analytics. Methods as support vector machines, Fisher
discriminant analysis [113], kernel logistic regression [114],
among others can be extended for the analysis of fuzzy data.
Approaches as Multiple Kernel Learning [30] can be used for
the case of heterogeneous data involving fuzzy variables. For
instance, a regression task can be extended to include fuzzy
set modeling for imprecise inputs. i.e., the regression function
E[Y |X = Xi] takes into account not only the uncertainty of
the dependent variable but also of the independent variable.
Some methods as the support vector regression [115] and the
Gaussian proccess [29] can be easily adapted to this case. Data
description models the support vector data description method
[116] and the one-class support vector machine could be easily
extended to the case of fuzzy data. The only thing to be
modified will be a kernel matrix induced by kernels on fuzzy
sets. Those methods could leverage applications as anomaly
detection on fuzzy data, density estimation for imprecise data,
etc.

I. Summary and further research on this topic

We defined kernel on fuzzy sets. We present the cross
product kernel, the convolution kernel and the intersection
kernel on fuzzy sets. All of them are similarity measures for
fuzzy sets. We presented the theory behind them and several
examples. Also, we list several areas that could benefit from
those kernels.

V. TAKAGI SUGENO KERNEL

We present in this section a new class of kernels on fuzzy
set derived from an extension of a Takagi Sugeno Kang (TSK)
fuzzy systems [117] for the case of non-singleton inputs. We
call those kernels as non-singleton TSK kernel on fuzzy sets

Interpretation of fuzzy systems as kernels is important
because this give a new view of the representation of the space
of functions whereby fuzzy systems approximate hypothesis.
For instance, if the fuzzy system induce a positive definite
kernel, the space of functions that the system approximates
is a RKHS. Besides linguistic interpretation, positive definite
kernels give an additionally property to fuzzy systems: a
geometrical view in a RKHS of the interaction of fuzzy rules
and inputs to the system.

A. Related work

We classify the related work as follows: 1) fuzzy theory and
kernels. Some work using jointly positive kernels and fuzzy
sets are: [89]–[94]. 2) Fuzzy sets inducing kernels. Fuzzy
systems with some T-norm operators induce positive define
kernels. [95], [96]. Some applications using this fact to train
fuzzy learning systems using support vector machines [97]–
[102]. 3) Kernels and fuzzy basis functions. A related work
linking fuzzy basis functions and kernels are: [118]. 4) Ker-
nels and fuzzy equivalence relations. Literature shows that
some positive kernels can be interpreted as fuzzy equivalence

relations [104], [105]. The importance of this is that some
prior knowledge can be introducing in the algorithm [106].
None of the related work imply kernels on fuzzy sets.

B. Contributions

We have the following contributions:

• we define the non-singleton TSK fuzzy system;
• we show that this new fuzzy system induce a class of

kernels: the non-singleton TSK kernels;
• we give several examples of implementation of TSK

kernels;
• we show that non-singleton TSK kernels are fuzzy equiv-

alence relations;
• we give two applications on a supervised classification

on imprecise datasets: an athletics performance and a
dyslexia prediction.

C. TSK fuzzy system

TSK fuzzy systems [117], are fuzzy systems that describe the
outputs of the rules by functions. Given the index sets D =
{1, . . . , d, . . . ,D} e L = {1, . . . , `, . . . , L} a TKS rule system
is a set with L elements or rules of the form:

If X`
1 and. . . and If X`

d and. . . and If X`
D︸ ︷︷ ︸ Then g`(x)︸ ︷︷ ︸

antecedent consequent,
(58)

where X`
d is a fuzzy set in F(Ωd), Ωd is a domain, and g` is

a real-valued function on Ω1 × Ω2 × · · · × ΩD.

Definition 11. The antecedent part of the rule can be modeled
by the following fuzzy relation:

A` :

D∏
d=1

Ωd → [0, 1]

x 7→ A`(x) = T (X`
1(x1), X`

2(x2), . . . , X`
D(xD)).

(59)

∀` ∈ L, where x is the tuple (x1, x2, . . . , xD).

This allows to represent the rules by the following mappings

Definition 12. A rule ` ∈ L of a TSK fuzzy system (58) is
modeled by the mapping:

D∏
d=1

Ωd → R

x 7→ A`(x)g`(x). (60)

A TSK fuzzy system define real-valued functions on Ω1 ×
Ω2 × · · · × ΩD by:

fs(x) =

∑L
`=1A

`(x)g`(x)∑L
`=1A

`(x)
. (61)
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D. Non-singleton TSK fuzzy system

Instead of modeling the inputs to the system by x, we will
use a tuple of fuzzy sets (X1, X2, . . . , XD). In the context of
Mamdani fuzzy systems, such systems are called non-singleton
fuzzy systems [119].

Definition 13 (TSK-NS fuzzy system). Let A` and g` be
mappings as defined before. A TSK-NS is a fuzzy system
with L rules given by (58), defining a real-valued mapping on
F(Ω1 × Ω2 × · · · × ΩD), given by:

fns(X;x′′) =

∑L
`=1 sup

x∈Ω1×···×ΩD

(
T (X(x), A`(x))

)
g`(x′′)∑L

`=1 sup
x∈Ω1×···×ΩD

T (X(x), A`(x))
,

(62)
where x′′ ∈

∏D
d=1 Ωd is a parameter and F(Ω1 × · · · × ΩD)

is the class of fuzzy sets defined on Ω1 × · · · × ΩD.

E. kernels and fuzzy systems

We review related work with fuzzy systems and rules.
1) PDFC Kernel [95]: This kernel is a real-valued kernel

on RD ×RD. It can be induced by Mamdani and TSK fuzzy
systems.

Lemma 4 (PDFC kernel). If for all d ∈ D and ` ∈ L, any
fuzzy set X`

d, of the antecedent part of the rule (58) were
given by translating the following positive definite functions:
ud : R→ [0, 1], d ∈ D, given by:

ud(x) =

{
ud(−x) if x 6= 0

1 if x = 0,
, x ∈ R, (63)

that is, X`
d(xd) = ud(xd − x`d), where xd is a particular

input and x`d its corresponding dislocation parameter. And if
it is used a product T-norm in (59), then the kernel kpdfc :
RD × RD → R, given by:

kpdfc(x,x
`) =

D∏
d=1

ud(xd − x`d)

=

D∏
d=1

Xd(xd)

= Al(x), (64)

is positive definite.

2) Kernel Takagi Sugeno Kang (TSK) [99], [102]: If the
following conditions are satisfied: 1) a Gaussian functions
for antecedents fuzzy sets; 2) a product function as T-norm
operator; 3) a consequent of the form g`(x) = 〈x,x`〉,
where x` is a parameter of g`; then, the following kernel:
ktsk : RD × RD → R given by:

ktsk(x,x`) =

D∏
d=1

exp(−γ(xd − x`d)2)〈x,x`〉

= exp(−γ||x− x`||2)〈x,x`〉
= A`(x)g`(x)

where γ ∈ R+, is positive definite.

We have the following lemma generalizing such a result.

Lemma 5 (Kernels TSK). Let x ∈ RD be an input to a
TSK fuzzy system. Let x` ∈ RD be parameters of fuzzy sets
of the antecedent part of the rules.. If A` and g` were given
by: A`(x) = k1(x,x`), g`(x) = k2(x,x`), where k1 and
k2 are positive definite kernels. Then, the function defined by
Definition 12, is a positive definite kernel.

F. Non-singleton TSK kernel on fuzzy sets

We present a new class of kernels on fuzzy sets induced by
a non-singleton TSK fuzzy system. For the sake of notation,
we use notation Ω for the Cartesian product Ω1 × . . .ΩD.
We denote by Y the fuzzy set A`. In this sense, expression
T (X(x), Y (x)) always means T (X(x), A`(x)).

From definition of non-singleton TSK fuzzy system
(Definição 13), specifically rule’s antecedents, we have the
following kernel on fuzzy sets.

Definition 14 (Non-singleton TSK Kernel ). A non-singleton
TSK kernel on fuzzy sets is the function F(Ω)×F(Ω)→ [0, 1]
defined by:

kntsk(X,Y ) = sup
x∈Ω

(T (X(x), Y (x))) . (65)

As T-norms implement intersection of fuzzy sets. This
kernel is a kernel based on the intersection of fuzzy sets. i.e.,
kntsk(X,Y ) = sup

x∈Ω

(
X ∩ Y

)
(x).

Theorem 5. If F(Ω) contain only normal fuzzy sets, then
kntsk is positive definite.

Lemma 6. Kernel kntsk can be written as:

kntsk(X,Y ) =T

(
sup
x1∈Ω1

T (X1(x1), Y1(x1)) , . . . ,

sup
xD∈ΩD

T (XD(xD), YD(xD))

) (66)

Moreover, using the rule’s consequents, we have the follow-
ing real-valued kernel on fuzzy sets.

Definition 15 (Non-singleton TSK Kernel with consequent).
This kernel is the function: kntsk⊗g` :

(
F(Ω)×Ω

)
×
(
F(Ω)×

Ω
)
→ [0, 1], given by:

kntsk ⊗ g`
(
(X,x), (Y,θ)

)
= kntsk(X,Y )g`(x;θ) (67)

This kernel is induced by a TSK-NS fuzzy system, where:
g`(.,θ) : Ω → R is the consequent function of rule ` with
parameters θ ∈ Ω.

Lemma 7. kntsk⊗g` is a positive definite kernel if kntsk and
g` are positive definite kernels.

G. Non-singleton TSK Gaussian kernel

Setting Gaussian membership functions for all the fuzzy
sets: i.e.,: ∀d ∈ D, Xd ∈ F(R) are defined by:

Xd(xd) = exp

(
−1

2

(xd −md)
2

σ2
d

)
,
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where, xd ∈ R and md ∈ R e σd ∈ R+ are parameters. By
T-norm, X ∈ F(Ω) is given by

X(x) =

D∏
d=1

exp

(
−1

2

(xd −md)
2

σ2
d

)
.

Thus, a non-singleton TSK Gaussian kernel for the tuples
of fuzzy sets X = (X1, . . . , XD) and Y = (Y1, . . . , YD),
where each fuzzy set Xd (or Yd) have parameters (md, σd)
(or (,m′d, σ

′)d)), is given by:17

kntsk(X,Y )

= sup
x∈RD

(T (X(x), Y (x)))

=

D∏
d=1

exp

(
−1

2

(xsupd −md)
2

σ2
d

− 1

2

(xsupd −m′d)2

(σ′)2
d

)
.

Values xsupd can be computed by taking the derivative of
the above expression with respect to xsupd and setting this
expression to zero. This procedure gives the value:

xsupd =
md(σ

′
d)

2 +m′dσ
2
d

σ2
d + (σ′d)

2
. (68)

Summarizing all the above expression we have the following
definition.

Definition 16 (non-singleton TSK Gaussian kernel). The non-
singleton TSK Gaussian kernel on fuzzy sets is given by

kntsk(X,Y ) =

D∏
d=1

exp

(
−1

2

(md −m′d)2

σ2
d + (σ′d)

2

)
, (69)

Corollary 1. the non-singleton TSK Gaussian kernel is a
positive definite kernel.

This kernel is positive definite thanks to Theorem 5. Ad-
ditionally, it is possible to parametrize the kernel with a
bandwidth parameter.

Definition 17. The non-singleton TSK Gaussian kernel with
parameter γ ∈ R+ is a kernel on fuzzy sets given by

kγntsk(X,Y ) =

D∏
d=1

exp

(
−1

2

(md −m′d)2

σ2
d + (σ′d)

2 + γ

)
, (70)

Notice that this kernel is positive definite, because changing
σ′′d by σ′d + γ in (70), we get (69).

Moreover, it is possible to induce several non-singleton
TSK Gaussian kernels from Definition 15 by defining an
appropriate consequent function. The following expressions
are non-singleton TSK Gaussian kernels with consequents18

i.e., kntsk ⊗ g`
(
(X,x), (Y,θ)

)
:

• g`(x,θ) = 〈x,θ〉:

D∏
d=1

exp

(
−1

2

(md −m`
d)

2

σ2
d + (σ`d)

2

)
〈x,θ〉, (71)

17Derivation is achieved using Lemma 6.
18See Equation (67)

• k = kγntsk and g` = 〈x,θ〉, where x = (x1, . . . , xD),
θ = (xsup1 , . . . , xsupd , . . . , xsupD ), and xsupd given by (68):
D∏
d=1

exp

(
−1

2

(md −m`
d)

2

σ2
d + (σ`d)

2 + γ

) D∑
d=1

xd
md(σ

`
d)

2 +m`
dσ

2
d

σ2
d + (σ`d)

2
,

(72)
• g` is a RBF kernel:

D∏
d=1

exp

(
−1

2

(md −m`
d)

2

σ2
d + (σ`d)

2

)
exp

(
− γ 1

2
‖xI − θ`‖2

)
.

(73)
There are innumerable possibilities to engineer kernels on

fuzzy sets from (67), by choosing different fuzzy sets and T-
norms for kernel kntsk, and different kernels g`.

H. The non-singleton TSK kernel and fuzzy equivalence rela-
tions

Positive definite kernels generating matrices with a value
one in the diagonal, and taking values on [0, 1] are fuzzy
equivalence relations with respect to a T-norm (Collorary 6 in
[104]). Such kernels can be interpreted as fuzzy logic formulas
for fuzzy rules (Theorem 9 in [105]). We show that non-
singleton TSK kernels satisfy the two mentioned conditions.

Definition 18 (Fuzzy equivalence relation). Mapping E : X ×
X → [0, 1] is a fuzzy equivalence relation w.r.t. a T-norm T
if:

1) ∀x ∈ X , E(x, x) = 1;
2) ∀x, y ∈ X , E(x, y) = E(y, x);
3) ∀x, y, z ∈ X , T (E(x, y), E(y, z)) ≤ E(x, z).

are satisfied.

Lemma 8 (Kernels are at leas Tcostransitivity [104]). Let
X be a non empty-set. Let k : X × X → [0, 1] be a positive
definite kernel satisfying ∀x ∈ X : k(x, x) = 1. Then
∀x, y, z ∈ X , kernel k satisfy Tcos transitivity:

Tcos(k(x, y), k(y, z)) ≤ k(x, z), (74)

where

Tcos(a, b) = max(ab−
√

1− a2
√

1− b2, 0), (75)

is a archimedean T-norm and it is the greatest T-norm with
such property [104].

Lemma 9 (Kernels as fuzzy logic formulas for fuzzy rules
[105]). Let X be an non-empty set. Let k : X ×X → [0, 1] a
positive definite kernel satisfying ∀x ∈ X : k(x, x) = 1. Then
∀x, y, z ∈ X , there is a class of fuzzy sets µi∈I : X → [0, 1],
where I is a non-empty set, satisfying

∀x, y ∈ X : k(x, y) = inf
i∈I

←→
TM (µi(x), µi(y)), (76)

where
←→
TM = min(

−→
T (x, y),

−→
T (y, x)) is a bi-implication

operator and
−→
T (x, y) = sup{t ∈ [0, 1]|T (x, t) ≤ y}, is a

implication function generated from a T-norm T [105].

We state the following

Lemma 10. Non-singleton TSK kernel on fuzzy sets satisfy
(Lemma (8)) and Lemma (8) if normal fuzzy sets were used.
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Kernel Equation SVs C γ Acc.

- 11.8 215 2−4 96

(70) 31 21 2−5 98

(73) 37.1 22 2−4 98

(71)∗ 41.5 20 - 98

∗ It is a kernel without parameter.
Table IV

RESULTS ON THE DATASET 100mlI-4.

I. Experiments on supervised classification over an athletics
performance dataset

The dataset 100mlI-4 [120] contain information about
athletics performance. This data is used to classify when
a mark of 100 meters is achieved by some athlete. Each
observation has the following four interval-valued features:
the height vs weight rate, reaction time, velocity at 20 meters
and maximum velocity at 40 meters. Each observation was
imprecise because three different judges scored each athlete.

1) Scaling and fuzzyfication: We used a support vector
machine with some kernels on fuzzy sets presented in this
section. All the interval data was scaled to be in the interval
unitary. Each interval value |xd, xd| was modeled by a fuzzy
set with a Gaussian membership function: Xd : R → [0, 1],
with parameters md ∈ R and σd ∈ R+ given by the mean of
each interval and

σd =
|xd − xd|
2
√

2 ln 2
. (77)

Then the interval-valued dataset:

{[x(i)
1 , x

(i)
1 ], [x

(i)
2 , x

(i)
2 ], . . . , [x

(i)
D , x

(i)
D ]}Ni=1,

is transformed into the fuzzy dataset:

{(X(i)
1 , X

(i)
2 , . . . , X

(i)
D )}Ni=1.

2) Model selection: We perform model selection over the
regularization parameter C of SVM and the kernel param-
eter γ. We chose from the grid C = {2−1, . . . , 214} vs.
γ = {24, . . . , 2−10} the pair (C, γ) with the best 10-fold cross
validation accuracy. We solved ties by choosing the pair with
less number of support vectors. For kernels without parameter,
we only performed grid search over C. As this dataset is very
small, we only report the cross validation accuracy, we believe
that this value will reflect the test accuracy. The baseline kernel
for comparison purposes was the Gaussian kernel krbf

γ over the
mean values of the intervals.

3) Results: Table IV shows the kernels used in the exper-
iment, the best regularization parameter C, the best kernel
parameter γ, the cross validation accuracy (Acc.) and the mean
of support vectors from the 10-fold cross validation for the
pair (C, γ). The Gaussian kernel is denoted by RBF, and the
non-singleton TSK kernel by TSK-NS.

Results suggest that TSK kernels have good performance
in terms of accuracy and number of support vectors for this
dataset.

J. Experiment on dyslexia prediction dataset

The dataset Dyslexic-12-4 [68], [120], [121] contains data
used to predict whether or not patient present dyslexia. All the
data was collected from a graphical test called, Bender test.
This data was preprocessed in order to include the subjectivity
of the specialist’s evaluation. This give an interval-valued
dataset. The dataset has twelve features and four classes:
{dyslexia, no dyslexia, control, other}.

Kernel Equation SVs C γ Acc.

- 33 25 2−8 36.0

(70) 33.3 23 25 36.0

(71)∗ 45 21 - 38.5

∗It is a kernel without parameter.
Table V

RESULTS ON THE DATASET Dyslexic-12-4.

1) Results: The data was scaled, fuzzyfied as the last
experiment. The model selection was also the same of the
last experiment. Table V shows the kernels and the results
of this experiment. Results suggest that kernels on fuzzy sets
have a good performance in terms of accuracy for this dataset.
Notice that the kernel on fuzzy set with better accuracy has
not kernel parameter, consequently, the training time for this
kernel was faster than the others.

K. Summary and further research on this topic

We presented in this section how TSK fuzzy systems induce
kernels. Moreover, we define an extension of this fuzzy system
to the case of having fuzzy sets as inputs. We call this fuzzy
system as the non-singleton fuzzy system. Based on this new
fuzzy system, we define a new class of kernels on fuzzy sets:
the non-singleton TSS fuzzy kernel on fuzzy sets. We show
that this kernel is based on the intersection of fuzzy sets.
We also prove when this kernel is positive definite. We give
some examples of implementation of this kernel. We prove that
this kernel is a fuzzy equivalence relation. Finally, we made
an experimental study using a support vector machine with
our kernels on two supervised classification tasks: athletics
performance and dyslexia prediction. As further research, we
will look for practical applications on other tasks. Also, we
will investigate if other kinds of fuzzy systems can induce
kernels.

VI. A DISTANCE-BASED KERNEL ON FUZZY SETS

Similarity measures between fuzzy sets is a hot topic of
research because of its several applications in ML, computer
vision, image processing, statistical tests, etc. In this section,
we propose a distance-based kernel on fuzzy sets. Our idea
is based on putting a distance between fuzzy sets into the
kernel definition. If the distance is a metric, the distance-based
kernel on fuzzy sets is a similarity measure on fuzzy sets with
a geometrical interpretation in a RKHS; pseudo-metrics and
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semi-metrics on fuzzy sets still can be used. We successfully
used our proposed kernels on a hypothesis testing task on
fuzzy data.

A. Contributions

Our main contributions are:
• the formulation of kernels on fuzzy sets by using dis-

tances between fuzzy sets,
• a new formulation of distances between fuzzy sets using

kernels.
• a two-sample kernel hypothesis testing on fuzzy data

using our kernels.

B. Distance induced by positive kernels

We use the term distance to denote indistinctly a metric, a
pseudo-metric, or a semi-metric. Notice that the following is
satisfied in a RKHS H with kernel k:

‖φx − φy‖2H = k(x, y)− 2k(x, y) + k(y, y).

Not only positive definite kernels induce metrics in H,
but also Conditionally Positive Definite (CPD) kernels. It is
still possible to relax the condition of positive definiteness
for kernels by only requiring symmetric kernels to be used
to define distances. Of course, such induced distances could
violate the definition of metric, nevertheless they would induce
zero-diagonal symmetric distances.

C. Distances on fuzzy sets induced by kernels

If k is a kernel on fuzzy sets. Distances between fuzzy sets
could be formulated using kernels on fuzzy sets as follows:

D(X,Y ) = k(X,Y )− 2k(X,Y ) + k(Y, Y ). (78)

We call it as a kernel-based distance on fuzzy sets. A con-
sequence of (78) in fuzzy set theory is that if k is positive
definite, then Equation (78) give us a way to define a new set of
metrics over fuzzy sets. In this sense, D(X,Y ) is interpreted
as being ‖φX − φY ‖ in the RKHS H induced by k.

D. A distance-based kernel on fuzzy sets

We present a new class of kernels on fuzzy sets that
are distance substitution kernels [122]. The distance being
substituted in the kernel definition is a distance between fuzzy
sets. If D is a metric, the following kernels on fuzzy sets are
positive definite:

K(X,Y ) = 〈X,Y 〉x0

D (79)

K(X,Y ) =
(
α+ γ〈X,Y 〉X0

D

)β
(80)

K(X,Y ) = exp(−γD(X,Y )2), (81)

where α, γ ∈ R+, β ∈ N, and

〈X,Y 〉X0

D
def
=

1

2

(
D(X,X0)2 +D(Y,X0)2 −D(X,Y )2

)
(82)

We call all of those kernels as distance-based kernels on fuzzy
sets. Note that we can use pseudo-metrics or a semi-metrics on
fuzzy sets D. Resulting kernels will not be positive definite,

but they will have practical applications and a geometrical
interpretation. [57], [58], [123], [124]. Some popular distances
between fuzzy sets that could induce new kernels on fuzzy sets
are given in Table VI. See [88], [125]–[127] and references
therein for details.

E. Application to the task of two-sample kernel hypothesis
testing

We present an experimental study using distance-based kernels
on fuzzy sets on a hypothesis testing task. We use real clinical
data of cancer prognosis. Some variables of this dataset are
vague and imprecise, then they are better described by fuzzy
sets. The problem to be solved is formulated as follows: Given
two populations, determine whether they were drawn from the
same distribution or not. In order to do that, we used the kernel
two-sample test [45]. The novelty, is that we extend the method
to the case of fuzzy data using kernels on fuzzy sets19.

F. Kernel hypothesis testing

Kernels had been used to perform statistical tests to decide
wheather two samples were drawn from the same or different
distributions [45], [129]–[131]. In this experiment we used
a kernel two-sample test approach. A main concept for this
procedure is the Maximum Mean Discrepancy (MMD) [45].

Definition 19 (MMD). Let F be a set of functions f : Ω →
R. Let X and Y be two random variables on Ω distributed
according to the probability measures P and Q. The MMD is
defined by:

MMD[F ,P,Q] = sup
f∈F

(
EX∼P[f(X)]− EY∼Q[f(Y)]

)
, (83)

where EX∼• is the expectation of the random variable X
distributed according to •.

Given the samples sX = {x1, . . . , xm} e sY =
{y1, . . . , yn} distributed according to P and Q, respectively.
An unbiased empirical estimator for MMD is given by
(Lemma 6 from [45]):

MMD2
u[F , sX , sY ] =

1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj)

− 2

mn

m∑
i=1

n∑
j=1

k(xi, yj)

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi, yj)(84)

Using the samples sX and sY defined above, it is possible to
use the MMD to test whether the null hypothesis H0 : P = Q
or the alternative hypothesis: HA : P 6= Q holds. That is, if
MMDu[F , sX , sY ] > ε, where ε is an arbitrary threshold, it is
possible to say that the null hypothesis is rejected. Otherwise,
there is not evidence to reject the null hypothesis. A Type I
error occurs when H0 is rejected in spite of the null hypothesis

19The code used in the experiments can be found at https://github.com/
jorjasso/Two-sample-kernel-test-with-fuzzy-kernels.

https://github.com/jorjasso/Two-sample-kernel-test-with-fuzzy-kernels
https://github.com/jorjasso/Two-sample-kernel-test-with-fuzzy-kernels
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D(X,X′) Type of distance[ ∫
x∈Ω |X(x)−X′(x)|p

]1/p
pseudo-metric, p ∈ N

supx∈Ω |X(x)−X′(x)| metric∑
x∈Ω |X(x)−X′(x)|∑
x∈Ω |X(x) +X′(x)|

metric, discrete case

1−
∑
x∈Ω min[X(x), X′(x)]∑
x∈Ω max[X(x), X′(x)]

semi-metric

1−
∑
x∈Ω

min[X(x), X′(x)]

max[X(x), X′(x)]
semi-metric

1−maxx∈Ω min[X(x), X′(x)] pseudo-metric∫ 1
0 D(Xα, X′α)dα Xα is the α-cut set [128], and D is any metric on sets∑
x,x′∈Ω d(x, x′) min[X(x), X′(x′)]∑

x,x′∈Ω min[X(x), X′(x′)]
metric

Table VI
DISTANCES ON FUZZY SETS THAT INDUCES KERNELS ON FUZZY SETS.

being true. A Type II error occurs when the null hypothesis is
not rejected in spite of the distributions being different. The
level of the test, denoted by α, is an upper bound of the Type
I error and, of course, it can be used to estimate the value of
the threshold ε. See Section 4 and 5 from [45] for details. In
our experiments, we estimated the threshold using bootstrap.

G. Two-sample test with kernels on fuzzy sets

We show in this section the methodology used for the
statistical test using kernels on fuzzy sets.

1) Breast cancer dataset: The Breast Cancer dataset
[132]20, provided by the Institute of Oncology at the University
Medical Center in Ljubljana, Yugoslavia, has information of
286 patients, divided in two categories: 201 patients with no
recurrence events of breast cancer in the first five years after
the surgery, and 85 patients that show recurrence events of
breast cancer in the same period of time.

The dataset has ten variables shown in Table VII. Note that
the variables age, menopause, tumor-size and inv-node contain
imprecise values.

2) Fuzzification of the dataset: Table VII shows that
the dataset is heterogeneous, because it contains variables
with precise and non-precise values. For the variables age,
menopause, tumor-size, and inv-nodes, we used fuzzy sets to
model the imprecise values. The fuzzification was performed
as follows.

Variable age was modeled with fuzzy sets using trapezoidal
membership functions given by:

X(x; a, b, c, d) =



0, x ≤ a
x− a
b− a

, a ≤ x ≤ b
1, b ≤ x ≤ c

d− x
d− c

, c ≤ x ≤ d
0, d ≤ x

(85)

20Available from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

After analyzing the range of values of this variable, we used
the following rule to define the parameters a, b, c, d. Let l and
r be the leftmost and the rightmost values of each interval
(see Table VII), then a = l − 5, b = l, c = r, d = r + 5. The
reason behind this choice is to allow some overlapping by the
membership functions. Figure 8 shows the trapezoidal fuzzy
sets used to represent the values of the variable age.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Figure 8. Fuzzification of variable age with trapezoidal fuzzy sets.

Variable menopause, was modeled by a fuzzy set with a Z-
shaped membership function to represent the linguistic term
lq40 (less than forty years old), that is:

X(x; a, b) =



1, x ≤ a

1− 2
(x− a
b− a

)2

, a ≤ x ≤ a+ b

2

2
(x− a
b− a

)2

,
a+ b

2
≤ x ≤ b

0, x ≥ b,

(86)

where a = 40 and b = 45. Figure 9 shows this fuzzy set as a
red curve. We used a fuzzy set with a S-shaped membership
function to model the linguistic value ge40 (greater than forty
years old), that is:

X(x; a, b) =



0, x ≤ a

2
(x− a
b− a

)2

, a ≤ x ≤ a+ b

2

1− 2
(x− a
b− a

)2

,
a+ b

2
≤ x ≤ b

1, x ≥ b,

(87)

where a = 35 and b = 40. Figure 9 shows this fuzzy set as a
blue curve. To represent the linguistic value premeno, we used

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
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Variable Values

class no-recurrence-events, recurrence-events
age 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.
menopause lt40, ge40, premeno.
tumor-size 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59.
inv-nodes 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39.
node-caps yes, no.
deg-malig 1, 2, 3.
breast left, right.
breast-quad left-up, left-low, right-up, right-low, central.
irradiat yes, no.

Table VII
VARIABLES OF THE BREAST CANCER DATASET.

a fuzzy set with a Gaussian membership function, that is:

X(x;σ, c) = exp
(
− (x− c)2

2σ2

)
(88)

where c = 45 and σ was estimated to be (50 −
40)/(2

√
2 log 2)21. Figure 9 show this fuzzy set as a yellow

curve.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Figure 9. Fuzzification of the variable menopause with Gaussian (yellow),
S-shaped (blue) and Z-shaped (red) fuzzy sets.

Variable tumor-size was modeled by three kinds of fuzzy
sets. We used a Z-shaped fuzzy set with parameters a = 0
and b = 9 and a S-shaped fuzzy set with parameters a =
50 and b = 59 to model the extreme values of the variable.
Several Gaussian fuzzy sets with parameters c = (l+r)/2 and
σ = (r− l)/(2

√
2 log 2)) were used to model the other values.

Figure 10 shows the fuzzy sets used to model this variable.

0 10 20 30 40 50 60
0

0.5

1

Figure 10. Fuzzification of the variable tumor-size, with S-shaped (leftmost),
Z-shaped (rightmost) and Gaussian fuzzy sets.

Finally, Variable inv-nodo was modeled as variable tumor-
size. We used a Z-shaped fuzzy set with parameters a = 0
and b = 5, a S-shaped fuzzy set with parameters a = 33
and b = 39, and several Gaussian fuzzy sets with parameters
c = (l+ r)/2 and σ = (r− l)/(2

√
2 log 2)). Figure 11 shows

the fuzzy sets used to model this variable.
For comparison purposes, we constructed a crisp version of

this dataset, considering the mean values of each interval.
3) Experiments: We performed two experiments. Exper-

iment I: The purpose of this experiment is to test it the
MMD can correctly identify whether or not two samples

21This value is known as full width at half maximum.
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Figure 11. Fuzzification of the variable inv-nodes with with S-shaped
(leftmost), Z-shaped (rightmost) and Gaussian fuzzy sets.
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Figure 12. Two-sample test with five different kernels. The graph shows the
results in terms of the Type II error, vs the evel of the test α.

were drawn from two different distributions. We randomly
sampled 25 observations from patients showing breast cancer
recurrence and 25 observations from patients without breast
cancer recurrence to form a pair of samples to be tested. We
set α to 0.05. as the level of the test. We applied the test
over one hundred randomly chosen pairs of samples. Then we
get the frequency the null hypothesis is rejected. In order to
get statistics of mean and variance, we performed the above
procedure 250 times.

Experiment II: We used the same procedure as before but
this time a pair of samples was chosen from the same category
(recorrence, or non recorrence). The category whereby the
samples were chosen was randomly selected. We proceeded
to get the mean and the variance as before.

Kernels for the crisp dataset We used the linear ker-
nel: klin(x, y) = xTy, x, y ∈ RD, and the RBF kernel:
kRBF (x, y) = exp(−γ‖x − y‖2), x, y ∈ RD, γ ∈ R+.
We estimate the γ parameter using the median heuristic: we
compute the median of the all possible distances between
observations in the dataset and we set γ to be the one divided
by this value.
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Exp. Condition H0 klin kRBF k∩ + klin k∩ + kRBF kD + kRBF

II Same accepted 97.63 97.98 97.38 97.51 97.92
II Same rejected 02.37 02.02 02.62 02.49 02.08
I Different accepted 73.79 73.68 92.78 93.85 61.09
I Different rejected 26.21 26.32 07.22 06.15 38.91

Table VIII
RESULTS FOR α = 0.05. THE NULL HYPOTHESIS IS DENOTED BY H0 .

Kernels for the fuzzy dataset As the data is heterogeneous,
we decided to use a convex combination of kernels:

k(x, y) =

K∑
i=1

βiki(xi, yi), (89)

where βi ≥ 0 and
∑
i βi = 1. This kernel has some

advantages as: different kernels can be used in different subsets
of variables with values on different domains, and it is possible
to optimize the βi values from data. The resulting kernel is
positive definite because any linear combination of kernels is
also a positive definite kernel.

We denoted by k∩ + klin, the kernel given by the convex
combination of linear kernels on crisp variables and the
intersection kernel on fuzzy sets over fuzzy variables (age,
menopause, tumor-size and inv-nodes) [50]. We used the
minimum T-norm operator for the intersection kernel on fuzzy
sets22.

We denoted by k∩+ kRBF , the kernel given by the convex
combination of the RBF kernel on crisp variable and the
intersection kernel on fuzzy set over fuzzy variables. The
kernel parameter was given by the median heuristic but only
considering crisp dimensions.

Finally, we used a convex combination of a RBF kernel on
crisp variables and a distance-based kernel on fuzzy sets with
the following metric on fuzzy sets:

D(X,X ′) =

∑
x∈Ω |X(x)−X ′(x)|∑
x∈Ω |X(x) +X ′(x)|

. (90)

The distance-based kernel on fuzzy sets was given by:

KD(X,X ′) = exp(−λD(X,X ′)2) (91)

The kernel parameter was computed by the median heuristic
over the crisp versions of the fuzzy variables. We denoted this
kernel by KD + kRBF .

4) Results: Figure 12 shows the performance of the kernels
on graph of the Type II error vs. the level of the test α. We
note that kernel kD + kRBF has lower Type II error than the
other ones, for several choices of α.

Table VIII shows the results for the two-sample tests for
α = 0.05. The first column shows the type of the experiment.
The second column shows the condition of the samples. The
word accepted in the third column must be understood as there
is not evidence to reject the null hypothesis, and the word
rejected must be understood as the null hypothesis is rejected.
The other columns show the results for the kernels of Section

22This kernel has not bandwidth parameter, then is not necessary to perform
a parameter search.

VI-G3. The first row of the table shows if there is not evidence
to reject the null hypothesis, that is, if the two samples were
drawn from the same distribution (the same category), the test
correctly says that it is the case. We observed that all the
kernels perform very similarly. The second row shows the case
when the null hypothesis is rejected despite of being true. That
is called a Type I error, this value is bounded by the level of
the test.

The third row shows the Type II error: the test wrongly says
that both samples were drawn from the same distribution. That
is the test says that the alternative hypothesis is false despite
of being true. Type II errors give us a way to measure the
relevance of the kernels in this hypothesis testing task. We
observed that the distance-based kernel on fuzzy sets KD +
kRBF is the best of all of them achieving lower Type II error
for this dataset.

The fourth row of the table shows the case when the test say
that the alternative hypothesis is true, when it is really true.
That is the null hypothesis is rejected. The kernels k∩ + klin
and k∩ + kRBF performs badly and the kernel KD + kRBF
has a higher value than the others.

H. Summary and further research on this topic

In this section, we proposed a new class of kernels on fuzzy
sets: a distance-based kernel on fuzzy sets. Those kernels are
based on the concept of distance substitution kernel [122].
A distance-based kernel on fuzzy sets is given by setting a
distance on fuzzy sets within the kernel definition. As a further
area of research, we investigate how to extend this concept
for intuitionistic fuzzy sets [133] and hesitant fuzzy sets (See
[133], [134]). [134].

VII. CONCLUSIONS AND FURTHER RESEARCH

In this research, we investigated how kernel methods, fuzzy
sets and probability measures can be used to deal with datasets
of the form of (1). We stated that, depending on the nature of
si, it is possible to use either fuzzy sets or probability measures
to model such observations. Using kernels, we used the kernel
embedding of either probability measures or fuzzy sets to
perform data analytics. As a result we defined a new class
of kernels on fuzzy sets. Moreover, we defined the support
measure data description models as a data description models
for distributional data. Thus we proved that the methodology
used in this research is a valid approach. As further step, we
will extend those methods to other ML tasks over datasets of
interest.
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